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Abstract Rotation quaternions are frequently used for describing the orientation of non-spherical rigid bod-
ies. Their compact representation by four numbers, and disappearance of numerical problems such as gimbal
lock, are reasons for using them. We describe an improvement of a predictor-corrector direct multiplication
(PCDM) method for numerically integrating the rigid body equations of motion with rotation quaternions.
The method only uses quaternions to describe the orientation, so no rotation matrices are needed in the im-
plementation. A predictor-corrector approach is used to update the quaternions each time step, such that no
renormalization is needed at the end of the time step. The PDCM method suggested by Zhao and Van Wachem
is improved such that forces and torques are calculated at the correct time using position and orientation in-
formation at that same time. This is achieved by using a leapfrog approach in the improved version, in which
the linear and angular velocities and rotation quaternions are defined at half time steps, while whole time step
information of these quantities is calculated as part of the improved integration scheme. The improved PDCM
scheme is compared with the original implementation for rotational kinetic energy conservation, accuracy of
object orientation and angular velocity, and rate of convergence for different time steps. With the modifica-
tions that we propose, the improved method has a true second order rate of convergence, without the need for
explicit renormalization of the quaternions. Furthermore, the method is applicable to problems with position
and velocity dependent torques, while still only a single force/torque evaluation is needed per time step.

For objects experiencing torque, the improved PDCM method performs better than the original method,
now showing a true second order rate of convergence, and much smaller errors in the prediction of object
orientation and angular velocity, while still requiring only a single torque evaluation per time step.

Keywords Numerical integration · Rotation quaternion · Rigid body motion · Non-spherical particle

1 Introduction

Rigid body motions occur on many different scales, from the movement of molecules at the atomistic scale, to
colloidal particles suspended in a fluid at the mesoscopic scale, to granular particles at the macroscopic scale.
At each of these scales, ever increasing computational power allows for larger systems to be considered,
which calls for numerical integration schemes that are both accurate and not too costly to be used.

On the molecular dynamics scale, the rotation and orientation of non-spherical molecules is important
to determine the forces acting on them [13,7]. A commonly used rigid body molecular dynamics integration
method is the splitting technique [6,11], which is both symplectic and time reversible. Also on the mesoscopic
scale, rigid body integration schemes employing quaternions are used [10]. Here, an additional complication
is that the forces and torques can be a function of linear and angular velocities. This complication also arises
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when describing granular flows with discrete element models (DEM) [3,4], where dissipative collisional
interactions are important.

When the motion of non-spherical particles is concerned, it is common to attach two frames of reference
to the object: (1) a lab frame in which the particle translates and rotates and (2) a body frame which rotates
with the object. Consequently, one has to define the transformation between the lab and body frame. Different
descriptions are in common use to perform this transformation [14,5]. Amongst the most important are Euler
angles, rotation matrices and rotation quaternions.

Euler angles use a set of three angles (φ , θ , ψ) to rotate the object in a predetermined sequence. The
actual implementation uses a rotation matrix, which is a function of the three Euler angles. The Euler angle
approach is straightforward and simple to implement, but suffers from gimbal lock when two of the three axes
of rotation are parallel to each other.

The rotation matrix approach[2,5] uses a unitary 3×3 matrix to describe a rotation in three dimensions.
Nine components are used to describe a rotation which means that this description uses more information
than is actually needed. In addition, the matrix only describes a rotation in space, when its column vectors
remain normalized and orthogonal to each other. It is computationally expensive to enforce these constraints
in a dynamical simulation.

Rotation quaternions use four parameters to describe the rotation. Only when a quaternion is normalized,
it represents a rotation in three dimensions. Details on the properties and algebra will be omitted and can be
found in Refs. [5,9]. The advantages of rotation quaternions are that no gimbal lock can occur, and the fact
that the normalization condition is easily computed by taking the norm of the quaternion.

Usually rotation quaternions are used in combination with rotation matrices, i.e. the actual rotation of a
vector is carried out by multiplication with the rotation matrix corresponding to the current rotation quater-
nion. This involves more calculations than strictly necessary and increases inaccuracies due to round-off er-
rors. It is better to only use the rotation quaternions in the update of the rigid body orientation. Zhao and Van
Wachem [17] introduced a quaternion based integration scheme that uses no rotation matrices. The method
is based on a predictor-corrector scheme to update the angular velocity and rotation quaternion. The quater-
nion update automatically conserves the norm. Therefore no renormalization is required. However, for objects
which experience a non-constant torque, we will show that the accuracy of the original scheme of Ref. [17] is
not second order, as claimed by the authors, but closer to first order.

