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�e Rao-Blackwellized particle 	lter (RBPF) algorithm usually has better performance than the traditional particle 	lter (PF) by
utilizing conditional dependency relationships between parts of the state variables to estimate. By doing so, RBPF could not only
improve the estimation precision but also reduce the overall computational complexity. However, the computational burden is still
too high for many real-time applications. To improve the e
ciency of RBPF, the particle swarm optimization (PSO) is applied to
drive all the particles to the regions where their likelihoods are high in the nonlinear area. So only a small number of particles are
needed to participate in the required computation.�e experimental results demonstrate that this novel algorithm is more e
cient
than the standard RBPF.

1. Introduction

�e system state estimation is widely used in many 	elds
including statistics, economics, statistical signal processing,
and engineering, such as satellite navigation, communication,
radar tracking, sonar ranging, target tracking, and robot
localization. Many of these problems can be written in the
form of the so-called dynamic state space model. A general
formulation of such a model is provided as follows:

�� = � (��−1, ��−1) ,
�� = ℎ (��, V�) , (1)

where �� represents the state vector at instant 	, �� is the
observation vector of � at instant 	, and �() and ℎ() are
the transition function and measurement function, respec-
tively. ��−1 and V� are the i.i.d. process noise sequence and
measurement noise sequence. As we know, the most famous
algorithms, such as the Kalman 	lter (KF) and the hidden

Markov models (HMM), are limited to deal with the 	nite
state spaces with linear gaussian models. However, in many
applications, we must handle the time sequence estimation
problems which abide by complex nonlinear, non-Gaussian
distribution. To manage these problems, sequential Monte
Carlo methods (SIS) [1], also known variously as bootstrap
	ltering [2], the condensation algorithm [3], particles 	lter
[4], interacting particle approximations [5, 6], or survival
of the 	ttest [7], have been introduced. In 1969, the SIS
was used in the control 	eld by Handschin and Mayne
[8], but the early algorithm had a shortcoming, which was
denoted by degeneration. �e particle 	lter (PF) has not
come to the attention of researchers until Gordon et al. 	rst
proposed resampling methods in 1993 [2], which solved the
degeneration inherent in the earlier PF algorithms.One of the
major drawbacks of PF is that sampling in high-dimensional
spaces can be ine
cient. If the model contains a substruc-
ture with linear equations, subject to Gaussian noise, the
dependency structure can be taken advantage of to accelerate
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the estimator. �is algorithm is known as the marginalized
particle 	lter (MPF), which also had a reputation as the Rao-
Blackwellized particle 	lter (RBPF) [9–16]. It is widely used
in the state and parameter estimations of nonlinear dynamic
systems [16], especially in the situations where dependencies
within the state space can be analytically exploited.

�e key idea of RBPF algorithm is to split the state space
into two parts one linear state subspace and one nonlinear
state subspace. �e linear state subspace can be carried out
using standard algorithms, such as the Kalman 	lter, the
HMM 	lter, the junction tree algorithm, or other 	nite-
dimensional optimal 	lters, and the nonlinear state subspace
is implemented by particle 	lter. �erefore, the working
condition where we could utilize the RBPF is the state space,
which could be able to divide into two parts linear state and
nonlinear state. �us the dimensionality problem associated
with the standard particle 	lter is alleviated, since the dimen-
sion of the state variables estimated by the particle 	lter is
reduced. In this paper, we propose an improved RBPF that
is optimized by the particle swarm, moving the particles to
the region where has higher likelihood density. Compared
with standard RBPF, the number of required particles can be
greatly reduced.

2. The Standard Particle Filter

Particle 	lter, as a suboptimal Bayesian 	lter, the fundamental
idea is to recursively approximate the posterior density 
(�� |�1:�) by a set of particles {���, � = 1, . . . , �} with associated

weights {
��, � = 1, . . . , �} where� is the number of particles
and 	 denotes the index of current time. In practice, it is
inconvenient to sample directly from the posterior density
distribution 
(�� | �1:�) the solution is to sample particles��� ∼ �(⋅), where �(⋅) is referred to as importance density.
�en, a weighted approximation to the posterior 
(�� | �1:�)
is given by


 (�� | �1:�) ≈ �∑
�=1

��� (�� − ���) , (2)

where the normalized weights are de	ned as


�� ∝ 
(��� | �1:�)� (��� | �1:�) . (3)

�e more detailed description of particle 	lter could be
referred to [17].

