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ABSTRACT

Over time railway networks have become complex systems

characterized by manifold types of technical components

with a broad range of age distribution. De facto, about 50 per-

cent of the life cycle costs of railway infrastructures are made

up by direct and indirect maintenance costs. A remedy can

be provided by a condition based preventive maintenance

strategy leading to an optimized scheduling of maintenance

actions taking the actual as well as the expected future infras-

tructure condition into account. A prerequisite is, however,

that the thousands of kilometers of railway tracks are almost

continuously monitored. Thus, a promising approach is

the usage of low-cost sensors, e.g. accelerometers and gyro-

scopes, which can be installed on common in-line freight

and passenger trains. Due to ambiguous data records a

credible classification of railway track irregularities directly

from these data is challenging. Alternatively to this pure

data-driven approach, in this paper a novel hybrid approach

is presented. To this end, a simplified vehicle suspension

model is applied for the purpose of railway track condition

monitoring by analyzing the dynamic railway track - train

interactions. The inversion of the model can be used to re-

calculate the actual inputs (irregularities) of the monitored

system (rail surface) which have caused recorded system

responses (dynamic vehicle reactions and acceleration data,

respectively). These recalculated inputs are a sound basis

of subsequent data-driven condition monitoring analyses.

In this preliminary study, a classification algorithm is im-

plemented to identify a simulated railway track irregularity

automatically.

René Schenkendorf et al. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 3.0 United States Li-

cense, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original author and source are credited.

1. INTRODUCTION

Roughly speaking, half of the life cycle costs of railway in-

frastructures are caused by maintenance costs (Gradinariu,

2008). Rail surface irregularities (e.g. Fig.1), in particular, are

critical in terms of safety and reliability and call for advanced

and cost saving monitoring concepts (Haigermoser, Luber,

Rauh, & Gräfe, 2015; Schenkendorf, Groos, & Johannes, 2015).

Here, condition based preventive maintenance strategies

may help leading to an optimized scheduling of mainte-

nance actions taking into account the actual as well as the

prospective infrastructure condition. To implement a seam-

less condition monitoring of high-frequency, high-capacity

railway networks low-cost monitoring systems are manda-

tory. In detail, micro electro-mechanical systems (MEMS)

inertial sensors (accelerometers and gyroscopes) which have

the potential to be installed on a large amount of common

in-line freight and passenger trains (e.g. (Ward et al., 2011;

Molodova, Li, & Dollevoet, 2011; Naganuma, Kobayashi, &

Tsunashima, 2014; Weston, Roberts, Yeo, & Stewart, 2015;

Quirke, Cantero, OBrien, & Bowe, 2016)) are promising can-

didates. In this way, the gathered acceleration data may be

used on a daily basis to reveal and monitor relevant railway

track irregularities by signal processing tools as for instance

the Continuous Wavelet Transformation (CWT). Due to am-

biguous data records, however, a credible classification of

railway track irregularities directly from low-cost sensors

acceleration data form in-line trains is challenging. The

response of the vehicle to the track irregularities is sensi-

tive to a number of vehicle-specific and partly time varying

vehicle parameters (e.g. mass, suspension system, speed,

wheel diameter, and position of the measurement device).

For instance, a train passing the same critical track segment

with different speeds produces different acceleration sig-

nals. Due to these unsolved challenges pure data-driven

approaches with low-cost sensors on in-line trains are still

not commonly implemented in today railway monitoring
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concepts. Alternatively to the pure data-driven approach, in

this work a hybrid approach is presented. To this end, a sim-

plified vehicle suspension model, a.k.a. quarter-car model,

is applied prior to a data-driven approach for the purpose

of railway track condition monitoring. The inverse model

can be used to recalculate the actual inputs (irregularities)

of the monitored system (rail surface) which have caused

recorded system responses (dynamic vehicle reactions and

acceleration data, respectively). This approach addresses

the unsolved problem how to systematically consider these

relevant and variable parameters by the detection of rail

track irregularities with low-cost sensors on in-line trains.

As shown in this manuscript, these recalculated inputs are

a sound basis for track irregularity detection by a follow-

ing data-driven approach providing, in addition, a valuable

input for subsequent studies, e.g. life cost analysis (Rama

& Andrews, 2016) and prognostic charts (Saha, Goebel, &

Christophersen, 2009; Cocheteux, Voisin, Levrat, & Iung,

2010).