It is important to have a higher order accurate integration scheme because for particle-based simulations
the highest computational costs are usually associated with the evaluation of forces and torques from pair
interactions. With N the number of interacting particles in the system, the costs of force/torque evaluations
scale as αNβ with an exponent β clearly larger than 1, and usually also with a large prefactor α . In contrast,
the other operations of a typical integration scheme, such as propagating the positions based on the veloci-
ties or propagating the velocities based on the forces, can be done independently for each particle, and the
computational costs therefore scale linearly with N. As a consequence, for simulations with large N it is more
important to have a more accurate integration scheme which allows for larger time steps δ t (thus requiring
a lower number of expensive force and torque evaluations) than to have an integration scheme that uses e.g.
less memory or has fewer operations linear in N per time step.

An example of an integration scheme for DEM is that of Wang et al. [16]. This type of integration scheme
is common, in the sense that a straightforward Taylor series expansion is used to update the quaternion to
the new time level. The disadvantage of such schemes is that the norm of the quaternion is not intrinsically
conserved. Recent integration schemes for rigid body dynamics [1,12] introduce a momentum and energy
conservative scheme that intrinsically conserves the quaternion norm. The method in Ref. [1] relies on the
Hamilton formulation of a system of differential-algebraic equations (DEAs) in which the normalization
constraint is introduced via a Lagrange multiplier, which is eliminated in the final scheme. Ref. [12] extends
this by also allowing for additional constraints.

In this paper we propose an improvement of the scheme of Zhao and Van Wachem [17], such that the
method retains the intrinsic quaternion norm conservation, can be used in cases where the forces and torques
are a function of position, orientation, linear and angular velocity. Most importantly, we will show that the
improved method is second order accurate in time, allowing for much larger time steps to be used than in the
original scheme. The improved method still only uses a single force and torque evaluation per time step. In
Section 2 the improved integration method is introduced. Section 3 summarizes and discusses the results of
validation test cases. Finally, Section 4 gives the conclusions.



3

2 Numerical integration method

2.1 Equations of motion for a rigid body

The motion of a rigid body is governed by:

r̈ = m−1F
ṙ = v

ω̇ωω
b = (Ib)−1

(
τττ

b−ωωω
b× Ib

ωωω
b
)
. (1)

The superscript b refers to the body frame, while symbols without superscipt are in the lab frame. The body
has a mass m, center of mass position r, center of mass velocity v, angular velocity ωωω , and experiences a force
F and torque τττ . Ib is the moment of inertia tensor in the body frame, which is constant for a rigid body.

The system in Eq. (1) is not complete, because the orientation of the object is not specified, only its angular
velocity ωωω . Quaternions are used for determining the orientation of the object. In principle an evolution
equation could be derived for the quaternions but instead we will make use of the following property for a
quaternion q (see Ref. [17] for more details):

qn+1 =

[
cos

(
||ωωωn+ 1

2
||δ t

2

)
,sin

(
||ωωωn+ 1

2
||δ t

2

)
ωωωn+ 1

2

||ωωωn+ 1
2
||

]
qn. (2)

Here n+1 is the new time step and n the old, separated by a time interval δ t. Note that the angular velocity
used to propagate the quaternion is evaluated at half time step n+ 1

2 , which is more accurate than using the
angular velocity ωωωn at the start of the time step.

We would like the integration method to be generally applicable to all sorts of problems in which the force
and torque will not only be a function of position and orientation, but also of linear and angular velocities.
Examples include DEM with soft sphere interactions [4], and dissipative particle dynamics (DPD), where
one encounters forces that are not only a function of the positions but also velocities [15]. Therefore we will
assume that the force F and torque τττ are of the following form:

F = f (r,v,q,ωωω, t)
τττ = g(r,v,q,ωωω, t). (3)

For N interacting particles, we implicitly assume that the above force and torque on a particular particle
depend also on the positions, velocities, orientations and angular velocities of the other particles.

To achieve a highly accurate integration scheme, one requirement is to determine the forces and torques
using variables r, v, q and ωωω , all evaluated consistently at the same time. We will show that this can lead to a
true second order accurate integration scheme.

2.2 Improved predictor-corrector direct multiplication method

The improved integration scheme is based on Ref. [17]. The authors call the method a predictor-corrector
direct multiplication (PCDM) method. The direct multiplication part refers to the quaternion update, which is
done with a multiplication of two quaternions, as given in Eq. (2). The quaternion multiplication ensures that
the method conserves the quaternion norm intrinsically, and is the reason that no renormalization is needed.