A pseudocode description of the standard particle 	lter is
given by Pseudocode 1.

�ere are several serious problems in the particle 	lter
algorithm. �e 	rst problem is particle degeneracy. A�er
several updating iterations, only a few particles would have
signi	cant important weights. �e utmost situation is only
one weight of particles almost approximate one, even others
all almost to zero. �e degeneracy problem means that a
large computational e�ort devoted to updating the parti-
cles does not make any sense. �e second problem is the
particle impoverishment which comes from resampling. �e

introduction of resampling could resolve the particle degen-
eracy problem, but at the same time it brings the particle
impoverishment. In resampling step, the particles with little
weights are cast out, so the diversity of particles could be
reduced. In some situations, the posterior distribution may
be represented by only � of the same particles, resulting
in the accuracy of estimation to be very low. �e only way
to solve this problem depends on increasing the sample set
size. But, if we provide large enough samples covering whole
state space to ensure a successful estimation, the computation
e
ciency of particle 	lter would decrease tremendously
and even could not meet real-time requirement. �e third
problem is sampling ine
cient in high-dimensional spaces.
In some situations, the dimension of the state vector is large;
the number of particles required increased exponentially
with dimension number of the state vector in order to
obtain reliable estimates for the states. RBPF, as an important
modi	cation of the standard particle, is applicable to a certain
class of high-dimensional state space models.

3. Rao-Blackwellized Particle Filter

Rao-Blackwellisation is a technique marginalizing out some
of the variables from state vector models, which are related
to the Rao-Blackwell formula [16, 18]. If some conditional
dependencies relationships between elements of the state
vector can be analytically explicit, then it is not necessary to
draw samples from the entire state space. Consider a state
vector �� which can be partitioned according to

�� = [[
������]]

, (4)

where ��� denotes the linear state variables and ��� denotes the
nonlinear state variables. A relative general model with the
properties discussed above is given by

���+1 = ��� (���) + ��� (���) ��� + ��� (���) ��� , (5)

���+1 = ��� (���) + ��� (���) ��� + ��� (���) ���, (6)

�� = ℎ� (���) + �� (���) ��� + V�, (7)

where �() and ℎ() are possible nonlinear functions. Further-
more, the noise of the system state is assumed to be white and
Gaussian distributed with

�� = [������] ∼ � (0,  �) ,  � = [  ��  ���( ��� )�  ��] . (8)

�emeasurement noise is also assumed to bewhite andGaus-
sian distributed according to the following equation:

V� ∼ � (0, #�) . (9)

Furthermore, �0 is divided as follows:

��0 ∼ �(�0, $0) , (10)

��0 ∼ 
 (��0) , (11)
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⌊{���, 
��}��=1⌋ = PF ⌊{���−1, 
��−1}��=1, ��⌋
FOR = 1 :N

Draw ��� ∼ 
 (�� | ���−1)
Calculate 
�� = 
 (�� | ���)

END FOR

Calculate total weight: - = sum ⌊{
��}��=1⌋
For = 1 :N

Normalize: 
�� = -−1
��
END FOR
Resample [17]

⌊{���, 
��, . . .}��=1⌋ = RESAMPLE ⌊{���, 
��}��=1⌋
Pseudocode 1: Description of the standard particle 	lter.

where the formulas (5), (6), and (7) describe a mixed linear/
nonlinear system. If the nonlinear state ��� is known, the
formula (6) describes a linear, Gaussian subsystem. So the

linear state ��� can be marginalized out from the posterior
density 
(�� | �1:�)


 (���, ��� | �1:�) = 
 (��� | ���, �1:�) 
 (��� | �1:�) , (12)

where the linear state 
(��� | ���, �1:�) is analytically tractable
whose solution can be given by the Kalman 	lter. Meanwhile,
the nonlinear state 
(��� | �1:�) can be estimated using the
particle 	lter. �erefore the posterior density of the whole
space can be approximated to


 (���, ��� | �1:�) = 
 (��� | ���, �1:�) 
 (��� | �1:�)
= �∑
�=1

��� (��� − ���� )� (���; ���� , $��) .

