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Abstract 

The systems of nonlinear equations emerges f＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠ rom many areas of computing, scientific and 
engineering research applications. A variety of an iterative methods for solving such systems have 
been developed, this include the famous Newton method. Unfortunately, the Newton method suffers 

setback, which includes storing 𝑛×𝑛 matrix at each iteration and computing Jacobian matrix, which 
may be difficult or even impossible to compute. To overcome the drawbacks that bedeviling Newton 
method, a modification to SR1 update was proposed in this study. With the aid of inexact line search 
procedure by Li and Fukushima, the modification was achieved by simply approximating the inverse 

Hessian matrix 𝐵!!!
!!

 with an identity matrix without computing the Jacobian. Unlike the classical SR1 

method, the modification neither require storing 𝑛×𝑛 matrix at each iteration nor needed to compute 

the Jacobian matrix. In finding the solution to non-linear problems of the form 𝐹(𝑥)  =  0, 𝑥 ∈  𝑅, 40 
benchmark test problems were solved. A comparison was made with other two methods based on 

CPU time and number of iterations. In this study, the proposed method solved 37 problems 
effectively in terms of number of iterations. In terms of CPU time, the proposed method also 
outperformed the existing methods. The contribution from the methodology yielded a method that is 

suitable for solving symmetric systems of nonlinear equations. The derivative-free feature of the 
proposed method gave its advantage to solve relatively large-scale problems (10,000 variables) 
compared to the existing methods. From the preliminary numerical results, the proposed method 

turned out to be significantly faster, effective and suitable for solving large scale symmetric nonlinear 
equations. 
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INTRODUCTION 

Given the symmetric nonlinear system as following: 

𝐹(𝑥) = 0, 𝑥 ∈ 𝑅!
 (1) 

where 𝐹:𝑅
!
→ 𝑅

! is continuously differentiable in an open convex 

set 𝑆 and assumed to satisfy the assumptions that (i) Its Jacobian 

𝐽(𝑥) ≈ 𝐹 ′(𝑥) is symmetric, i.e., 𝐽(𝑥) = 𝐽(𝑥)! .

There exists a solution vector x∗ of (1) in 𝑆 such that 𝐹(𝑥∗) = 0

and 𝐹′(𝑥∗) ≠ 0. (iii) The Jacobian 𝐹′(𝑥) is Lipschitz 

continuous at x∗. 

The systems of symmetric nonlinear equation (1) has been discussed 

by  researchers (Li & Shengjie, 2015; Zhang & Maojun, 2015). The 

Newton method is famous, unfortunately, the method suffers setback 

which includes storing an 𝑛×𝑛 matrix at each iteration and computing 

Jacobian matrix which may be difficult or even not possible to 

compute. For more details on Newton method and other numerical 

methods of solving nonlinear equations see (Dauda, Mamat, Waziri, 

Ahmad, & Mohamad, 2016; Mamat, Dauda, Waziri, Ahmad, & 

Mohamad, 2016). The Newton method generates an iterative sequence 

𝑥! from a given initial guess vector 𝑥! in the neighborhood of x∗ from 

the following algorithm. 

Algorithm (Newton’s Method) 

For 𝑘 = 0,1,2, . .. of 𝐹′(𝑥!), the Jacobian matrix of 𝐹, 

Step 1: Solve 𝐹′(𝑥!)𝑠! = −𝐹(𝑥!)

Step 2: Update 𝑥!!! = 𝑥! + 𝑠! , where 𝑠! is the Newton correction in  
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the Newton system. When the Jacobian matrix 𝐹′(𝑥∗), is nonsingular 

at a solution of (1) the convergence is guaranteed with a quadratic rate 

from any initial point 𝑥! in the neighborhood of 𝑥∗. Throughout this  

article, we always assume that the problem (1) is symmetric and 

equivalent to the global optimization problem(2) 

𝑚𝑖𝑛!∈!! 𝑓(𝑥) (2) 

with function f in (2) is defined by 

𝑓 𝑥 =
!

!
𝐹 𝑥 !

!
. (3) 

To approximate the gradient ∇𝑓 𝑥! , which avoids computing exact 

gradient. It is clear that, when 𝐹 𝑥! is small, then 𝑔 𝑥! ≈ ∇𝑓 𝑥! .

In (D. L. Fukushima & M, 2000), Li and Fukushima used the term: 

𝑔! ≈
!(!!!!!!(!!))

!!