Our improved PCDM method uses a leapfrog approach for both the linear velocities and the angular
velocities. This means that v, ωωω and q are defined at half time steps n+ 1/2, while r is defined at whole
time steps. This does not mean that the whole time step information n+ 1 is not available, this information
is calculated as part of the improved integration scheme. Predictions for the linear and angular velocities and
rotation quaternion are calculated at appropriate time levels and later used for the correction to obtain the new
time step values. Hence the method is a prediction-correction scheme.

At the old time steps n and n+1/2 the following variables are known: rn, vn+ 1
2
, Fn, qn+ 1

2
, ωωωn+ 1

2
, ωωωb

n+ 1
2
,

τττn, and ω̇ωω
b
n. To find the values for the variables at the new time steps n+1 and n+3/2 the following steps are

carried out:
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1. Calculate the new center of mass position rn+1 using the midpoint velocity vn+ 1
2
:

rn+1 = rn +vn+ 1
2
δ t.

This is the classical leap-frog step for particles without internal rotational degrees of freedom.
2. Predict the center of mass velocity, quaternion and lab frame angular velocity at time n+1.

(a) The prediction for the center of mass velocity is:

v
′
n+1 = vn+ 1

2
+

1
2m

Fnδ t,

where the prime emphasizes that it concerns a prediction of the center of mass velocity.
(b) For the prediction of the quaternion at time n+ 1 we will first calculate a prediction for the angular

velocity at three-quarters time step in the body frame:

ωωω
b
n+ 3

4
= ωωω

b
n+ 1

2
+

1
4

ω̇ωω
b
nδ t,

and transform this to the angular velocity at three-quarters time step in the lab frame, using the most
recent available quaternion (at n+ 1

2 ):

ωωωn+ 3
4
= qn+ 1

2
ωωω

b
n+ 3

4
q−1

n+ 1
2
.

Using Eq. (2), we then calculate the predicted quaternion at n+1:

q
′
n+1 =

[
cos

(
||ωωωn+ 3

4
||δ t

4

)
,sin

(
||ωωωn+ 3

4
||δ t

4

)
ωωωn+ 3

4

||ωωωn+ 3
4
||

]
qn+ 1

2
.

(c) For the prediction of the lab frame angular velocity at time n+1 we will first predict the body frame
angular velocity at time n+1:

ωωω
′b
n+1 = ωωω

b
n+ 1

2
+

1
2

ω̇ωω
b
nδ t.

This is transformed to the lab frame angular velocity using the new quaternion prediction at n+1:

ωωω
′
n+1 = q

′
n+1ωωω

′b
n+1q

′−1
n+1.

For N interacting particles, steps 1 and 2 should be performed for all particles before proceeding to step 3.
This way all variables relevant for the evaluation of forces and torques are known at the same time n+1.

3. Calculate new force and torque in the lab frame:

Fn+1 = f (rn+1,v
′
n+1,q

′
n+1,ωωω

′
n+1),

τττn+1 = g(rn+1,v
′
n+1,q

′
n+1,ωωω

′
n+1),

and determine torque and angular acceleration in the in body frame:

τττ
b
n+1 = q

′−1
n+1τττn+1q

′
n+1,

ω̇ωω
b
n+1 = (Ib)−1

(
τττ

b
n+1−ωωω

′b
n+1× Ib

ωωω
′b
n+1

)
.

4. Calculate the new angular velocity in the body frame,

ωωω
b
n+ 3

2
= ωωω

b
n+ 1

2
+ ω̇ωω

b
n+1δ t,

and the new rotation quaternion:

qn+ 3
2
=

[
cos

(
||ωωω ′n+1||δ t

2

)
,sin

(
||ωωω ′n+1||δ t

2

)
ωωω
′
n+1

||ωωω ′n+1||

]
qn+ 1

2
.
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Use the new angular velocity in the body frame ωωωb
n+ 3

2
and the new quaternion qn+ 3

2
to determine the new

angular velocity in the lab frame ωωωn+ 3
2
:

ωωωn+ 3
2
= qn+ 3

2
ωωω

b
n+ 3

2
q−1

n+ 3
2
.

Finally, calculate the new center of mass velocity:

vn+ 3
2
= vn+ 1

2
+

1
m

Fn+1δ t.

5. END

Note that our algorithm retains the favourable feature that forces and torques need to be evaluated only
once per time step δ t.