The remainder of this paper is structured as follows. In Sec-

tion 2 the idea of the novel hybrid approach for rail surface

condition monitoring is outlined. Here, in 2.1 the concept

of CWT as an essential signal processing tool is shortly sum-

marized. In 2.2 the quarter-car model is derived. The basics

of a model inversion strategy to recalculate track irregulari-

ties are addressed in Section 2.3. The classification strategy

based on recalculated track irregularities is demonstrated in

3. Finally, the conclusion is given in Section 4.

Figure 1. Corrugated rails reduce the driving comfort in
terms of vibration and noise while increasing the overall
wear due to harsher track - train interactions.

2. HYBRID APPROACH

As previously described, the automatic detection of rail sur-

face failures via low-cost sensor systems is an active research

field within the PHM community. In literature, various ap-

proaches can be found utilizing acceleration data to assess

the rail surface quality by classification and fault detection al-

gorithms (Fig. 2a). These studies, however, are usually based

on idealized assumptions, e.g. an unique measurement sys-

tem installed on a dedicated train with constant speed and

masses of the vehicle. Constraints which are rarely met in

practice and, in consequent, are one main reason why a

credible condition monitoring of the rail surface quality fails

to the present day. Alternatively, model-based approaches

incorporating expert knowledge of the monitored system

can gain helpful insight in terms of fault detection and iden-

tification. When implementing model-based concepts in

conjunction with data analysis ideas, a hybrid approach is

formed (Lee, Ni, Djurdjanovic, Qiu, & Liao, 2006) combin-

ing the advantages of both strategies. In this study, a novel

hybrid approach is presented. Instead of utilizing a conven-

tional model, an inverse model is applied to recalculate the

model inputs, i.e. the rail surface quality (Fig. 2b). In conse-

quence, more credible results can be provided by the classi-

fication of these recalculated inputs instead of analyzing the

raw acceleration data directly. But before demonstrating the

efficiency of the overall concept, the most relevant elements

are explained in subsequent.

2.1. Continuous Wavelet Transformation

In any data-driven concept informative features have to be

derived from the analyzed data, e.g. geometrical or statisti-

cal quantities calculated in the time and/or frequency do-

main of the signal. In this study, frequency dependent char-

acteristics assigned to the recorded track position are of fun-

damental importance. Thus, the Continuous Wavelet Trans-

formation is applied to extract these localized frequency

features of a signal under investigation. This time-frequency

resolution provides essential information of rail surface fail-

ures, associated data time spans and localization within the

track, respectively. In detail, the mathematical definition of

the CWT reads as:

W(a,b) := |a|−
1
2

∞
∫

−∞

f (t )Ψ∗

(

t −b

a

)

d t ; a,b ∈ R, a 6= 0, (1)

where f (t ) is the signal under study (e.g. acceleration data,

y , or recalculated rail surface, û), Ψ(·) a so-called mother

wavelet (here, a mexican hat wavelet is used), ∗ indicates

the complex conjugate, a and b are scaling and translation

parameters, respectively. For more details, the interested

reader is referred to (Teolis, 1998) and references therein.

Depending on a and b, wavelet coefficients, W(a,b), can be

determined which reveal time-frequency patterns of a signal.

These characteristics, sometimes referred as the fingerprint

of a signal, can be used as an indicator of the health status

of the analyzed system, e.g. the presence or absence of rail

surface failures and the condition of other railway assets as

well (e.g. (Asada & Roberts, 2013; Molodova, Li, Nunez, &

Dollevoet, 2013; Cantero & Basu, 2015)). Technically, in this

paper normalized wavelet coefficients (against the signals
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Figure 2. Compared to the conventional data-driven approach (a) the proposed hybrid approach (b) combines data-driven

concepts with model-based ideas .

total energy Eq.(2)) are used to ensure a better comparability.

E =

∞
∫

−∞

| f (t )|2d t . (2)

Typically, CWT is directly applied to the raw data for the

purpose of condition monitoring. In this study, however,

CWT is combined with a model-based approach as outlined

in the next sections.

2.2. Mechanistic Model

ms

xs

xus

Driving direction

mus

ks c

kus

ms

mus

ms

mus

u(t )

Figure 3. Quarter-car model: Mechanical suspension system
describing the dynamic railway track - train interaction, e.g.
crossing track irregularities, u(t ).

Beside the data-driven concepts, first-principle / mecha-

nistic models are excellent tools to take account for expert

knowledge of the monitored system and to gain valuable

insight for a detailed diagnosis. For instance, the response

of the vehicle dynamic can be simulated by a mechanical

vehicle suspension system. In the simplest case a single

axis movement is modeled (Fig. 3) known as quarter-car

models (Imine, 2011; Naganuma et al., 2014). The governing

equation set of this quarter-car model is presented in its

state-space form:

ẋ = Ax +Bu

y = Cx +Du
(3)

where u ∈ R
nu and y ∈ R

ny are the system inputs and the

outputs, respectively. The system states are given by x ∈R
nx .