(4) 

The purpose of this article was to overcome the drawbacks that 

bedeviling Newton method by extending the classical SR1 update 

method (Dauda et al., 2016)  for general problems to nonlinear 

equations without using exact gradient and Jacobian. The proposed 

method was capable of reducing the execution time (CPU time) and 

number of iterations. The modification was achieved by simply 

approximating the inverse Hessian matrix 𝐵!!!
!! to 𝜃!𝐼 without 

computing the Jacobian. Unlike the classical SR1 method, the 

modification neither required to store an 𝑛×𝑛 matrix at each iteration 

nor needed to compute the Jacobian matrix. The remaining part of the 

article was organized by presenting the derivation of the proposed 

method in section 2. In section 3, some numerical results are 

presented, while section 4 presents the conclusion and future work. 

The proposed method 
The idea of the proposed quasi-Newton method in which 

(𝐵!!!)
!! updated from (𝐵!)

!!
= 𝜃!𝐼 was as a result of modification 

to SR1 update in (Dauda et al., 2016). Applying the idea of symmetric 

rank-one (SR1) update, the following search direction was obtained. 

Recall, in (Wright & S.J, 2006) from Sherman-Morrison formula, the 

inverse of SR1 update was denoted as (𝐵!!!)
!! and given by 

𝐵!!!
!!

= 𝐵!
!!
+

!!!!!
!!
!! !!!!!

!!
!!

!

!!!!!
!!
!!

!

!!

(5) 

where Bk
−1 

is the inverse of 𝐵! , which is an approximation to the 

Jacobian updated at each iteration (Morales, 2008). 

The matrix 𝐵!!! was chosen so that it satisfied the secant 

equation 

𝐵!!!𝑠! = 𝑦! , 𝑠! = 𝑥!!! − 𝑥!  and  𝑦! = 𝐹(𝑥!!!) − 𝐹(𝑥!)(6) 

By approximating 𝐵!
!! with the matrix θ!

!!
𝐼 where 𝜃! =

!!
!!!

!
!

!
!!

   

(Morales, 2008; Zhou, 2013) and substitute in (5) it became: 

𝐵!!!
!!

= 𝜃!𝐼 +
!!!!!!!! !!!!!!!!

!

!!!!!!!!
!!!

(7) 

𝐵!!!
!!

= 𝜃! +
!!!!!!! !!!!!!!

!

!!!!!!!
!!!

(8) 

𝑄!!!
!!

= 𝐵!!!
!! whenever 𝐵!

!!
= 𝜃!𝐼. The quasi Newton’s 

direction 𝑑!!! = 𝑄!!!𝐹(𝑥!!!) in which the (nonsingular) 

matrix 𝑄!!! ∈ 𝑅
!"! was an approximation satisfying the 

standard secant equation (Li & Shengjie, 2015). Thus, 

𝑄!!!𝐹(𝑥!!!) = 𝜃!𝐹(𝑥!!!) +
!!!!!!! !!!!!!!

!
!(!!!!)

!!!!!!!
!!!

(9) 

Hence, 

𝑑!!! =

−𝐹(𝑥!) !" !!!

−𝜃!𝐹 𝑥!!! +
!!!!!!! !!!!!!!

!
! !!!!

!!!!!!!
!!!

,   𝑖𝑓 𝑘 ≥ 1

(10) 

Since 𝑑! given by (10) might not be a descent direction, the standard 

Wolfe and Armijo line searches could not be used to compute the 

step-size directly, the non-monotone line search proposed by Li and 

Fukushima ( Fukushima & Li, 2000;  Fukushima & Li, 2000) was 

used to compute the next step-size 𝛼! . It was the most frequently 

used line search in practice. The inexact line search to be used was 

sufficiently decreased the function values along the ray 𝑥! + 𝛼!𝑑! >

0,  i.e. 𝐹(𝑥! + 𝛼!𝑑!) ≤ 𝐹 𝑥! . Motivated by this features, let σ1 

> 0,σ2 > 0,r ∈ (0,1) be constants and 𝜂!  be a given positive sequence 

such that: 

𝜂!
!

!!! < ∞ (11) 

Let 𝛼! = 𝑚𝑎𝑥 {1, 𝑟!, 𝑟!, . . . } satisfy 

𝑓 𝑥! + 𝛼!𝑑! − 𝑓(𝑥!) ≤ −𝜎! 𝛼!𝐹 𝑥!
!
− 𝜎! 𝛼!𝑑!

