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Improved R-factors for diffraction data analysis in
macromolecular crystallography

Kay Diederichs1 and P. Andrew Karplus2

The quantity Rsym (also called Rmerge) is almost universally used for describing X-ray diffraction data quality.
Here, we prove that Rsym is seriously flawed, because it has an implicit dependence on the redundancy of the
data. A corrected R-factor, Rmeas' is introduced as the equivalent robust indicator of data consistency. In
addition, we introduce Rmrgd, an R-factor that reflects the gain in accuracy upon averaging ofequivalent
reflections, as a useful indicator of the quality of reduced data. These new data quality indicators better reveal
the benefits of highly redundant data and should stimulate improvements in data quality through increased
merging of data from multiple crystals.

Rsyrn (sometimes called Rrnerge)' is the most widespread statistic
used to indicate data quality for rnacromolecular crystallogra
phyl,2, and with the advent of area detectors for small molecule
crystallography it is a standard quality indicator for that field as
welP. It is defined as:

withlh =

LL Ih.i
h

Arndt4 introduced Rsvrn as a reliability indicator for data collected
by precession photography, where Rsvrn was specifically summed
over symmetry-related intensities on the same film, and Rsca' cal
culated in an analogous fashion, reported the agreement of iden
tical reflections measured on different films. As oscillation
photography was introduced, so that symmetry related reflections
were not commonly on the same film, it appears that the original
Rsvrn and Rsca were combined into the present day RsvlTI which is
summed over all observed equivalent reflections. '

Rsvrn is commonly used to guide decisions during data reduc
tion,' such as determining to what resolution data are reliable, and
whether two crystals are isomorphous, so that their data should
be merged together. A single Rsvrn value is generally reported in
publications to summarize the data quality. Overall RSVlTI values of
<5%, 5-10%, 10-20% and >20% are taken to indicate good,
usable, marginal, and questionable quality data respectively2.

Here, we present empirical and mathematical analyses proving
that Rsyrn is an inherently unreliable indicator of data quality. We
also present alternate indicators that provide more robust mea
sures of the quality of the individual measurements as well as of
the final reduced data set. We expect that the application of the
ideas described here will result in improved primary data quality,
and ultimately in more accurate macromolecular structures.

Experimental data
The analyses presented here hold true for diffraction data mea
sured with various detector/software combinations, but for sim
plicity, we present analyses based on three sets of data collected
from crystals of the enzyme urease with Cys 319 from the a-chain
mutated to Alas. These crystals are isomorphous with wild-type
urease and grow in space group 12[3 with a=170.8 A6,7. Indepen
dent 2 Aresolution data sets were collected from each of three
crystals which had been soaked at pH values of 6.5, 7.5 and 8.5;
these are designated Ure_1, Ure_2, and Ure_3 respectively. Differ
ence Fourier maps showed no apparent structural changes
between the data sets, so for the purposes of this study, we are
treating them as equivalent. The three crystals had approximate
volumes of 0.036, 0.027 and 0.036 mm3, and the data sets were
successively collected using a Rigaku RU-200 rotating anode (Cu
KC(, 50k\~ 150 rnA) and a pair of SDMS MARKII multiwire
detectors8 placed at 2e-values of 140 and 34° and at distances of
719 and 780 mm respectively. Each data set consisted of three 50°
OJ-sweeps, using either 0.1 0 or 0.08° steps and an OJ-scan rate of 10
min degree-I. The data from all sweeps were reduced and merged
together using SCALEPACK9. Conventional statistics are reported
in Table 1 for six different data reductions based on the data from
these three crystals: data reductions for each of the sweeps of the
first crystal (Ure_1A, Ure_1B, Ure_1C), the three complete data
sets (Ure_1, Ure_2 and Ure_3), and a data set obtained by merg
ing all three crystals together (Ure_123). As expected due to the
larger sizes of the crystals, the Urc1 and Ure_3 data sets yield
slightly better statistics than the Ure_2 data set.