The system matrices are known as the dynamic matrix A, the

input matrix B, the output matrix C, and the feedthrough

matrix D.

In case of the quarter-car model the corresponding matrices,

assuming ẋ = [ẍs , ẍus , ẋs , ẋus ]⊤ and y = ẍs , are:

A =











−
c

ms

c
ms

−
ks

ms

ks

ms
c

mus
−

c
mus

ks

mus
−

(ks+kus )
mus

1 0 0 0

0 1 0 0











(4)

B =











0
kus

mus

0

0











(5)

C =

[

−
c

ms

c
ms

−
ks

ms

ks

ms

]

(6)

D = [0] (7)

Here, the system includes the sprung mass, ms , and the

unsprung mass of the vehicle, mus , which are connected by

a linear spring and damper with the stiffness coefficient, ks ,
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and the damping constant, c , respectively. The rail surface is

considered as the system input, u(t ), and is transmitted by

a spring (kus ) to the unsprung mass (Fig.3). The numerical

values of the model parameters are given in Table 1.

Table 1. Applied model parameters of a generic railway vehi-
cle adapted from (Sira-Ramirez et al., 2011).

Model parameter Numerical value
ms 9875 [kg ]

mus 1100 [kg ]
ks 2.13×106 [N/m]

kus 1.42×108 [N/m]
c 1.20×104 [N− s/m]

2.3. Model Inversion

The special feature of this study is to not directly apply the

derived vehicle model for condition monitoring but its in-

verse. In general, the basic concept of model inversion aims

at using the recorded output data of the system under study

and to reconstruct the underlying inputs by systems the-

ory principles. Various model inversion strategies exist, see

(Czop, Mendrok, & Uhl, 2011; Schenkendorf & Groos, 2015)

and references therein. In this work, the inverse simula-

tion approach is applied extending the original model by

a feedback control loop (Buchholz & v. Grünhagen, 2007;

Murray-Smith, 2011). For the purpose of illustration the

state-space model (Eq.(3)) is transferred into the transfer

function notation first, i.e. applying Laplace Transforma-

tion:

G(s) = C(sI−A)−1B+D (8)

In general, the transfer function, G(s), represents the in-

put/output behavior of the system:

G(s) =
Y(s)

U(s)
(9)

A straightforward inversion of the transfer function is in

most practical cases not feasible as the resulting inverse

transfer function becomes non-causal. Alternatively, the

corresponding closed-loop system (Fig.4) results in:

G†(s) =
U(s)

U∗(s)
=

Kc

1+Kc ·G(s)
=

Kc ·U(s)

U(s)+Kc ·Y(s)
(10)

Kc G(s)
U(s)U∗(s) Y(s)

−

Figure 4. Control loop: Inverse simulation by a proportional
feedback strategy.

Obviously, for a large controller gain, Kc , the inverse system

can be derived according to:

lim
Kc→∞

G†(s) =
U(s)

Y(s)
(11)

(Here, Kc = 1000.) Transferred back into the time-domain,

the reconstructed input reads as:

u(t ) ≈ û(t ) =

t
∫

0

g †(t −τ)y(τ)dτ (12)

As demonstrated in the subsequent section, these recalcu-

lated inputs û (rail surfaces) are a sound basis for condition

based maintenance, i.e. the machine-aided detection of rail

surface failures triggering optimized maintenance actions.

3. DEMONSTRATION

After essential aspects of the proposed hybrid concept have

been presented, their gainful interaction is illustrated via a

preliminary simulation study and compared with the tradi-

tional approach, i.e. pure data-driven analysis of acceler-

ation data. First, informative features of the signal under

study have to be extracted. In this work, CWT is applied and

the resulting wavelet coefficients (Eq.(1)) are rearranged as

feature vectors. Here, each feature vector represents a track

segment of 5 m length. These feature vectors train a classifi-

cation algorithm. In subsequent, a Support Vector Machine

(SVM) (Bishop, 2008) is used which, in theory, classifies new

incoming data according to the underlying track quality. (A

radial basis kernel is used.) Considering the standard ap-

proach, i.e. evaluating the acceleration data directly, am-

biguous data records due to variation in vehicle parameters

(e.g. mass, speed) make a proper classification difficult. As-

suming a rail segment of 240 m length with corrugation from

meter 60 to 160, four different scenarios are modeled and

analyzed, i.e. acceleration data of the unsprung mass at low

speed (40 km/h) and higher speed (160 km/h) compared to

acceleration data of the sprung mass at low speed (40 km/h)

and higher speed (160 km/h). Simulating a corrugated rail

segment, i.e. a periodic pattern on the rail surface, the re-

sulting CWT analysis is shown in Figs.(5a-5d). Obviously,

the resulting wavelet coefficients are sensitive to the posi-

tion of the installed measurement system (e.g. unsprung or

sprung mass) and the traveling speed of the train (e.g. low

or high). A proper classification based on these findings is

challenging.