!
+

𝜂!𝐹(𝑥!) (12) 

the SR1 method was an iterative method that generated a sequence of 

{𝑥!}!!! from a given initial guess 𝑥! via the following 

𝑥!!! = 𝑥! − 𝛼!𝐵!
!!
𝐹 𝑥! , 𝑘 = 0,1,2,… (13)  

where 𝛼! > 0 is a step length determined by (12). 

Algorithm (proposed method) 
Step 1: Given 𝑥!,𝛼 > 0, 𝜎𝜖(0,1) and 𝜖 > 0 compute 𝑑! =

−𝐹 𝑥! , 𝑠𝑒𝑡 𝑘 = 0.

Step 2: Compute 𝑔! ≈
!(!!!!!!(!!))

!!

  and test the stopping criterion, 

i.e. 𝑔(𝑥!) ≤ 𝜀. If yes, then stop. Otherwise continue with step 3 

Step. 3  Compute 𝛼! by using the line search (12) 

Step. 4  Compute 𝑥!!! = 𝑥! + 𝛼!𝑑!

Step. 5  Compute search direction using (10) 

Step. 6  Consider 𝑘 = 𝑘 + 1 and go to step 2 

Numerical results 
In this section, a comparison on the performance of the proposed 

method for solving nonlinear equations (1) with the following two 

methods was made, denoting the methods as Alg1, Alg2 and Alg3 

respectively. The following benchmark problems were used 

P1: (System of exponential nonlinear equations) (Wright & S.J, 

2006). 

𝐹 𝑖 =  𝑒
!! − 1; 𝑖 = 1,2,3,⋯ ,𝑛.

𝑥! = 0.5,0.5,⋯ ,0.5 !

P2: (System of trignometric nonlinear equations) (Dauda et al., 2016). 

𝐹 1 = 𝑥! − 𝑒
!"#(

!!!!!

!!!
)
;

𝐹! 𝑥 = 𝑥! − 𝑒
!"#(

!!!!!!!

!!!
)
;

𝐹! 𝑛 = 𝑥! − 𝑒
!"#(

!!!!!!!

!!!
)
;

𝑖 = 1,2,3,⋯ ,𝑛.

𝑥! =  1,1,1, . . . ,1 !

P3: (System of exponential nonlinear equations)(Dauda et al., 2016). 

𝐹(𝑖) = 𝑖 ∗ (1 − 𝑥!
!
− (𝑒!!

!

))

𝐹 𝑛 =
𝑛

10
∗ (1 − 𝑒!!!

!

)

i =  1,2,3, . . . , n;  𝑥! = 0.5,0.5,0.5. . . ,0.5 !
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P4: (System of exponential nonlinear equations) (Dauda et al., 2016). 

𝐹! 𝑥 =

2 −1 ⋯

0 2 −1

⋱ ⋱ ⋱

⋱ ⋱ −1

⋯ −1 2

𝑥! + (𝑒!
!
− 1, 𝑒!

!
− 1,⋯ , 𝑒!

!
− 1)!;

i =  1,2,3, . . . , n;  𝑥! = 0.5,0.5,0.5,⋯ ,0.5 !

P5: (System of nonlinear equations) (Waziri, Leong, & Mamat, 2012). 

𝐹 1 =
1

3
∗ 𝑥!

!
+ 0.5 ∗ 𝑥!

!

𝐹 𝑖 = − 0.5 ∗ 𝑥!
!
+ 𝑖(

1

𝑖
) ∗ 𝑥!

!
+ (0.5 ∗ 𝑥!!!

! )

𝐹 𝑛 = −0.5 ∗ 𝑥!
!
+

1

3
∗ 𝑛 ∗ 𝑥!

!

i =  1,2,3,⋯ , n;  𝑥! = 0.5,0.5,0.5,⋯ ,0.5 !

P6: (System of nonlinear equations)(Waziri et al., 2012). 

𝐹 𝑖 = 𝑥!
!
− 4

i =  1,2,3,⋯ , n;  𝑥! = 0.5,0.5,0.5,⋯ ,0.5 !

P7: (System of trigonometric nonlinear equations) (Mamat et al., 
2016). 

𝐹 1 = 3 ∗ 𝑥!
!
+ 2 ∗ 𝑥! − 5 + sin 𝑥! − 𝑥! ∗ sin 𝑥! + 𝑥!

𝐹 𝑖 = −𝑥!!! ∗ 𝑒
!!!!!!! + 𝑥! ∗ 4 + 3 ∗ 𝑥!