(13)

�e conditional probability density functions for ��� and ���+1
are given by


 (��� | ���, ��) = �(���|�, $�|�) ,

 (���+1 | ���+1, ��) = �(���+1|�, $�+1|�) ,

(14)

where

���|� = ���|�−1 + /� (�� − ℎ� − ����|�−1) ,
$�|� = $�|�−1 − /�2�/�� ,
2� = ��$�|�−1��� + #�,
/� = $�|�−1���2−1� .

(15)

�e formulation above updates linear state by Kalman
	lter when the new observation �� is obtained. A�er getting
the prediction of nonlinear state ���+1, the formulas (5) and

(6) can be viewed as measurement equation and prediction

equation, and ���+1|� and $�+1|� can be computed as follows:

���+1|� = ����	�|� + ���( ln

� )�(��� ��)−13�
+ ��� + 4� (3� − ������|�) ,

$�+1|� = ���$�|�(���)� + ��� ��(���)� − 4���4��,
�� = ���$�|�(���)� + ��� ��(���)�,

4� = ���$�|�(���)��−1� ,

(16)

where

3� = ���+1 − ��� ,
��� = ��� − ���( ��� )�(��� ��)−1���,
 �� =  �� − ( ��� )�( ��)−1 ��� ,

(17)

where  ��� is covariance matrix of the linear state ��� and
nonlinear state ���. More references are listed in [14, 15].

�e measurement equation and the prediction equation
of nonlinear state are given by


 (�� | ���, 3�−1) = � (ℎ� + �����|�−1, ��$�|�−1��� + #�)
(18)


 (���+1 | ���, 3�)
= � (��� + ������|�, ���$�|�(���)� + ��� ��(���)�) . (19)

A pseudocode description of the Rao-Blackwellized particle
	lter is supplied in Pseudocode 2.

4. Particle Swarm Optimization

�e particle swarm optimization, as well known, is a pop-
ulation-based parallel evolutionary computation technique
developed by Kennedy and Eberhart [19–23]. �e PSO
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(1) Initialization

For � = 1, . . . , �, initialize the particles, ��,(�)0 ∼ 
 (5�0) and set {��,(�)0 , $(�)0 } = {��0, $0}
(2) FOR 	 > 0

(2.1) PF measurement update

Compute the particle weight 
̃�� using formula (18),
(2.2) normalize the weight


�� = 
̃��∑��=1 
̃��
(2.3) Particle 	lter time update and Kalman 	lter:

(a) Kalman 	lter measurement update using formula (15)
(b) Particle 	lter time update:

For � = 1, . . . , � predict new particles according to (19)
(c) Kalman 	lter time update using (16)–(17)

(2.4) Set / := / + 1 and iterate from step (2.1)

Pseudocode 2: Description of the Rao-Blackwellized particle 	lter.

technique has its inspiration rooted in observations and
simulations of social behavior of animal swarms such as
bird �ocks searching for corn. PSO algorithm is initialized
with a population of random particles which correspond to
candidate solutions. Each simple entity is assigned a random
velocity according to both its own and the whole �ock’s
�ying experiences. A�er evaluating the 	tness function at
its current location, the entities called particles are then
collectively �own through hyperspace, searching for food.
Finding the optimum location for the best objective function
can be viewed as analogues of the evolving trajectory of such
a swarm behavior.

�e PSO has been found to be robust and fast in solving
nonlinear, nondi�erentiable, and multimodal optimization
problems.�e PSO algorithm can be described inmathemat-
ical formulations as below.