Rs m inherently depends on multiplicity
Vv~en data from multiple crystals are merged, the Rsyrn of the
combined data set is commonly higher than those of the indi
vidual data sets. Similarly, Rsvrn usually rises as a function of
frame number during a single measurement. Whereas this prop-
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Fig. 1 Rsym and Rmeas as a
function of resolution for
various reduced urease
data sets. a, Rsym is shown
for data sets Ure_1 A
(open triangle), Ure_1 B
(open circle), Ure_1C
(open square) Ure_1
(filled triangle), Ure_2
(filled circle), Ure_3 (filled
square), and URE_123 (X).
Within the two groups of
three data sets with simi
lar redundancy, the Rsym
values are comparaole
and reflect that Ure_2>
Ure_1. Ure3. consistent
with the crystal sizes.
However, the artifact pro
duced by Rsym is that the
partial data sets appear
much better, and the data
set merging all three crys·
tals gives the highest Rsym '

b, Rmeas shown for the
same six data sets (same
symbols). Here, the Ure_2
data set is clearly seen to
have the lowest quality as
is appropriate due to the
small crystal size, and the
partial data sets from crys·
tal 1 are seen to be of
similar quality as the full
dataset Ure 1. The close
overlap of the curves pro
vides evidence that there
is little systematic differ
ence between the individ
ual data sets.
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'Overall values of crystallographic indicators are given for all measured data to 2.0 A resolution. Numbers in brackets indi
cate the values in the highest resolution range (2.07-2.oA).
2(fjr:r) of the merged intensities.

<Ucr>2 Rmrgd-F

8.6(2.6) 8.0(28.6)

8.6(2.6) 9.2(28.4)

8.0(2.4) 8.7(30.2)

11.6{3.2) 10.3(27.4)

10.4(2.9) 10.9(27.3)

12.7{3.4) 9.5(27.1)

20.1{4.9) 6.9(20.2)

5.5(32.4)4.1 (22.9)

and Ure_l C (-1.7-fold increase overall and -1.5-fold increase at
high resolution) would normally be interpreted to indicate sys
tematic differences between the data sets being merged. However,
an analysis of Rsyrn as a function of multiplicity suggests that the
cause of the increased Rsvrn values is not systematic differences
between portions of the data, but rather an undesirable depen
dence of Rsvrn on multiplicity. Using a single set of reflections, so
that the only variable is multiplicity, the value of Rsyrn increases
smoothly in an asymptotic manner from 13.4% to near 19% as
the multiplicity increases from two to twelve (Fig. 2). Control

1.6(1.3) 4.6(23.0) 6.2(32.5)

1.5(1.2) 4.5(24.6) 6.0(34.9)

3.3(2.0) 6.0(25.4) 7.1(33.1)

3.3(2.0) 6.8(28.5) 7.9(35.9)

3.3(2.0) 5.5(26.4) 6.5(33.6)

9.6(4.7) 7.7(31.3) 8.1(34.8)

1.6(1.2)

Table 1 Data collection statistics summary1

67(36)

69(38)

97(70)

95(64)

96(68)

98(85)

Completeness Multiplicity Rsym Rmeas

(%)

68(40)

37049

53814

52787

38502

53925

54941

Unique
reflections

37776

erty of Rsvrn has been noted10,11, it has not been comprehensively
documented nor formally deduced. Such increases in Rsvm are
generally attributed to slight non-isomorphism or systematic
errors (mainly absorption, radiation decay) between the data seg
ments, and large increases are taken as grounds for not merging
data sets, for discarding the final frames of a data collection run,
and/or for lowering the threshold for ourlier rejection. This
behaviour of Rsvm has contributed to the common practice which
favours using complete data sets from single crystals whenever
possible.

As is illustrated in
Table I and Fig. la,
our urease test data
show this common Data set

behaviour. The Rs m
values are lowest for Ure~1A
the smallest seg
ments of data (the Ure_1 B

