
Dauda et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 15, No. 1 (2019) 117-120

117

Improved Quasi-Newton method via SR1 update for solving
symmetric systems of nonlinear equations

Muhammad Kabir Dauda a, b,*, Mustafa Mamat a, Mohamad Afendee bin Mohamed a , Mahammad
Yusuf Waziri c

a
 Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Gong Badak, Terengganu, Malaysia

b
 Department of Mathematical Sciences, Kaduna State University, Kaduna, Nigeria

c
 Department of Mathematical Sciences, Bayero University, Kano, Nigeria

* Corresponding author: mkdfika@gmail.com

Article history
Received 27 February 2018

Revised 28 March 2018
Accepted 21 May 2018
Published Online 4 February 2019

Abstract

The systems of nonlinear equations emerges f＠＠ rom many areas of computing, scientific and
engineering research applications. A variety of an iterative methods for solving such systems have
been developed, this include the famous Newton method. Unfortunately, the Newton method suffers

setback, which includes storing 𝑛×𝑛 matrix at each iteration and computing Jacobian matrix, which
may be difficult or even impossible to compute. To overcome the drawbacks that bedeviling Newton
method, a modification to SR1 update was proposed in this study. With the aid of inexact line search
procedure by Li and Fukushima, the modification was achieved by simply approximating the inverse

Hessian matrix 𝐵!!!
!!

 with an identity matrix without computing the Jacobian. Unlike the classical SR1

method, the modification neither require storing 𝑛×𝑛 matrix at each iteration nor needed to compute

the Jacobian matrix. In finding the solution to non-linear problems of the form 𝐹(𝑥) = 0, 𝑥 ∈ 𝑅, 40
benchmark test problems were solved. A comparison was made with other two methods based on

CPU time and number of iterations. In this study, the proposed method solved 37 problems
effectively in terms of number of iterations. In terms of CPU time, the proposed method also
outperformed the existing methods. The contribution from the methodology yielded a method that is

suitable for solving symmetric systems of nonlinear equations. The derivative-free feature of the
proposed method gave its advantage to solve relatively large-scale problems (10,000 variables)
compared to the existing methods. From the preliminary numerical results, the proposed method

turned out to be significantly faster, effective and suitable for solving large scale symmetric nonlinear
equations.

Keywords: SR1, global convergence, nonlinear equations

© 2019 Penerbit UTM Press. All rights reserved

INTRODUCTION

Given the symmetric nonlinear system as following:

𝐹(𝑥) = 0, 𝑥 ∈ 𝑅!
 (1)

where 𝐹:𝑅
!
→ 𝑅

! is continuously differentiable in an open convex

set 𝑆 and assumed to satisfy the assumptions that (i) Its Jacobian

𝐽(𝑥) ≈ 𝐹 ′(𝑥) is symmetric, i.e., 𝐽(𝑥) = 𝐽(𝑥)! .

There exists a solution vector x∗ of (1) in 𝑆 such that 𝐹(𝑥∗) = 0

and 𝐹′(𝑥∗) ≠ 0. (iii) The Jacobian 𝐹′(𝑥) is Lipschitz

continuous at x∗.

The systems of symmetric nonlinear equation (1) has been discussed

by researchers (Li & Shengjie, 2015; Zhang & Maojun, 2015). The

Newton method is famous, unfortunately, the method suffers setback

which includes storing an 𝑛×𝑛 matrix at each iteration and computing

Jacobian matrix which may be difficult or even not possible to

compute. For more details on Newton method and other numerical

methods of solving nonlinear equations see (Dauda, Mamat, Waziri,

Ahmad, & Mohamad, 2016; Mamat, Dauda, Waziri, Ahmad, &

Mohamad, 2016). The Newton method generates an iterative sequence

𝑥! from a given initial guess vector 𝑥! in the neighborhood of x∗ from

the following algorithm.

Algorithm (Newton’s Method)

For 𝑘 = 0,1,2, . .. of 𝐹′(𝑥!), the Jacobian matrix of 𝐹,

Step 1: Solve 𝐹′(𝑥!)𝑠! = −𝐹(𝑥!)