For a random particle swarm, there are 8 particles in an9 dimensional space, denoted <� = (5�1, 5�2, . . . , 5��), � =1, . . . , 8, and?� = (V�1, V�2, . . . , V��), � = 1, . . . , 8, where<� and?� are the position and velocity of the �th particle, respectively.
At each step of iterations, two main factors, $� and �, have
been de	nedwhich could re�ect the objective-	tness value of
one given particle or the whole swarm, representing approxi-
mation to the expected state; this to say,$� = (
�1, 
�2, . . . , 
��)
represents the previous best 	tness value of �th particle up
to current step; � = (@1, @2, . . . , @�) denotes the best 	tness
value of all particles in the whole population. A�er obtaining
the two best values, each particle updates its position and
velocity according to the following equations:

?
+1� = 
 ⋅ ?
� + A1 ⋅ B1 ⋅ (

� − <
�) + A2 ⋅ B2 ⋅ (� − <
�) , (20)

<
+1� = <
� + ?
� . (21)

Here, we de	ne B1 and B2 as the random numbers derived
from the range [0, 1], which are generated according to
a uniform probability distribution C [0, 1]. 
 denotes the
inertial weight (constriction factor), and it has been proven
that using this factor while limiting the maximum velocity to
the dynamic range of the position variable on each dimension

is a better approach [24]. A1 and A2 are positive constants called
acceleration coe
cients [21–23], which are utilized to control
the velocity variable in the velocity updating step of PSO.

5. PSO Optimized Rao-Blackwellized
Particle Filter

First, the newest observation is taken into account by de	ning
a PSO 	tness function

	tness = exp [− 12#� (�new − �pred)
2] . (22)

Here, #� is the observation noise covariance, �new is the
newest observation, and �pred is the predicted observation.
�e reason why we select this formula (22) as the 	tness
function is that its absolute value can describe how well the
newest observation could “approximate” or “	t” the predicted
observation. �e “best value” in Section 4 refers to the max-
imun value of the objective function which could correspond
to the most satis	ed state for our given con	guration. In
this paper, we prefer the value that could well approximate
predicted state with lowest error between the predicted state
and the real state.

�e PSO moves all the particles towards the region
where they have the best 	tness values. But sometimes the
maximum velocity ?max of classic PSO is di
cult to deter-
mine, which impacts the searching step size. Here we adopt
an improved PSO-Gaussian swarm, which updates velocity
based on a Gaussian distribution [20].

If all particles are distributed around high likelihood
region, then the 	tness value of each particle would be high.
On the other side, if the best previous value of $� and the
global best value of � are both very low, it means that
particles are not distributed around high likelihood area.
Hence, via PSOmechanism, each particle updates the velocity
and positions of according to (20) and (21). But it must be
noticed that, inside the formula (20), the terms B1 and B2 are
generated according to the Gaussian probability distribution,
that is,� (0, 1).
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(1) Initialization

For � = 1, . . . , �, initialize the particles, 5�,(�)0 ∼ 
 (5�0) and set {5�,(�)0 , $(�)0 } = {5�0, $0}
(2) FOR 	 > 0

(2.1) PF measurement update

⌊{5�∗� }��=1⌋ = PSO ⌊{5��}��=1, ��⌋
Compute the particle weight 
̃�� using formula (18),

(2.2) normalize the weight


�� = 
̃��∑��=1 
̃��
(2.3) Particle 	lter time update and Kalman 	lter:

(a) Kalman 	lter measurement update using formula (15)
(b) Particle 	lter time update:

For � = 1, . . . , � predict new particles according to (19)
(c) Kalman 	lter time update using (16)–(17)

(2.4) Set / := / + 1 and iterate from step (2.1)

Pseudocode 3: �e PSO optimized Rao-Blackwellized particle 	lter.

Next, each particle’s weight would be updated and nor-
malized by (9) and (10)


�
 = 
�
−1
 (E
 | 5�
) ,

�
 = 
�
∑��=1 
�
 .

(23)

�en using resampling step to select and replicate the
particle with large weights,

{5�
, 1�}
�

�=1
= {5�
, 
�
}��=1. (24)

A pseudocode description of the PSO optimizes Rao-
Blackwellized particle 	lter which is given by Pseudocode 3.

6. Experimental Results

We choose the classical bearing only tracking mode to test
the novel algorithm. �e basic frequency of the computer is
2.6GHZ; EMS memory is 1 G. Hard disk capability is 80G.
�e simulation so�ware is MATLAB 7.0.