individual sweeps
Vre_IA, Vre_IB, Ure_1 C

and Ure_IC), they
are intermediate for Ure_1

the single data sets
(Vre_l, Ure_2, and Ure_2

Vre_3) and they are
highest for the Ure_3

merged data set
(Vre_123). The Ure_123

-----------------------------------------higher Rsyrn of
Ure_123 compared
to Vre_IA, Ure_lB,
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Fig. 2 The behaviour of data quality indicators as a
function of multiplicity. Solid lines are used for the
three indicators of the quality of individual measure
ments: Rsym (open square); Rmease (closed squares); PCV
(closed triangles). Dashed lines are used for the indica
tors of reduced data quality: Rmrgd., (closed circles);
Rmrgd.F (open circles); <Ocrl> (X). Note that the value of
3.8 observed for the <Ucrr> of the individual measure
ments (multiplicity of 1) and the pev of 25.5% are
consistent with the relation PCV=100*<Ucr,>-1 (see
box). This analysis was carried out using all 3137
reflections which were between 3 and 2 A resolution
and were observed ;;.12 times in the Ure...123 dataset.
For these high-multiplicity reflections, the observa
tions in excess of the 12th were discarded. Then, for
each multiplicity value n given on the abscissa, n out
of the 12 observations of each reflection were selected
randomly and used for calculating the statistical indi
cators. This approach allowed each of the 12 observa
tions to contribute equally for all multiplicity values.

2 4 6 8 10
multiplicity

12

1 nh
A ?

L --L(Ih,i-lh)-
pev= _h__n_h_-_1_i _

signal level):

(3)

L Ih
h

A mathematical analysis shows that for Gaussian distributed
error, PCV should be exactly a factor of yI1l2 (~ 1.25-fold) larger
than R meas (see Box and Fig. 3), We suspect that despite the
greater statistical information content of the PCV: crystallogra
phers will prefer to use R meas because it gives values which can be
compared with the past literature. PCV is related to other 'qua
dratic' R-factors used in popular data reduction software9,Il,12,

but it includes the important factor 1/(nh-1) that makes it robust
with respect to multiplicity.

For the urease data, examining the behaviours of both Rmeas
and PCV as a function of multiplicity (Fig. 2) it can be seen that
both are relatively constant with respect to redundancy, and the
PCV is, indeed, about 1.25-fold higher than R meas· Using Rmeas to
assess the six merged urease data sets shows that the misleading
behaviour seen for R sym is abolished (compare Fig. 1b versus Fig.
la). Independent of how much data is merged together, the R meas
values match closely the Rsym values seen for the high multiplicity
Ure_123 data set and indicate that there are no large systematic
differences between the data sets.

The discrepancies between Rsym and R meas are largest for data
with low multiplicity and can be as large as a factor of Y2.
Although modern (area detector) data sets often have high redun
dancy so that the problems with R svm are lessened, not all do. A
recent 1.95 Aresolution haemoglobin structure was based on data
"V'I'ith a completeness of 76% (38% in the highest resolution bin)
and a multiplicity of 1.7 (1.1 in the highest bin)13. This is quite
similar to the completeness and multiplicity of the Ure_1A, B, or
C data sets reported here, and indicates that the reported overall
Rsvm of4.1 strongly overestimates the data quality. Another case is
the structure of the C-reactive protein, in which data were careful
ly selected from 33 crystals to yield a data set with 74% complete
ness and 1.5-fold multiplicity with a high R sym of 25.50/0 t4• Given
the low multiplicity, the true data quality (as measured by
Rmeas ) would be significantly worse. Finally, we note that even
for those data sets with high multiplicity, it is common that the

Two robust alternate indicators: Rmeas and PCV
Mathematical analysis (see Box) makes explicit how the contribu
tions of reflections to Rsvm depend on their multiplicity, and leads
us to propose two alternate well-behaved measures ofdata quality.
The first is an adjusted Rsym which we have dubbed R meas because
it should accurately reflect the reliability of individual measure
ments, independent of multiplicity. The mathematical analysis
(see Box) shows that a robust variant of Rsym can be obtained by
adjusting each reflection's contribution by a factor of
ynI!(nh-1), where nh is the multiplicity:

Rmeas =

calculations using fictitious data with perfectly Gaussian error
prove that this ~1.4-fold increase reflects an inherent property of
R sym (Fig. 3). Since the ability to accurately estimate data quality
must improve with increased number ofdata, the Rsym value truly
reflecting data accuracy is the asymptotic value obtained at high
redundancy.