Alternatively, when using acceleration data to reconstruct

the rail surface first the CWT analysis reveals similar pat-

terns compared to the original rail surface failures. In detail,

the wavelet coefficients of the original (Fig.5e) and of the

reconstructed rail surface (Fig.5f) are compared. Obviously,

there are no significant differences detectable. It should be

stressed, that independent of the sensor position (unsprung
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(a) Acceleration data of the
unsprung mass, ẍus , at 40 km/h

(b) Acceleration data of the
sprung mass, ẍs , at 40 km/h

(c) Acceleration data of the
unsprung mass, ẍus , at 160 km/h

(d) Acceleration data of the
sprung mass, ẍs , at 160 km/h

(e) Rail surface geometry of the
original rail segment

(f) Rail surface geometry of the
recalculated rail segment

Figure 5. CWT analysis: Scalograms representing |W(a,b)| (Eq.(1)) with low, medium, and high numeric values.
When analyzing acceleration data, f (t ) := y(t ) = ẍus (t ) or f (t ) := y(t ) = ẍs (t ), the wavelet coefficients vary in their values at
the different scenarios shown in (a)-(d): 1) Higher speed correlates to higher frequency contribution (c)-(d) and lower scale,
respectively. 2) Acceleration data of the sprung mass show in addition a relevant eigenmode contribution of the system,
see the high scale range of (b) & (d). However, evaluating the rail surface geometry alternatively results in similar wavelet
coefficients for the simulated ( f (t ) := u(t )) and the recalculated rail surface ( f (t ) := û(t )) as shown in (e)-(f).
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Figure 6. Rail Surface Failure Classification: Perfect Condition; Corrugated Part; Long-Periodic Irregularities

or sprung mass) or the speed (low or high) the reconstructed

rail surface and the wavelet coefficients are equivalent.

In consequence, using a feature vector based on wavelet

coefficients of the reconstructed and non-ambiguous inputs

the actual classification step becomes easier. For the pur-

pose of demonstration, a track segment of 500 m length is

simulated showing two different kinds of rail irregularities:

(1) a corrugated part from meter 50 to 150; (2) long-periodic

irregularities from meter 250 to 450. A properly trained SVM

is used to identify these irregularities based on the recal-

culated input (rail surface), i.e. incorporating simulated

sprung mass acceleration data indirectly. As illustrated in

Fig.6, except for the transition zones the critical parts of the

rail segment are correctly identified.

4. CONCLUSION

In this study it is shown how a model inversion strategy can

be usefully combined with machine learning techniques

forming a hybrid approach. In this way, the original gathered

acceleration data are first transferred back into an unam-

biguous rail surface profile which is used for further analysis

and classification purposes. Preliminary results of this hy-

brid approach are derived by a simplified simulation study.

Here, under ideal assumptions (i.e. perfect measurement

data and no process noise) the critical track segments are

identified correctly. In future, the proposed concept will be

extended in the following way: (1) incorporating real (non-

simulated) data; (2) extending the quarter-car model to a

full car-model to distinguish between rail surface irregulari-

ties and structure-borne noise; (3) applying special forms of

Kalman Filtering for the purpose of model inversion and rail

surface reconstruction, respectively.
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NOMENCLATURE

A system dynamic matrix

B system input matrix

C system output matrix

D system feedthrough matrix

E energy of a signal

G transfer function

G† inverse transfer function

W wavelet coefficient matrix

a wavelet scaling parameter

b wavelet translation parameter

c damping constant

f signal/data vector

ks spring stiffness coefficient sprung mass

kus spring stiffness coefficient unsprung mass

ms sprung mass of the vehicle

mus unsprung mass of the vehicle

u system input

û recalculated system input

x system states

xs position of the sprung mass

ẋs velocity of the sprung mass

ẍs acceleration of the sprung mass

xus position of the unsprung mass

ẋus velocity of the unsprung mass

ẍus acceleration of the unsprung mass

y system output

Ψ mother wavelet function

Ψ
∗ complex conjugate wavelet function
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