Step 2: Update 𝑥!!! = 𝑥! + 𝑠! , where 𝑠! is the Newton correction in

RESEARCH	ARTICLE	

http://www.foxitsoftware.com/shopping

Dauda et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 15, No. 1 (2019) 117-120

118

the Newton system. When the Jacobian matrix 𝐹′(𝑥∗), is nonsingular

at a solution of (1) the convergence is guaranteed with a quadratic rate

from any initial point 𝑥! in the neighborhood of 𝑥∗. Throughout this

article, we always assume that the problem (1) is symmetric and

equivalent to the global optimization problem(2)

𝑚𝑖𝑛!∈!! 𝑓(𝑥) (2)

with function f in (2) is defined by

𝑓 𝑥 =
!

!
𝐹 𝑥 !

!
. (3)

To approximate the gradient ∇𝑓 𝑥! , which avoids computing exact

gradient. It is clear that, when 𝐹 𝑥! is small, then 𝑔 𝑥! ≈ ∇𝑓 𝑥! .

In (D. L. Fukushima & M, 2000), Li and Fukushima used the term:

𝑔! ≈
!(!!!!!!(!!))

!!

(4)

The purpose of this article was to overcome the drawbacks that

bedeviling Newton method by extending the classical SR1 update

method (Dauda et al., 2016) for general problems to nonlinear

equations without using exact gradient and Jacobian. The proposed

method was capable of reducing the execution time (CPU time) and

number of iterations. The modification was achieved by simply

approximating the inverse Hessian matrix 𝐵!!!
!! to 𝜃!𝐼 without

computing the Jacobian. Unlike the classical SR1 method, the

modification neither required to store an 𝑛×𝑛 matrix at each iteration

nor needed to compute the Jacobian matrix. The remaining part of the

article was organized by presenting the derivation of the proposed

method in section 2. In section 3, some numerical results are

presented, while section 4 presents the conclusion and future work.

The proposed method
The idea of the proposed quasi-Newton method in which

(𝐵!!!)
!! updated from (𝐵!)

!!
= 𝜃!𝐼 was as a result of modification

to SR1 update in (Dauda et al., 2016). Applying the idea of symmetric

rank-one (SR1) update, the following search direction was obtained.

Recall, in (Wright & S.J, 2006) from Sherman-Morrison formula, the

inverse of SR1 update was denoted as (𝐵!!!)
!! and given by

𝐵!!!
!!

= 𝐵!
!!
+

!!!!!
!!
!! !!!!!

!!
!!

!

!!!!!
!!
!!

!

!!

(5)

where Bk
−1

is the inverse of 𝐵! , which is an approximation to the

Jacobian updated at each iteration (Morales, 2008).

The matrix 𝐵!!! was chosen so that it satisfied the secant

equation

𝐵!!!𝑠! = 𝑦! , 𝑠! = 𝑥!!! − 𝑥! and 𝑦! = 𝐹(𝑥!!!) − 𝐹(𝑥!)(6)

By approximating 𝐵!
!! with the matrix θ!

!!
𝐼 where 𝜃! =

!!
!!!

!
!

!
!!

(Morales, 2008; Zhou, 2013) and substitute in (5) it became:

𝐵!!!
!!

= 𝜃!𝐼 +
!!!!!!!! !!!!!!!!

!

!!!!!!!!
!!!

(7)

𝐵!!!
!!

= 𝜃! +
!!!!!!! !!!!!!!

!

!!!!!!!
!!!

(8)

𝑄!!!
!!

= 𝐵!!!
!! whenever 𝐵!

!!
= 𝜃!𝐼. The quasi Newton’s

direction 𝑑!!! = 𝑄!!!𝐹(𝑥!!!) in which the (nonsingular)

matrix 𝑄!!! ∈ 𝑅
!"! was an approximation satisfying the

standard secant equation (Li & Shengjie, 2015). Thus,

𝑄!!!𝐹(𝑥!!!) = 𝜃!𝐹(𝑥!!!) +
!!!!!!! !!!!!!!

!
!(!!!!)

!!!!!!!
!!!

(9)

Hence,

𝑑!!! =

−𝐹(𝑥!) !" !!!

−𝜃!𝐹 𝑥!!! +
!!!!!!! !!!!!!!

!
! !!!!

!!!!!!!
!!!