(2)

For data sets with fixed redundancy n, this is equivalent to multi
plying Rsym by the factor \/n1(n-1) , but for typical real data sets,
it is important that the factor be placed inside the sum so that the
contributions from the individual reflections are appropriately
weighted according to their multiplicity. The magnitude of the
scaled difference terms \/nh/(nh-1) I~ - /h,ii is not correlated
with the multiplicity nh of a reflection, and Rmeas values for low
redundancy data sets are as high as those of high redundancy data
sets (Fig. 3). This also means that the merging Rmeas of 1\"l0 data
sets should be close to the average of their individual, internal
Rmeas values, if no systematic differences (for example, anisomor
phism) exist between the data sets. This is in sharp contrast with
the behaviour of R svm'

A second robust'indicator of data quality, which is commonly
used in statistics, is the pooled coefficient of variation (PCV), in
which the pooled standard deviation (the statistically valid mea
sure of the noise level) is divided by the sum of the intensities (the
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Fig. 3 The figure is equivalent to Fig. 2 but reports statistics based on a
computer generated set of 10,000 reflections which have intensities that
are normally distributed with a rtrue= 50, (j = 10. Plotted are Rs m (open
squares). Rrmeas (filled squares), and PCV (triangles). The dashed line
marks the value for Rsym obtained for infinite multiplicity (calculated by
substituting I true for <I> in equation 1),

approximating the Rmeas of the high resolution data.
For 'typical' data sets, the low resolution (more accurate) data

have higher multiplicity and dominate to yield a low overall Rmeas.

However, many data sets are not typical. For instance merging a
lower resolution data set with a complete high resolution data set
(as in the report of a camel antibody structurel6) would tend to
skew the multiplicity toward lower resolution reflections, whereas
the merging of a data set consisting of exclusively higher resolu
tion reflections (such as may be obtained by swinging out a detec
tor) would tend to skew the multiplicity toward higher
resolutionl? In many published reports, the importance of such
effects are hard to assess. For instance, the distribution of multi
plicity is not described in the C-reactive protein study cited
abovel4, but if the multiplicity involves largely the higher resolu
tion reflections, the overall Rsym of 25.5% would not be as bad as
it appears.

and Ih.Q =

and can be calculated from the output of a special data reduction
run that does not merge the Friedel pairs. Rint underestimates the
final data quality because of an additional improvement (up to a
factor of y2) to come from the merging ofP+ and P-.

Here, we generalize the concept of Rint by randomly assigning
the Dh observations of a unique reflection h (originating from
subsets of a single data collection run, or from two or more data
collection runs with possibly different crystals) to two disjoint sets
P,Q with nh,p = int(nh/2) and nh,Q = nh - nh,p members, and
average observations in these sets separately (for simplicity, equa
tions (5) and (8) use unweighted averages, but in practice weight
ing with the experimental (JI values would be most appropriate).
We thus calculate

Indicators of reduced data quality
The above discussion shows that Rmeas' as opposed to Rsym' pro
vides a robust measure of the consistency of individual measure
ments. While that is important, it is also desirable to have
measures which estimate the reliability of the reduced data. <II(Jr>
is such an indicator , but no generally accepted R-factors for this
purpose exist. The reduced data will, in general, be more accurate
than individual measurements, because the averaging of multiple
observations leads to increased accuracy (a theoretical factor of
Ynh for reflections with multiplicity nh) that is not reflected in
Rmeas (or the other measures)l8. For a number of years, one of us
(P.A.K.) has used a statistic called Rint which does reflect much of
the accuracy gained through high redundancy, because it is calcu
1ated from data that have been partially merged19,20. Rint is simply
the R-factor between the amplitudes of Friedel pairs,

(4) L I Fh + - Fh-I
Rint=

0.5 *L Fh + + Fh-

126 8 10

multiplicity

42

highest resolution bin has the lowest multiplicity. Thus, exactly
where one should be most concerned about data quality, the
inherent properties ofRsym make it least reliable.

For crystals of unknown space group, usually the symmetry of
intensities in a given Bravais lattice is found by comparing Rsym
values after reducing a set of frames in alternative space groups
(for example, P4(O,1,2,3) versus P4(O,l,2,3)2(O,I)2(O,l)' In this sce
nario, Rsyrr). will always favour the space group(s) with lower sym
metry, as the average multiplicity of reflections will be less than in
the high symmetry space group(s). Use of Rmeas' on the other
hand, would give unbiased indications toward the highest sym
metry compatible with the diffraction pattern, and would there
fore help to avoid space group assignment errorsl5.

