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IMPROVED RATES IN THE EMPIRICAL BAYES MONOTONE
MULTIPLE DECISION PROBLEM WITH MLR FAMILY!

By DENNIS C. GILLILAND AND JAMES HANNAN
Michigan State University

In the context of the two-action, linear loss, exponential family mul-
tiple decision problem, Van Houwelingen (1973), (1976) has shown that
faster rates of convergence are deducible for monotone empirical Bayes
procedures than result from application of the bound established for general
empirical Bayes procedures by Johns and Van Ryzin (1972). This note
generalizes a (1973) Van Houwelingen bound to arbitrary k-action, mono-
tone loss, MLR family multiple decision problems. An example is given
to show that the result is a useful alternative to the recent Van Ryzin and
Susarla (1977) multiple decision problem generalization of Johns and Van
Ryzin.

1. The multiple decision problem. We consider a statistical decision problem
with states ¢ indexing Z° = {P, |0 € ©} where the P, are probability distributions
on (£, &). In a multiple decision problem the action space is finite. Here
we denote it by 4 = {1, 2, .- ., k} and we denote the loss for action @ and state
0 by L,(0) = 0. The class .7 of decision rules is the class of all £#-measurable
mappings ¢ into the (k — 1)-dimensional simplex of probability distributions on
A. Thatis, t = (t,, t,, ---, t,) where t, > 0 and 3] ¢, = 1. The risk of ¢ at 6 is

M R(0, 1) = Ey(2 1. La(0)) -

Let & be a o-field of subsets of © such that P,(B) for all Be &%, and L,(.) for
all a e A are Z-measurable. For G a distribution on &, denote the conditional
expected loss of action a given x by

(2) lu(x) = Ex(La) *
The Bayes risk of ¢ at G is
(3) R(G, 1) = E(X t.1,)

where. E is expectation with respect to P, the marginal distribution on <% A
decision rule ¢ is Bayes with respect to G if and only if

4) Ttl=Al a.e. P.
We assume the minimum Bayes risk to be finite, that is,
(%) R(G) = ARG, 1) = EA ) < .
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2. Empirical Bayes. In this section we develop results which are slightly more
general than some of Van Ryzin and Susarla (1977). The development is novel
in that it is based on the appllcatlon a.e. P of simple number sequence bounds
of the Appendix.

Let (7%, &8*, P*) be independent of the above (:Z°x 0, % x &, Z, G).
(In the traditional empirical Bayes problems Z27* = 27", Z* = 2" and
P* = Pr.) Mappings t* from 27* into .7 are sought so that R(G, t*) is close
to R(G) in some sense, for example E*R(G, t*) close to R(G). To this end let
* = (L*, L,*, .-+, [,*) be a mapping from 2°* into the class of (— oo, co)*-
valued £Z-measurable functions and suppose that 7* is conditional Bayes with
respect to [*, that is, ) t,*[,* = A [,* a.e. P. For interchanges of P and P*
we also require that /* be jointly measurable <#'* x <%. Here [* is an estimator
based on x* of the conditional expected loss function /, and for each x*, t* is
Bayes with respect to [*(x*). Let [,, = [, — [, when the difference is defined,
that is, not co — oo, and let /,, be arbitrary measurable otherwise.

THEOREM 1 (Van Ryzin and Susarla). - For t satisfying (4),
(6) E*R(G, t*) — R(G) < Z" b1 E{t, 1, PX[1% < O]
() S Doa Zi- E{G|Lal P — Ll 2 1asl]} -

Proor. R(G, t*) = E(}; t,,*l,,) and R(G) = E(A [,). In view of the fact that
t, = 0if[,, < 0, (6) is a consequence of (c) of the Appendix and (7) is a conse-
quence of (d). [

Theorem 1 is slightly more general than Lemma 1 of Van Ryzin and Susarla
(1977) in that arbitrary Bayes rules ¢ and empirical Bayes rules ¢* are covered

rather than particular determinations.
Suppose that ,*, [,*, .. ., [,* is monotone decreasing and then monotone in-

creasing, that is, [},,, < 0 < I¥,,, implies a < b. Letl* = [}, = co. At*such
that 3 ,*,* = A [,* is