, 𝑖𝑓 𝑘 ≥ 1

(10)

Since 𝑑! given by (10) might not be a descent direction, the standard

Wolfe and Armijo line searches could not be used to compute the

step-size directly, the non-monotone line search proposed by Li and

Fukushima (Fukushima & Li, 2000; Fukushima & Li, 2000) was

used to compute the next step-size 𝛼! . It was the most frequently

used line search in practice. The inexact line search to be used was

sufficiently decreased the function values along the ray 𝑥! + 𝛼!𝑑! >

0, i.e. 𝐹(𝑥! + 𝛼!𝑑!) ≤ 𝐹 𝑥! . Motivated by this features, let σ1

> 0,σ2 > 0,r ∈ (0,1) be constants and 𝜂! be a given positive sequence

such that:

𝜂!
!

!!! < ∞ (11)

Let 𝛼! = 𝑚𝑎𝑥 {1, 𝑟!, 𝑟!, . . . } satisfy

𝑓 𝑥! + 𝛼!𝑑! − 𝑓(𝑥!) ≤ −𝜎! 𝛼!𝐹 𝑥!
!
− 𝜎! 𝛼!𝑑!

!
+

𝜂!𝐹(𝑥!) (12)

the SR1 method was an iterative method that generated a sequence of

{𝑥!}!!! from a given initial guess 𝑥! via the following

𝑥!!! = 𝑥! − 𝛼!𝐵!
!!
𝐹 𝑥! , 𝑘 = 0,1,2,… (13)

where 𝛼! > 0 is a step length determined by (12).

Algorithm (proposed method)
Step 1: Given 𝑥!,𝛼 > 0, 𝜎𝜖(0,1) and 𝜖 > 0 compute 𝑑! =

−𝐹 𝑥! , 𝑠𝑒𝑡 𝑘 = 0.

Step 2: Compute 𝑔! ≈
!(!!!!!!(!!))

!!

 and test the stopping criterion,

i.e. 𝑔(𝑥!) ≤ 𝜀. If yes, then stop. Otherwise continue with step 3

Step. 3 Compute 𝛼! by using the line search (12)

Step. 4 Compute 𝑥!!! = 𝑥! + 𝛼!𝑑!

Step. 5 Compute search direction using (10)

Step. 6 Consider 𝑘 = 𝑘 + 1 and go to step 2

Numerical results
In this section, a comparison on the performance of the proposed

method for solving nonlinear equations (1) with the following two

methods was made, denoting the methods as Alg1, Alg2 and Alg3

respectively. The following benchmark problems were used

P1: (System of exponential nonlinear equations) (Wright & S.J,

2006).

𝐹 𝑖 = 𝑒
!! − 1; 𝑖 = 1,2,3,⋯ ,𝑛.

𝑥! = 0.5,0.5,⋯ ,0.5 !

P2: (System of trignometric nonlinear equations) (Dauda et al., 2016).

𝐹 1 = 𝑥! − 𝑒
!"#(

!!!!!

!!!
)
;

𝐹! 𝑥 = 𝑥! − 𝑒
!"#(

!!!!!!!

!!!
)
;

𝐹! 𝑛 = 𝑥! − 𝑒
!"#(

!!!!!!!

!!!
)
;

𝑖 = 1,2,3,⋯ ,𝑛.

𝑥! = 1,1,1, . . . ,1 !

P3: (System of exponential nonlinear equations)(Dauda et al., 2016).

𝐹(𝑖) = 𝑖 ∗ (1 − 𝑥!
!
− (𝑒!!

!

))

𝐹 𝑛 =
𝑛

10
∗ (1 − 𝑒!!!

!

)

i = 1,2,3, . . . , n; 𝑥! = 0.5,0.5,0.5. . . ,0.5 !

http://www.foxitsoftware.com/shopping

Dauda et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 15, No. 1 (2019) 117-120

119

P4: (System of exponential nonlinear equations) (Dauda et al., 2016).

𝐹! 𝑥 =

2 −1 ⋯

0 2 −1

⋱ ⋱ ⋱

⋱ ⋱ −1

⋯ −1 2

𝑥! + (𝑒!
!
− 1, 𝑒!

!
− 1,⋯ , 𝑒!