�e dynamic system state equation of bearing only
tracking mode is given by

�� = H��−1 + Γ��−1, 	 = 1, 2, . . . , /, (25)

where H = [ 1 1 0 00 1 0 0
0 0 1 0
0 0 0 1

], Γ = [ 0.5 01 00 0.5
0 1

], the target state vector is
�� = [5�, 5̇�, E�, ̇E�]�, and 5� and E� are position of the target
in two dimensions plane. 5̇� and ̇E� are velocities of the target.�� = [��� , �
� ]� is assumed to be Gaussian distributed noise,

and satis	ed �∗� ∼ �(0, �2�).
�e measurement equation is given by

�� = tan−1 (E�5�) + V�. (26)

Inside, the measurement noise satis	es V� ∼ �(0, �2V).

Table 1: Performance comparison between PF, RBPF, and RBPF-
PSO.

Algorithm RMSE Time (S) Number of particles

PF 0.14298 19.625 1000

RBPF 0.019902 16.078 500

RBPF-PSO 0.015079 2.297 20

�e target initialization state is �0 = [−0.005, 0.001, 0.7,−0.005]�, process noise covariance �� = 0.001, measurement
noise covariance �

V
= 0.005, Time / = 60. We divide target

state into nonlinear state ��� and linear state ���. Where ��� =[5�, E�]�, ��� = [5̇�, ̇E�]�. Root-mean-square error (RMSE) is
used to describe the accuracy estimation, which is given by

RMSE� = 1�
�∑
�=1
√(5̂�� − 5�)2 + (Ê�� − E�)2. (27)

�e evaluations of di�erent algorithms are displayed in
Figure 1 and Table 1.

From the experimental results, we can see that RBPF-PSO
uses a few particles to get the required estimation accuracy
and consume the least computing time; RBPF-PSO with 20
particles could achieve higher accuracy than PF with 1000
particles and RBPF with 500 particles. �e RMSE of RBPF-
PSO shows the best prevision. By this simulation, we could
see that it is nearly one order of magnitude promotion
between RMSE of the proposed algorithm and the RMSE of
standard PF. Meanwhile, the compution time spent by the
proposed algorithm is much less than that the others.What is
more, in Figure 1, when time 	 > 25, PF and RBPF both start
to diverge from the real tracking trajecory.

In addition, we could draw similar conclusions by chang-
ing the particle num.

From Figure 2 and Table 2, the RBPF-PSO that uses 10
particles can achieve higher accuracy than the PF with 1000
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Table 2: Performance comparison between PF, RBPF, and RBPF-
PSO.

Algorithm RMSE Time (S) Number of particles

PF 0.11154 20.156 1000

RBPF 0.23974 16.766 200

RBPF-PSO 0.087333 9.343 10

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

X

Y

True x

PF estimate

RBPF estimate

RBPF-PSO estimate

Filter estimates (posterior means) versus true state

Figure 1: �e estimations of di�erent particle 	lters when the
regular PF diverges.

particles and RBPF with 200 particles. RBPF-PSO uses a few
particles to get the required estimation accuracy. However,
the di�erence between Figures 1 and 2 is that, in Figure 2,
the RBPF algorithm with 200 particles failed to track the
tendency of the real data, beyond all expectations. Even with
10 particles, the proposed RBPF-PSO algorithm can still pro-
duce smooth and satis	ed estimation accuracy. Among the
three algorithms, the worst algorithmwith the poorest RMSE
error; and the best algorithm is still the proposed RBPF-PSO,
with the smallest particle number and the best accuracy.

7. Conclusion and Discussions

In this paper, particle swarm optimization Rao-Blackwellized
particle 	lter was proposed. We used particle swarm opti-
mization to make the particle move to regions where the
likelihood of particle is high, so only a few particles were
able to represent the approximate posterior density. And
the e
ciency of the algorithm were improved. Even when
RBPF algorithm fails to estimate, the proposed RBPF-PSO
algorithm can still achieve satis	ed estimation accuracy with
much less particle number.

Actually, we just take the top maximum value as the
unique solution here. However, we think that the interested
readers can take multiple local maximum as possible can-
didate solutions by several subswarms corporations in the
implementation detail for further development.

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
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Y
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PF estimate

RBPF estimate

RBPF-PSO estimate

Filter estimates (posterior means) versus true state

Figure 2: �e estimates of di�erent particle 	lters when the RBPF
fails.
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