The main improvement is that the angular acceleration in the body frame (at the end of step 3), is now
calculated at n+1 with the torque also known at n+1. In the scheme proposed by Zhao and Van Wachem, the
angular acceleration was apparently evaluated at n+1/2. However forces and torques were only evaluated at
whole time steps (n and n+1), meaning that old time step information was used for the torques. This half-step
lagging leads to a lower accuracy than the method proposed here (close to first order instead of second order
in time step), as we will show in the next section.

3 Results and Discussions

Four test cases were carried out with the improved PCDM integration scheme. The first test case considers
energy conservation after a long simulation period. Secondly, the accuracy of the solution for the angular ve-
locities and orientation is tested. A third case considers the rate of convergence of the method with decreasing
time step. Lastly, a two-particle system is considered to show that for a more realistic multi-particle coupling
the method is also accurate.

3.1 Energy conservation of a symmetric spinning top

A symmetric top with principle moments of inertia Ix = Iy = 1100 kg m2 and Iz = 2600 kg m2 is given an
initial angular velocity of ωωω0 = (1.20,0.45,−0.6) s−1. Because no external torque is applied, the rotation is
driven by the initial angular velocity. This test case considers the energy conservation after a long simulation
time of 10000 s. The time step used was equal to 1×10−2 s.

The x,y angular velocity components of the symmetric top undergo a periodic motion as is evident from
Fig. 1 (a). The z component is constant, because no external torque is applied and the top is symmetric.

The rotational kinetic energy was measured with both the original PCDM method and the new method.
The error in the rotational kinetic energy is very small and the same for both methods, see Fig. 1 (b). The error
is the same because no external torque acts, meaning that the improved method is essentially the same as the
original method, the only difference being the shifted times at which the angular velocity is determined. Both
methods show a slight increase of the error over time, which is due to the relatively large time step used. A
smaller time step would produce even better energy conservation over time.

3.2 Forced rotation of a sphere by a 1D torque

A sphere marked by an arrow with initial orientation (1,0,0) is forced to rotate by a torque given by:

τy(t) = Aexp(t). (4)

The sphere has a diameter of 2 m, and a density of 1100 kg m−3. The constant A in Eq. (4) is equal to 1×105

N m. The time step for the simulation is equal to 1×10−4 s. This test case is equal to the third test case
presented by the authors of Ref. [17].

The torque will result in an accelerating rotation (see Fig. 2 (a)) of the sphere in the xz-plane. Table 1
compares the orientation of the arrow on the sphere after 1 s of simulation with the theoretical result (Theory),
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Fig. 1 (a) Angular velocity components for the symmetric top as function of time. (b) Relative error in the rotational kinetic
energy as a function of time.

Table 1 Comparison of the orientation of the major axis after 1 second of simulation for different integration methods.

Orientation at time t = 1.0 Error
Theory (2.93425×10−1, 0, −9.55982×10−1) -
Scalar factor (2.87115×10−1, 0, −9.57896×10−1) 2.15%
PCDM (2.91578×10−1, 0, −9.56547×10−1) 0.63%
This work (2.93444×10−1, 0, −9.55976×10−1) 0.0065%

the scalar factor method [8,17] (Scalar factor) and the original PCDM method (PCDM). The improved method
has a very small error, two orders of magnitude smaller than the original PCDM method. This is related to the
fact that the torque is not evaluated at half time steps, which is needed in the original scheme.

Figure 2 (b) shows that the error in the only nonzero component of the angular velocity is also small, as
is the absolute error of the cosine of the angle between the initial axial orientation and the current orientation,
as shown in figure 2 (c).

3.3 Forced rotation of a cylinder by a 3D torque: rate of convergence

In the third test case the rotating motion of a cylinder is considered. This case is based on test case four in
Ref. [17], but not the same. The motion is forced by a non-linear torque of the following form:

τx = 5×10−4 sin(200πt)

τy = 1×10−5 exp(3+24t)

τz = 1×10−5552t . (5)

The cylinder with density 1100 kg m−3 has a radius of 5× 10−3 m and a height of 0.03 m. The error in the
orientation of the cylinder is defined in the same way as in Ref. [17]:

α
error
n = ||cos−1(bn ·B0)− cos−1(Bn ·B0))||, (6)

α =
∆ t

t f inal

n f inal

∑
n=1

α
error
n . (7)
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Fig. 2 Forced rotation of a sphere by a 1D torque. (a) Orientation as a function of time. (b) Relative error in ωy as a function of
time. (c) Absolute error of the cosine of the angle between initial axial orientation and current axial orientation.