!
+ 2 ∗ 𝑥!!! +

sin 𝑥! − 𝑥!!! ∗ sin 𝑥! + 𝑥!!! − 8

𝐹 𝑛 = −𝑥!!! ∗ 𝑒
!!!!!!! + 4 ∗ 𝑥! − 3

i =  1,2,3,⋯ , n;  𝑥! = 0.5,0.5,0.5,⋯ ,0.5 !
 

P8: (System of nonlinear equations)(Mamat et al., 2016). 

𝐹 1 = 𝑥! ∗ 𝑥!
!
+ 𝑥!

!
− 1

𝐹 𝑖 = 𝑥! ∗ 𝑥!!!
!

+ 2 ∗ 𝑥!
!
+ 𝑥!!!

!
− 1

𝐹 𝑛 = 𝑥! ∗ 𝑥!!!
!

+ 𝑥!
!

i =  1,2,3,⋯ , n;

𝑥!

The above test problems with different given initial points were 

considered, each problem has been tested using all the methods with 

different values of n=10,100,500,1000 and 10000, where 𝑛 is the 

number of variables of each problem. The search was stopped if the 

total number of iteration was exceeded 1000 or ∥ 𝐹(𝑥!) ∥ <  𝜖 with ϵ 

< 10
−4

. The experiment was carried out in the MATLAB 7.1, R2009b 

programming environment and run on a personal computer 1.8GHz, 

CPU processor and 4GB RAM memory and windows XP operator. 

The Algorithms were implemented with the following parameters σ = 

ρ = 0.9 for all k. ”P” indicates the problem; ”Iter” and ”Time” stand 

for the total number of iterations and the CPU time in seconds 

respectively. ” ∥ 𝐹(𝑥!) ∥ ” is the norm of the residual at the stopping 

point. The symbol ” − ” in the tables indicates a failure due to memory 

shortages or/and when the number of iterations exceeded 1000. 

Clearly the method alg1 was the best with complete success in 

comparison with Alg2 method and Alg3. Moreover, from Tables 1-2 

it was evident that the Alg1 was the best (in terms of iteration). 

According to the Tables 1-2, the performance of these three methods 

were shown in Figures 1 and 2 by using the performance profiles of 

Dolan and Moré (Morťe & J, 2002). Figure 1 shows the performance 

relative to the number of iteration. Similarly, Figure 2 shows the 

performance of the methods relative to CPU Time. For each method, 

the fraction 𝑃(𝜏) was plotted against τ. The top curve was the method 

that solved the most problems in a time that was within a factor τ of 

the best time. The figures indicates that Alg1 was the most efficient 

for solving the given test problems among the three methods since the 

top curve was corresponded to Alg1 

Fig. 1  Number of iterates performance profile for Alg1, Alg2 and Alg3 of 
Problem 1-8. 

Fig. 2  CPU time performance profile for Alg1, Alg2 and Alg3 of problem 
1-8. 

CONCLUSION AND FUTURE WORK 

Method for solving systems of nonlinear equations via 

memoryless SR1 update was presented. In finding the solution to 

nonlinear problems of the form 𝐹(𝑥) = 0, 𝑥 ∈ 𝑅!, 40 benchmark test 

problems were solved. A comparison was made between the proposed 

methods Alg1 and two other methods Alg2 (Dauda et al., 2016) and 

Alg3 (Mamat et al., 2016). The contribution yielded a method that 

suitable for solving symmetric systems of nonlinear equations. Based 

on number of iterations, 37 problems were solved effectively by the 

proposed method. In terms of CPU time, the proposed method also 

outperformed the existing methods. The derivative-free feature of the 

proposed method gave it ＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠ advantage to solve relatively large-scale 

problems (10,000 variables) compared to the existing method. From 

the preliminary numerical results, the proposed method turned out to 

be significantly faster, effective and suitable for solving large scale 

symmetric nonlinear equations. To extend this work futher in future, 

one could establish the global Convergence of the proposed 

Algorithm. 
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Table 1   Numerical results for Alg1, Alg2 and Alg3 of Problem 1-4. 

Table 2 Numerical results for Alg1, Alg2 and Alg3 of Problem 5-8. 