An additional problem with 'overall' reliability factors
The use of Rmeas (or PCV) instead of Rsym removes misleading
impressions of data quality that make less redundant data appear
better. However, it does not fix an additional problem inherent in
overall Rmeas values. This additional problem occurs because
reflections contribute to the overall Rmeas in proportion to their
multiplicity, and multiplicity may be distributed differently in
various data sets. In the urease data sets, this effect can be seen in
the variation of the overall Rmeas values in Table 1 from 5.5 to 8.1,
despite the fact that the Rmeas values as a function of resolution
vary much less (Fig.lb).

Within a narrow resolution range, Rmeas has meaning, because
multiplicity is fairly constant and (more importantly) should not
be correlated with a reflection's reliability. However, when data
across wide ranges of resolution are combined, the overall Rmeas
depends heavily on how the multiplicity is distributed versus reso- L IIh. P - IhQI. 1 nh• P

lution (Fig. 4). Although the Ure_1C and Ure_123 data sets have R mrgd-I= With I =-- ~ I
O5 *~ l I h.P £..J h. j

nearly identical Rmeas in all resolution ranges (Fig. lb), the (5) . £..J h, P + h, Q n h,P iE P
Ure_1C data set has a lower overall Rmeas (6.0 % versus 8.1 %)
because it has higher relative multiplicity at low resolution. In
extreme cases, the overall index could vary between values
approximating the Rmeas of the low resolution data and values
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as a measure for the quality of the reduced amplitudes. Once
again, Rmrgd-F does not reflect the accuracy gain (up to a factor
of y2) due to merging the P and Q subsets, and thus may

L IA I - Al I
Rmf~d-F= h.P h.o__with [h,P and Ih,Q as above

0.5 *L A lh.p + A I
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somewhat underestimate the data quality. Being conservative
and reporting Rmrgd.F as the data quality is somewhat like the
convention of reporting dmin as the resolution limit, even
though it is known that for perfect data the resolution is techni
cally 0.92* drnin22.

Rmrgd-F is a useful quantity as it can be compared with the
many R-factors calculated during the course ofa crystallographic
structure solution. Obviously, the quality of the reduced data
limits the accuracy of the final modeJ23,24. In the past, Rsvrn has
been used for comparison with Rcrvst and Rise, but this' is not
appropriate. At high resolution, Rsy~ is often seen to be much
higher than the final Rcryst25 or Rfre/6; R svm can be larger than
the isomophous change in a useful heavY atom derivative27,28;
and in a MAD phasing analysis Rsvrn can be much higher than
the level of anomalous signaJl8. In practice, Rmrgd-F should pro
vide an approximate lower limit on Rfree , the cross-validated
Rcrvst' which is most useful for evaluating refinement progress
and model accuracy. Such a measure allows one to assess when
phasing accuracy or refinement progress is truly being limited
by the data quality.

As noted above, the values of Rrnrgd are only reliable in the
absence of large systematic differences between subsets of the
data being merged. With Rmeas now available as a robust indica
tor of data quality, significant differences between two data sets
will be flagged by merging statistics showing an increase in Rmeas
compared to the individual subsets. An additional test for sys
tematic errors is to compare the Rrnrgd value for the combined
data (with random assignments to the disjoint sets P and Q),
with an Riso calculation between the separately reduced subsets
of data (equivalent to an Rrnrgd calculation in which the disjoint
sets correspond to the data from two different subsets of data A,
B). Systematic differences between the datasets A,B would (sta
tistically) cause Riso to be higher than Rmrgd (provided nhNnh,B
>1 for the common h). In cases for which the difference is small,
merging of datasets is justified and Rmrgd can be considered a

IFh. cak - Fh.ObS I

L H.obs

h

L IFh, A - Fh.B I

0.5 *L Fh,A + Fh,B

L
h

Rcryst = ....;;,;;,-------

(6)

(7)

Ih,p and Ih,Q represent the partially averaged, and therefore
improved, estimates of the true intensity. The term Rmr d-I is cho
sen to indicate that this R-factor reflects the quality of the merged
intensities. As for Rint, the final estimates of the rh may be up to a
factor of y2 more accurate than Rmrcrd-I indicates. Fig. 2 includes
the properties of Rmrgd-I as a functi~n of multiplicity. At a mul
tiplicity of 4, Rmrgd-I equals Rmeas' and the drop seen for Rmrgd-I
with increasing multiplicity closely matches the expected factor
of Y(n/2).