!
− 1)!;

i = 1,2,3, . . . , n; 𝑥! = 0.5,0.5,0.5,⋯ ,0.5 !

P5: (System of nonlinear equations) (Waziri, Leong, & Mamat, 2012).

𝐹 1 =
1

3
∗ 𝑥!

!
+ 0.5 ∗ 𝑥!

!

𝐹 𝑖 = − 0.5 ∗ 𝑥!
!
+ 𝑖(

1

𝑖
) ∗ 𝑥!

!
+ (0.5 ∗ 𝑥!!!

!)

𝐹 𝑛 = −0.5 ∗ 𝑥!
!
+

1

3
∗ 𝑛 ∗ 𝑥!

!

i = 1,2,3,⋯ , n; 𝑥! = 0.5,0.5,0.5,⋯ ,0.5 !

P6: (System of nonlinear equations)(Waziri et al., 2012).

𝐹 𝑖 = 𝑥!
!
− 4

i = 1,2,3,⋯ , n; 𝑥! = 0.5,0.5,0.5,⋯ ,0.5 !

P7: (System of trigonometric nonlinear equations) (Mamat et al.,
2016).

𝐹 1 = 3 ∗ 𝑥!
!
+ 2 ∗ 𝑥! − 5 + sin 𝑥! − 𝑥! ∗ sin 𝑥! + 𝑥!

𝐹 𝑖 = −𝑥!!! ∗ 𝑒
!!!!!!! + 𝑥! ∗ 4 + 3 ∗ 𝑥!

!
+ 2 ∗ 𝑥!!! +

sin 𝑥! − 𝑥!!! ∗ sin 𝑥! + 𝑥!!! − 8

𝐹 𝑛 = −𝑥!!! ∗ 𝑒
!!!!!!! + 4 ∗ 𝑥! − 3

i = 1,2,3,⋯ , n; 𝑥! = 0.5,0.5,0.5,⋯ ,0.5 !

P8: (System of nonlinear equations)(Mamat et al., 2016).

𝐹 1 = 𝑥! ∗ 𝑥!
!
+ 𝑥!

!
− 1

𝐹 𝑖 = 𝑥! ∗ 𝑥!!!
!

+ 2 ∗ 𝑥!
!
+ 𝑥!!!

!
− 1

𝐹 𝑛 = 𝑥! ∗ 𝑥!!!
!

+ 𝑥!
!

i = 1,2,3,⋯ , n;

𝑥!

The above test problems with different given initial points were

considered, each problem has been tested using all the methods with

different values of n=10,100,500,1000 and 10000, where 𝑛 is the

number of variables of each problem. The search was stopped if the

total number of iteration was exceeded 1000 or ∥ 𝐹(𝑥!) ∥ < 𝜖 with ϵ

< 10
−4

. The experiment was carried out in the MATLAB 7.1, R2009b

programming environment and run on a personal computer 1.8GHz,

CPU processor and 4GB RAM memory and windows XP operator.

The Algorithms were implemented with the following parameters σ =

ρ = 0.9 for all k. ”P” indicates the problem; ”Iter” and ”Time” stand

for the total number of iterations and the CPU time in seconds

respectively. ” ∥ 𝐹(𝑥!) ∥ ” is the norm of the residual at the stopping

point. The symbol ” − ” in the tables indicates a failure due to memory

shortages or/and when the number of iterations exceeded 1000.

Clearly the method alg1 was the best with complete success in

comparison with Alg2 method and Alg3. Moreover, from Tables 1-2

it was evident that the Alg1 was the best (in terms of iteration).

According to the Tables 1-2, the performance of these three methods

were shown in Figures 1 and 2 by using the performance profiles of

Dolan and Moré (Morťe & J, 2002). Figure 1 shows the performance

relative to the number of iteration. Similarly, Figure 2 shows the

performance of the methods relative to CPU Time. For each method,

the fraction 𝑃(𝜏) was plotted against τ. The top curve was the method

that solved the most problems in a time that was within a factor τ of

the best time. The figures indicates that Alg1 was the most efficient

for solving the given test problems among the three methods since the

top curve was corresponded to Alg1

Fig. 1 Number of iterates performance profile for Alg1, Alg2 and Alg3 of
Problem 1-8.