(8) t“*z[l;kw—1<0§l;k+1a’“"lfck+1k]a a=1’2,°°',k,
where here and henceforth square brackets denote the indicator function. The
linear loss multiple decision problem of Van Ryzin and Susarla (1977) leads

naturally to ¢* of this nature. For if —co =6, <0, < --- <60,_, <0, =00
and

) L(6) = $32(0 — 0,)_ + T4 (6 —0,),, a=1,2,---,k,
and
(10) 0(x) = E(0) isfinitea.e. P,

then La+1a(6) = 041 — 0 and la+1a = 0a - 59 a= 1, 2a ) k— 1. Soif l;k+1a =
6, — 0%, a=1,2, ...,k — 1 where 8* is an estimator of the conditional ex-
pectation d, (8) becomes

(11) ¥ =[0,, < 0% <8,], a=1,2,.-- k.
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Since here )19 #,* = [0* < 6,] and ¢ satisfies (4), (e) of the Appendix implies

(12) R(G, t*) — R(G) = E 23521 (0 — 0,){[0* < 0.] — [0 = 0,]}
from which
(13)  R(G,1*) — R(G) < E Xk215 — 6,][15* — 3 = |5 — 6,]].

Taking E* expectation and weakening the result by the Markov inequality leads
to (33) of Van Ryzin and Susarla (1977):
(14) E*R(G, t*) — R(G) < 2 k21 E{jo — 0,|'E*|6* — 0]} forall ¢e>0.

3. Monotone case with MLR family. The monotone multiple decision problem
is defined by Karlin and Rubin (1956) and also by Ferguson (1967, Chapter
6). Here O is a subset of the reals and the loss function has the following

structure: there exist numbers ¢, < 0, < ... < 6,_, in O such that, for a =
172, "',k_ 1,
(15) La+1a(0) g 0 ’ 0 < 0a

<0, 0>90,.

The linear loss function (9) is an example of a function satisfying (15). Also
suppose & is a monotone likelihood ratio family with densities p,, 6 ¢ ©.
(Without loss of generality we take the likelihood ratio to be increasing.) The
monotone procedures form an essentially complete class so that there exists a
monotone procedure ¢ which is Bayes versus the prior G, that is, there exist

—c0o =X - £x,, < x, =cosuchthatfora=1,2, ..., kandall x,
(16) t(x) >0 implies x, , < x=<x,.
Let ** be a monotone rule based on estimates —oo = x,* < x,* < ... < x¥ | <

x*¥=o0. Fora=1,2,...,k — 1, let

(17) T(X) = Py [X = x], x real,
(18) a, = T4(%,),

and

(19) At = Ty(%*) -

THEOREM 2. Supposel, < oo a.e. P,a=1,2, ..., k. It follows that
(20) E*R(G, t**) — R(G)
= e EfllecnlPHlae” — ao| 2 a. — 7]}
(1) = Yest E{llaanllas = o }E¥|a* — a |t forall ¢>0.
Proor. Consider (e) of the Appendix and the facts R(G, t**) = E(3] t,**1,)
and R(G) = E(A l;). In the monotone case, if T,**(x) %= T,(x) then x is be-

tween x, and x,* and therefore 7,(x) is between &, and &, *, so that an interchange
of E* and E gives (20). (21) is a Markov weakening of (20). []
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The proof shows an alternative bound results by replacing z,, a,, a,* by x, x,
and x,* respectively, in RHS (20). However, as Van Houwelingen (1976) remarks
following his (15), the estimation of tail probabilities a, is easier to handle than
the estimation of cutpoints x,. :

Theorem 2 is a three-fold generalization of Lemma 3.2.2 of Van Houwelingen
(1973) from linear to monotone loss, from continuous exponential to MLR family,
and from k = 2 to k > 2 acts. The specialization of (21) to linear loss is

(22)  E*R(G, t**) — R(G)
< SUETE(6, — d||a, — t."}E*|a,* — a,¢  forall &> 0.

Here the estimation errors a,* — a, are isolated in the bound whereas the Van
Ryzin and Susarla bound (14) isolates 6* — ¢. Since the monotone rules are
essentially complete in the monotone multiple decision problem with MLR
family, (22) is then a possible useful alternative to (14).