Most crystallographic calculations, such as phasing and struc
ture refinement, are carried out using structure factor ampE
tudes rather than intensities. For this reason, it is also relevant to
know the reliability of the structure factors on a scale useful for
comparisons with the R-factors used for assessing the level of
signal in heavy atom derivatives (Rise)' and those used to judge
the progress of model refinement (Rcryst' Rfree ). Vie suggest that
an Rmrgd calculated using structure factors rather than intensity
data, RmrO"d-P is an appropriate measure, because it is exactly
analogous to the R-factors Rcryst (or Rfree ) and Rise between two
data sets A and B:

Fig. 4 Variability of the contribution to Rmeas as a function of resolution.
The distribution is shown for the Ure_1C (open square) and the Ure_123
(x) data sets. The total number of reflections contributing to the Rmeas
sums for the two data sets are 36569 and 525934 reflections, respective
ly. The fractional contribution of each resolution bin was calculated by
dividing the number of contributing observations in that bin by the
total number of contributing observations for the whole data set.
Although Ure_1C and Ure_123 have nearly identical values in each reso
lution bin (see fig. 1b), the overall Rmeas of Ure_123 is -30% larger than
that of Ure_1C (8.1% versus 6.0%) due to the different distribution of
multiplicity. It should be noted that the relative contribution to Rmeas is
not identical to multiplicity because when multiplicity is 1.0, no reflec
tions contribute to Rmeas' In addition to the multiplicity related bias, it
should be noted that all 'overall' R-factors have an intrinsic bias in which
the largest reflections have the largest influence. Overall R-factors calcu
lated on F are less influenced by this bias because structure factors have
a much smaller range than intensities.

To overcome the problem of negative intensities for which the
square root is not defined, we suggest the use of pseudo-ampli-

tudes { y Jif! ~ 0

A1=
-YIifI< 0

solely for use in the Rmrgd-F equations21 . Pseudoamplitudes are
not physically meaningful, but they have the desirable property
that even negative reflections contribute to the overall Rmrgd-F in
a sensible way. We therefore define
(8)
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good estimate of the reliability of the reduced data. We expect
that practical experience with these indicators will be required
to decide how this information is best applied (that is, how
much systematic error is too much).

A recommendation
Based on these observations, we suggest that crystallographic
data reduction and scaling programs should report Rmeas' pev
and Rmrgd-F: Rmeas will enable crystallographers to better assess
the internal consistency of their measured data sets as well as
the agreement between different data sets; pev (or Rmeas if
errors are normally distributed) can be used to evaluate
whether the reported <lla> values match the true scatter in
the measurements (see Box and Fig. 2); and Rmrgd-F is the indi
cator of the quality of the final merged structure factor ampli
tudes, and makes direct comparisons with RCTvst and R iso
possible. Rmrgd-P as opposed to Rmeas' should be considered as
the most important indicator of final data quality in crystallo
graphic publications, since it is the reduced data set which is
used to determine structures. Finally, rather than reporting a
single overall value for data quality, it is important to provide
information about data quality as a function of resolution, at a
minimum including separate statistics for the highest resolu
tion data.
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insight

Mathematical derivation ofthe dependance ofRsym on multiplicity
As the true intensity lh known, but can be approximated by the average ihof the Ih.j• the variance of the Rsym numerator is related to the
multiplicity nh of the contributing reflections h. This is shown as follows: reformulating ~h j= Ih i - Ih' the sum of whose absolute values
constitute the numerator of the Rsym formula . .