P 
N Alg1 Alg2 Alg3 

Iter CPU NFE Iter CPU NFE Iter CPU NFE 

10 7 0.017405 8.44E-04 _ 4.382775 0.30950 34 0.082004 9.93E-04 

100 8 0.023140 6.61E-04 _ 6.178020 0.74640 48 0.156076 9.99E-04 
5 500 9 0.066623 6.05E-04 _ 19.863146 0.63060 51 0.467148 9.91E-04 

1000 9 0.173882 8.78E-04 _ 58.794125 0.75350 53 1.394067 9.17E-04 

10000 10 12.292827 7.18E-04 _ 3886.7239 0.66700 51 88.942749 9.61E-04 
10 11 0.025781 7.58E-04 _ 4.710905 0.4872 44 0.127728 9.92E-04 

100 11 0.030667 5.07E-04 _ 22.350121 8.5348 49 0.183563 9.28E-04 

6 500 11 0.0742 7.83E-04 _ 67.351265 18.806 53 0.696541 8.12E-04 
1000 12 0.221913 4.89E-04 _ 200.28285 26.5462 56 1.426673 9.18E-04 

10000 12 14.204232 5.95E-04 _ _ _ 62 112.31609 8.35E-04 

10 10 0.001306 7.26E-04 130 0.037914 9.27E-04 _ 0.254265 4.2519 
100 11 0.001644 7.62E-04 _ 1.17309 0.9014 _ 0.301353 14.1021 

7 500 13 0.002679 1.33E-04 _ 0.603953 0.8794 _ 0.470482 31.6286 

1000 13 0.003755 1.89E-04 _ 0.927353 0.6155 _ 0.700859 44.7969 
10000 13 0.030127 5.98E-04 96 1.921122 4.04E-04 _ 5.343979 141.7241 

10 4 0.001818 8.61E-04 5 0.001225 7.59E-05 8 0.001117 4.32E-05 

100 4 0.001827 4.57E-04 5 0.00147 2.52E-04 10 0.001171 1.43E-04 
8 500 4 0.002597 4.10E-04 _ 1.86652 18.1517 11 0.001673 3.21E-04 

1000 4 0.003452 5.80E-04 _ 2.824956 25.7091 11 0.002839 4.55E-04 

10000 5 0.031191 7.34E-04 _ 21.935074 81.3359 12 0.021555 8.36E-07 
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Alg1 Alg2 Alg3 

N Iter CPU NFE Iter CPU NFE Iter CPU NFE 

10 4 0.002417 8.94E-04 8 0.000659 1.40E-04 8 0.000952 3.35E-04 
100 4 0.000893 4.53E-04 10 0.001177 4.43E-04 9 0.00223 5.24E-06 

1 500 4 0.001985 4.05E-04 11 0.000946 9.90E-04 9 0.001621 1.17E-05 

1000 5 0.002713 5.73E-04 11 0.001799 3.06E-06 9 0.00238 1.66E-05 
10000 7 0.161322 7.25E-04 12 0.051037 3.74E-05 9 0.02207 5.24E-05 

10 4 0.000851 4.34E-04 4 0.000895 4.17E-04 8 0.00092 4.17E-04 

100 5 0.001075 5.49E-04 5 0.000783 8.30E-06 9 0.000766 8.30E-06 
2 500 5 0.001222 4.91E-04 5 0.001009 1.86E-05 10 0.001165 1.86E-05 

1000 5 0.001851 6.95E-04 5 0.001372 2.62E-05 10 0.00128 2.62E-05 

10000 5 0.017249 8.79E-04 7 0.043058 2.36E-06 11 0.010917 8.30E-05 
10 6 0.001129 4.40E-04 7 0.000929 8.53E-04 10 0.001171 8.39E-04 

100 2 0.001127 9.21E-04 2 0.000872 8.75E-04 11 0.00064 8.75E-04 

3 500 2 0.002602 8.32E-04 2 0.000909 3.29E-06 12 0.001114 3.29E-06 
1000 2 0.004596 4.71E-04 2 0.001231 2.93E-07 13 0.001466 2.93E-07 

10000 1 0.033528 5.95E-04 1 0.005354 1.14E-04 14 0.007131 1.14E-04 

10 7 0.000868 7.89E-04 7 0.000966 5.18E-04 9 0.001806 6.68E-04 
100 2 0.001198 7.13E-04 2 0.000709 7.12E-04 11 0.000652 7.12E-04 

4 500 2 0.008648 6.44E-04 2 0.000877 2.68E-06 12 0.00103 2.68E-06 

1000 2 0.003439 9.12E-04 2 0.001332 2.39E-07 12 0.002071 2.39E-07 
10000 1 0.040345 4.61E-04 1 0.007386 1.20E-04 14 0.006156 1.20E-04 
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