In Eq. (6) αerror
n is the error in the orientation of the cylinder at time step n. B0 is the initial orientation and

is equal to (1,0,0). The orientation at time step n (bn), is obtained with the original and improved PCDM
schemes. Bn is the orientation found by solving the following set of kinematic equations:

ψ̇ = sin(φ)sec(θ)ωy + cos(φ)sec(θ)ωz

θ̇ = cos(φ)ωy− sin(φ)ωz

φ̇ = ωx + sin(φ) tan(θ)ωy + cos(φ) tan(θ)ωz

ω̇x = [τx− (Iz− Iy)wywz]/Ix

ω̇y = [τy− (Ix− Iz)wxwz]/Iy

ω̇z = [τz− (Iy− Ix)wxwy]/Iz, (8)

with τx, τy and τz from equation (5). The kinematic equations are based on 3-2-1 Euler angles. The system
is solved numerically in matlab with a Runge-Kutta method. With the obtained Euler angles as a function of
time a rotation matrix is formed that can be used at each time step n to rotate the B0 into Bn. No analytical
solution is available for the orientation when considering larger changes, i.e. all analytical approximations
assume only small changes in the orientation.

To check the rate of convergence of both original and improved PCDM methods, the time step ∆ t was var-
ied between 1.0×10−3 and 1.0×10−8 s. The angular velocity components y and z grow rapidly as a function
of time, see Fig. 3 (a). This non-linear behaviour is much more difficult to integrate correctly compared to
the symmetric top or the 1D torque. The orientation error decreases with decreasing time step, as can be seen
in Fig. 3 (b). Note that a decreasing time step means going to the right on the horizontal axis of the figure.
Both methods converge for all time steps tested, but notice that the improved PCDM method has a second
order convergence rate while the original PCDM method seems to converge slightly faster than linear. This is
in agreement with the test case four in Ref. [17], where a convergence rate between linear and quadratic was
reported.
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Fig. 4 Visualization of the two rotating cylinders. The initial angular velocities Ω1 and Ω2 are equal to 2.0 s−1 and 0.4 s−1,
respectively. R1 and R2 are the radii of the cylinders.

3.4 Coupled rotation of two cylinders

The last test case considers two rotating cylinders that are in touching contact (see Fig. 4). Both cylinders are
kept at their center of mass position by massless axes, such that the only motion is rotational. Cylinder 1 and
2 have an initial angular velocity of 2 s−1 and 0.4 s−1, respectively. Their radii are 1 m for cylinder 1 and 2.4
m for cylinder 2. At the contact point between the cylinders a tangential force is acting of the following form:

Ft =−ηvt,rel . (9)

The tangential force in Eq. (9) has a friction constant η = 5.4 kg s−1 and vt,rel is the relative velocity at the
contact point. At t = 0 s the cylinders are brought into touching contact, and the angular velocity will evolve
over time as shown in Fig. 5 (a). For large enough times a new steady state is reached in which the first
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Fig. 5 (a) Angular velocity components for cylinders 1 and 2 as a function of time. (b) Relative error in the angular velocity of
the first cylinder for the original and improved PCDM integration scheme.

cylinder has a decreased positive angular velocity and the second cylinder has a reversed negative angular
velocity.

In Fig. 5 (b) the relative error in the angular velocity of cylinder 1 is given for both original and improved
PCDM integration schemes. The error for the improved method is very small for the whole simulation time,
while for the original method there are larger deviations because the torque of the old time step has to be used.

4 Conclusions

The use of rotational quaternions to numerically integrate the equations of motion for a rigid body has several
benefits. Firstly, only four numbers are required to specify the orientation of an object. More importantly,
rotation quaternions allow for an accurate determination of the orientation without gimbal lock problems.
The PCDM scheme has the additional benefit of not requiring renormalization of the quaternions after each
time step, leading to a higher accuracy than methods that do need this renormalization. The original scheme
contained an inconsistency because the angular acceleration was evaluated with forces and torques at different
times. The improved PCDM integration scheme solves this by using a leapfrog approach in which linear and
angular velocities and rotation quaternions are defined at half time steps. Four test cases show that the energy
conservation for a torque-free body is as good as the original method, that the orientation determination is
more accurate than the original PCDM scheme, and that the improved method convergence rate is second
order in time, whereas the original method is in between first and second order, and actually closer to first
order. For a system of coupled objects, the method also gave more accurate results compared to the original
method. The higher accuracy allows for the use of larger time steps. We therefore advise to use this algorithm
in simulations with large numbers of rigid molecules, rigid mesoscale assemblies or rigid granular bodies.
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