1 n h

~h,i = lh,i - -,'L Ih,j
D h j

1 n h

lh. i - - (lh. i + ,'L lh, j)
Db j,j*i

we find

As the Ih,i and Ih,j Gfii) are independent, the variance S/!.,2 of the ~h,i can be calculated as the sum of the variances of the two terms on the
right-hand side of the last equation:

S 2
h

Db

1 n h

where sh2, the sample variance of Ih,j, is defined assh2 = ---,'L (lh. j _ Ih)2
Db - 1 j

However, the root mean square width of a Gaussian G{x) with zero mean is proportional30 to its average width <IxI>

? n ')
< x - >= - <I xl>

2
Thus, as the ~h,j are assumed to be norma!ly distributed around a mean of zero,

S
<L\I> =~

.17-
and therefore

(9)
<14,1>

..{th
demonstrating that the contribution of each reflection h to the numerator of Rsym is proportional to a function of its multiplicity nh' This is
the reason why Rsym values for low average multiplicity are overly optimistic, and Rsym as a function of data collection progress (multiplici
ty) is bound to rise, even if only statistical errors are present.

Relation of Rmeas ' PCV and Rmrgd_1 to the average Us ratio of the measured and reduced data
Data reduction programs calculate the estimates of the variance Sh? for each Ih i from counting statistics and background level, and most
report the <IIs> ratio as a function of resolution. From a statistical standpoint, the sample variance Sh2 of the Ih j should be consistent with
these Sh}, if no systematic differences between observations exist20. In this case, it follows from (9) that both Rmeas (Eq. 2) and PCV (Eq. 3)
are related to the inverse ofthe average signal-to-noise ratio <05

1
> of the observations

R ~ - 1 <s>
meas = PCV/',rYz - -- ---

-17-</>

1 1

.~ < I h.i / a I h.i >

2 1

·fJ < rh la r >
h

Likewise, Rmrgd-I is related to the average signal-to-noise ratio of the merged intensities ih,

with cr i,= JL I I ,

a 
i I h,;

Compared to, <1h/01
h
>, which rises according to a pure \in law even if systematic errors are present, Rmrgd values after merging of non

isomorphous datasets will be worse than those after merging of datasets without such errors, because the averages of the separate subsets
of data will be distinct.
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erratum

Improved R-factors for diffraction data analysis
in macromolecular crystallography
Kay Diedrichs and P. Andrew Karplus

Nature Structural Biology 4, no. 4, 269-275 (1997).

The Rsym definition on p. 269 should read:

(1) Rsym=

llh

LL IIh - Ih,il
h i

llh

LLIh,i
h i

llh, l~,

with Ih = -,i.J IIh - Ih,il
llh i

(thanks to Clemens Vonrhein for finding the missing summation sign)

The first sentences of the legend for Fig. 2 should read: "The behaviour ofdata quality indicators as a function of multiplici
ty. Solid lines are used for the following three indicators: Rsyrn (filled triangle); PCV (filled square); Rmrgd-F (open square). Dashed lines are
used for Rmeas (X); Rmrgd-j (open circle); <l!aj> (closed circle)."

In Fig. 2, it should be <l!aj> (not <1/s».

On p. 272, there are only space groups of the form P4(O,1,2,3)2(o,u2 (not P4(O,1,2,3)2(O,l)2(o,J))'

On p. 275 (box), several typesetting errors make understanding difficult: f

+ ~'.l. k o;:f--- a,-<-ol-L.~v e".;tN •
line 2: "true intensity rh" (note the tilde). As .fl.,.~ V(A~ i'4~el..ts:ll L ~ /s "'0 T '"" o"""~ , ...
lines 9-12: "As the Ih,i and Ih,j (j '* i) (note: not jfii) are independent, the variance S/!,.h2 of the ~h,i can be calculated as the sum of the vari
ances of the two terms on the right-hand side of the last equation:

The final paragraph on p. 275 should start as follows:

Relation ofRmeas , PCY, and Rmrgd-I to the average If(J ratio ofthe measured and reduced data
Data reduction programs calculate the estimates of the variance of ah} for each h,i from counting statistics and background level, and
most report the <I!a> ratio as a funciton of resolution. From a statistical standpoint, the sample variance Shz of the Ih.i should be con
sistent with these ah}' if no systematic differences between observations exist20

• In this case, it follows from (9) that both Rmeas (eqn.
2) and PCV (eqn. 3) are related to the inverse of the average signal-to-noise ratio <I!a,> of the observations. [Note the sversus a con
fusion in the article as printed]

Update: Reference 10 is Weiss, M.S. & Hilgenfeld, R. J. Appl. Cryst. 30,203-205 (l997).