The next section looks at an example used by Van Houwelingen (1973) to
show in the k = 2 case that faster rates can follow from (22) than from (14).

4. Example. Let P, be N(0, 1), 6 €©® = (—oo, o) and let the loss be the
linear loss (9). This is a monotone multiple decision problem with MLR family
so the monotone decision rules are essentially complete. Here a version of the
conditional expectation of # given x is

(23) 3(x) = x — P’ —o0 < x < 0
P(x)
where p is the marginal density of x and p’ its derivative. Let §*(x) =
x — Dp,(x)/p.(x) where p, and Dp, are estimators for p and p’ based on
X* = (X, X3, +++, X,) With x;, x,, - -+ i.i.d. P, the traditional empirical Bayes
estimator of 9. Let t* be given by (11) and let +** be a monotone rule such
that R(9, 1**) < R(0, t*) for all ¢; for example, following Karlin and Rubin
(1956, Lemma 4) and Ferguson (1967, Theorem 6.1.1) take T,**(x) = [x < x,*]
where x,* is determined so that Py [X < x,*]=EpT,*,a=1,2, ...,k — 1.
Van Houwelingen (1973) considers only two-action problems. He applies his
Theorem 3.2.1 to show (pages 42-43) that for this example and k = 2,

(24) RHS (22) = O(n—ctr-1/ar+) forall 0<e<?2
provided

(25) G[0 < 6,]G[0 > 6,] > 0

and

(26) §10]"dG < oo

and the estimators p, and Dp, are based on sufficiently smooth kernels.
For k > 2, RHS (22) is simply a sum of k — 1 Van Houwelingen bounds. Since

(27) G[0 < 6,]1G[0 > 6,.,] > 0
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implies G[0 < 6,]G[0 > 6,] >0 fora=1,2, ...,k — 1, we see that replacing
(25) by (27) ensures that (24) obtains if k > 2.

If G has finite absolute moments of all order, then by choice of kernels in
the estimators p, and Dp,, convergence rate arbitrarily close to O(n™?) is es-
tablished for the monotone empirical Bayes procedure t**. Van Houwelingen
(1973, Remark 3.2.2) notes the Johns and Van Ryzin (1972) obtain only close
to O(n~%) in the k = 2 case while Van Ryzin and Susarla (1977, Section 4) remark
that the Johns and Van Ryzin rates carry over to k > 2.

In this note we have not considered the question of rates deducible from (21)
or (22) in general. Van Houwelingen (1973) and (1976) has considered this
question relative to several bounds and two-action, linear loss, continuous ex-
ponential family. For example, Van Houwelingen (1976) shows that (26) and
conditions slightly stronger than those given in (1973) imply LHS (20) =
O(n=*r-1/3r+1 Jog? n), which is a ratewise improvement over what is deducible
from the family of rates (24) for given r. However, for the normal family and
G with finite moments of all order, both approaches yield rates arbitrarily close
to O(n~") by choice of kernel. :

APPENDIX
Let I = (Il ---,1,) be a k-tuple of extended real numbers such that
IA ] < co and suppose that t = (,, ¢, - -, t,) is a k-tuple of probabilities
such that

(2) Zitlo= Al

Suppose that /* and t* are similarly defined but require that the components of
I* be real. Letting l,, = I, — [,, when the difference is defined and arbitrary
otherwise, it follows that

(b) 2 ta*l.a —ANlL=2.20 e Y %

(C) é Za Zb tbla,b[l;kb é 0 é lab]

(d) < 2o o tllalllfs — Ll = |Lasl] -
Furthermore, if |[,| < oo and T,* = Y 111,*,a=1,2, ..., k, then
(e) Dl — A= LS lean(T — To) -

Proor. Note that z, > 0 implies |/,| < oo so that #,,, = t,(I, — 1;). Using
this fact, (a), and Y 7,* = X} 1, = 1, we obtain (b). Since 7,*7, > 0 implies
I* <0 < 1, (c) bounds (b). A further weakening gives (d). In case the [, are
finite so that [, ,,, is defined for all a, >} 7,*l, — A [, = X (t,* — 1,)I, and sum-
mation by parts yields (e). [J
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