Fig. 2 CPU time performance profile for Alg1, Alg2 and Alg3 of problem
1-8.

CONCLUSION AND FUTURE WORK

Method for solving systems of nonlinear equations via

memoryless SR1 update was presented. In finding the solution to

nonlinear problems of the form 𝐹(𝑥) = 0, 𝑥 ∈ 𝑅!, 40 benchmark test

problems were solved. A comparison was made between the proposed

methods Alg1 and two other methods Alg2 (Dauda et al., 2016) and

Alg3 (Mamat et al., 2016). The contribution yielded a method that

suitable for solving symmetric systems of nonlinear equations. Based

on number of iterations, 37 problems were solved effectively by the

proposed method. In terms of CPU time, the proposed method also

outperformed the existing methods. The derivative-free feature of the

proposed method gave it ＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠＠ advantage to solve relatively large-scale

problems (10,000 variables) compared to the existing method. From

the preliminary numerical results, the proposed method turned out to

be significantly faster, effective and suitable for solving large scale

symmetric nonlinear equations. To extend this work futher in future,

one could establish the global Convergence of the proposed

Algorithm.

ACKNOWLEDGEMENT

The authors would like to thank the administration of Universiti

Sultan Zainal Abidin (UniSZA) for funding this research partially

under the fundamental research grant

FRGS/1/2015/ICT03/UniSZA/02/1.

http://www.foxitsoftware.com/shopping

Dauda et al. / Malaysian Journal of Fundamental and Applied Sciences Vol. 15, No. 1 (2019) 117-120

120

Table 1 Numerical results for Alg1, Alg2 and Alg3 of Problem 1-4.

Table 2 Numerical results for Alg1, Alg2 and Alg3 of Problem 5-8.

P
N Alg1 Alg2 Alg3

Iter CPU NFE Iter CPU NFE Iter CPU NFE

10 7 0.017405 8.44E-04 _ 4.382775 0.30950 34 0.082004 9.93E-04

100 8 0.023140 6.61E-04 _ 6.178020 0.74640 48 0.156076 9.99E-04
5 500 9 0.066623 6.05E-04 _ 19.863146 0.63060 51 0.467148 9.91E-04

1000 9 0.173882 8.78E-04 _ 58.794125 0.75350 53 1.394067 9.17E-04

10000 10 12.292827 7.18E-04 _ 3886.7239 0.66700 51 88.942749 9.61E-04
10 11 0.025781 7.58E-04 _ 4.710905 0.4872 44 0.127728 9.92E-04

100 11 0.030667 5.07E-04 _ 22.350121 8.5348 49 0.183563 9.28E-04

6 500 11 0.0742 7.83E-04 _ 67.351265 18.806 53 0.696541 8.12E-04
1000 12 0.221913 4.89E-04 _ 200.28285 26.5462 56 1.426673 9.18E-04

10000 12 14.204232 5.95E-04 _ _ _ 62 112.31609 8.35E-04

10 10 0.001306 7.26E-04 130 0.037914 9.27E-04 _ 0.254265 4.2519
100 11 0.001644 7.62E-04 _ 1.17309 0.9014 _ 0.301353 14.1021

7 500 13 0.002679 1.33E-04 _ 0.603953 0.8794 _ 0.470482 31.6286

1000 13 0.003755 1.89E-04 _ 0.927353 0.6155 _ 0.700859 44.7969
10000 13 0.030127 5.98E-04 96 1.921122 4.04E-04 _ 5.343979 141.7241

10 4 0.001818 8.61E-04 5 0.001225 7.59E-05 8 0.001117 4.32E-05

100 4 0.001827 4.57E-04 5 0.00147 2.52E-04 10 0.001171 1.43E-04
8 500 4 0.002597 4.10E-04 _ 1.86652 18.1517 11 0.001673 3.21E-04

1000 4 0.003452 5.80E-04 _ 2.824956 25.7091 11 0.002839 4.55E-04

10000 5 0.031191 7.34E-04 _ 21.935074 81.3359 12 0.021555 8.36E-07

	

REFERENCES

Dauda, M. K., Mamat, M., Waziri, M. Y., Ahmad, F., Mohamad, F. S. 2016.

Inexact cg-method via sr1 update for solving systems of nonlinear equations.

Far East Journal of Mathematical Sciences, 100, 11.

Fukushima, M., Li, D.-H. 2000. A derivative-free line search and global

convergence of broyden like methods for nonlinear equations. Optimization

Methods and Software, 13, 181-201.

Fukushima, M., Li, D.-H. 2000. A globally and superlinearly convergent gauss

newton-based bfgs method for symmetric nonlinear equations. SIAM Journal

on Numerical Analysis, 37, 152-172.

Li, J. L., Shengjie. 2015. Spectral dy type projection method for nonlinear

monotone systems of equations. Journal of Computation of Mathematics, 4,

341-354.

Mamat, M., Dauda, M., Waziri, M., Ahmad, F., Mohamad, F. S. 2016.

Improved quasi-newton method via psb update for solving systems of

nonlinear equations. AIP Conference Proceedings 1782, 030009.

Morales, J. L. 2008. Variational quasi-newton formulas for systems of

nonlinear equations and optimization problems. www.researchgate.net.

Morťe, J. J., Dolan, E. D. 2002. Benchmarking optimization software

with performance profiles. Mathematical Programming, Series A, 91,

201-213.

Waziri, M. Y., Leong, W. J., Mamat, M. 2012. A two-step matrix-free secant

method for solving large-scale systems of nonlinear equations. Journal of

Applied Mathematics, 2012, 348654.

Wright, S. J., Nocedal, J. 2006. Numerical Optimization (second ed.). New

York: Springer.

Zhang, G. Y., Maojun. 2015. A three-terms polak-ribière-polyak conjugate

gradient algorithm for large-scale nonlinear equations. Journal of

Computational and Applied Mathematics, 286, 186-195.

Zhou, W. 2013. A short note on the global convergence of the unmodified PRP

method. Optimization Letter, 7, 1367-1372.

P
Alg1 Alg2 Alg3

N Iter CPU NFE Iter CPU NFE Iter CPU NFE

10 4 0.002417 8.94E-04 8 0.000659 1.40E-04 8 0.000952 3.35E-04
100 4 0.000893 4.53E-04 10 0.001177 4.43E-04 9 0.00223 5.24E-06

1 500 4 0.001985 4.05E-04 11 0.000946 9.90E-04 9 0.001621 1.17E-05

1000 5 0.002713 5.73E-04 11 0.001799 3.06E-06 9 0.00238 1.66E-05
10000 7 0.161322 7.25E-04 12 0.051037 3.74E-05 9 0.02207 5.24E-05

10 4 0.000851 4.34E-04 4 0.000895 4.17E-04 8 0.00092 4.17E-04

100 5 0.001075 5.49E-04 5 0.000783 8.30E-06 9 0.000766 8.30E-06
2 500 5 0.001222 4.91E-04 5 0.001009 1.86E-05 10 0.001165 1.86E-05

1000 5 0.001851 6.95E-04 5 0.001372 2.62E-05 10 0.00128 2.62E-05

10000 5 0.017249 8.79E-04 7 0.043058 2.36E-06 11 0.010917 8.30E-05
10 6 0.001129 4.40E-04 7 0.000929 8.53E-04 10 0.001171 8.39E-04

100 2 0.001127 9.21E-04 2 0.000872 8.75E-04 11 0.00064 8.75E-04

3 500 2 0.002602 8.32E-04 2 0.000909 3.29E-06 12 0.001114 3.29E-06
1000 2 0.004596 4.71E-04 2 0.001231 2.93E-07 13 0.001466 2.93E-07

10000 1 0.033528 5.95E-04 1 0.005354 1.14E-04 14 0.007131 1.14E-04

10 7 0.000868 7.89E-04 7 0.000966 5.18E-04 9 0.001806 6.68E-04
100 2 0.001198 7.13E-04 2 0.000709 7.12E-04 11 0.000652 7.12E-04

4 500 2 0.008648 6.44E-04 2 0.000877 2.68E-06 12 0.00103 2.68E-06

1000 2 0.003439 9.12E-04 2 0.001332 2.39E-07 12 0.002071 2.39E-07
10000 1 0.040345 4.61E-04 1 0.007386 1.20E-04 14 0.006156 1.20E-04

http://www.foxitsoftware.com/shopping

