
ICCAD ’96
1063-6757/96 $5.00 1996 IEEE

Improved Reachability Analysis of Large Finite State Machines

Gianpiero Cabodi y Paolo Camurati z Stefano Quer y

y Politecnico di Torino

Dip. di Automatica e Informatica

Turin, ITALY

z Universit�a di Udine

Dip. di Matematica e Informatica

Udine, ITALY

Abstract

BDD-based symbolic traversals are the state-of-the-art technique

for reachability analysis of Finite State Machines. They are

currently limited to medium-small circuits for two reasons: peak

BDD size during image computation and BDD explosion for

representing state sets. Starting from these limits, this paper

presents an optimized traversal technique particularly oriented

to the exact exploration of the state space of large machines.

This is possible thanks to: 1) temporary simpli�cation of a Fi-

nite State Machine by removing some of its state elements, 2)

a \divide{and{conquer" approach based on state set decompo-

sition. An e�ective use of secondary memory allows us to store

relevant portions of BDDs and to regularize access to memory,

resulting in less page faults. Experimental results show that this

approach is particularly e�ective on the larger ISCAS'89 and

ISCAS'89{addendum'93 circuits.

1 Introduction

Finite State Machines (FSMs) are a popular model for

control-dominated ASICs. FSMs are identi�ed by their

input/output alphabets, initial state sets, and next state

and output functions.

A forward traversal of a FSM identi�es its reachable state

set. Intuitively, a state is reachable if a sequence of inputs

forces the FSM to evolve from an initial state to that state.

The next state function determines the evolution along

time. The next states are the image, for all inputs, of the

current states according to the next state function. The

process terminates as soon as a �xed-point is reached, i.e.,

no newly reached states are found.

Symbolic approaches compute images by implicitly enu-

merating the inputs [1], [2], [3]. Although quite successful,

symbolic methods cannot complete the reachability analy-

sis of large FSMs, because they require too much memory

and are computationally expensive. Focussing on memory

requirements, the two major problems are peak BDD size

during image computation and size of the BDDs represent-

ing reached states. Virtual memory could be a solution to

such a problem but, if the working set size for a program

is large and memory accesses are random, an extremely

large number of page faults signi�cantly modi�es the per-

formance of the software.

We improve standard techniques by:

� temporarily simplifying FSMs by latch removal and

reinsertion at the end of the traversal process

� decomposing sets of states and carrying out costly

traversal steps in a decomposed form.

Latches not feeding the next state functions may be ex-

tracted from the original FSM. A simpli�ed FSM is ob-

tained and a traversal can be carried out on that machine

reducing the size of state sets during intermediate traversal

iterations. The extracted latches are eventually reinserted

to compute the full reachable state set. When applicable,

this temporary simpli�cation is particularly e�ective if in-

termediate steps are more expensive that the �nal ones,

and this is often the case as shown by Ravi et. al. [4].

Moreover, when the monolithic BDDs of state sets be-

come too large or when image computations are too ex-

pensive, we decompose the sets in subsets. We perform

�xed point computations and other operations on the de-

composed form, and this allows us to deal with just one

subset at a time. The resulting technique is no more a

pure breadth{�rst traversal, but it is partially depth{�rst,

reducing both the peak number of BDD nodes required

and the complexity of the operations.

Good decomposition of state sets is a key issue. We adopt

a technique aimed at producing balanced partitions with

a possibly minimum overall BDD size. This size is often

slightly larger than the original one, but this drawback is

largely overcome by the bene�ts deriving from partitioned

storage and computations. Partitioning is based on se-

lecting a splitting variable, it is possibly recursive, and it

produces non overlapping subsets. Conversely, BDD oper-

ators (e.g. image computation) applied to partitioned sets

may produce overlapping results, that are either combined

(through logical union) or partitioned again directly in the

decomposed form.

Despite the possibility of repeated computations, decom-

position lowers peak memory requirements and often also

decreases overall complexity, with remarkable bene�ts in

terms of CPU time.

The decomposed approach has also some other advantages

over the standard one:

� it exploits secondary memory and compression tech-

niques to download large BDDs for non active par-

titions

� it allows di�erent dynamic ordering strategies to be

applied to each decomposition.

Coudert and Madre [3] resort to a full domain or co-domain

partitioning for image computation. They apply these

techniques to the next state function and they recursively

decompose the problem until a terminal case is found.

Ravi et. al. [4] use a mixed breadth{�rst/depth{�rst

traversal focused on dense BDDs. The objective of the

method is to take large subsets of the state sets repre-

sentable with a small number of BDD nodes. This tech-

nique is quite e�ective in �nding large portions of the

reachable state set, but it overestimates the distance of a

state from the reset states and this often causes too many

traversal iterations, aborted to obtain an under-estimation

of reachable states.

Our approach partitions BDDs until their size is lower

than a threshold, not until a terminal case is reached. The

method is exact, as it computes the set of reachable states,

not an over- or under-estimation. Experimental results

show that it is particularly e�ective on the larger ISCAS'89

and ISCAS'89{addendum'93 circuits.

The remainder of the paper is organized as follows. Sec-

tion 2 summarizes some useful concepts and describes en-

hanced symbolic traversal based on latch removal and set

decomposition. Section 3 describes the decomposition pro-

cedures. Section 4 describes the overall traversal strategy.

Section 5 reports and discusses experimental results. Sec-

tion 6 closes the paper with a brief summary.

2 Improving Symbolic Traversal

A �nite state machine is an abstract model describing the

behavior of a sequential circuit. A completely speci�ed

FSM M is a 6-tuple M = (I;O; S; �; �; S0), where I is

the input alphabet, O is the output alphabet, S is the

state space, � : S � I ! S is the next state function,

� : S � I ! O is the output function, and S0 � S is the

initial state set.

BDDs are used to represent and manipulate functions and

state sets, by means of their characteristic functions. With

abuse of notation, in the rest of this paper we make no

distinction between the BDD representing a set of states,

the characteristic function of the set, and the set itself.

2.1 Standard Symbolic Traversal

A standard symbolic traversal (�gure 1) is a breadth-�rst

search that returns at each iteration the set of states T

reached from the current one F. Initially F equals S0. T

is computed by means of a symbolic image computation

Img(�, F)1. Reached states are accumulated in R. Set N

contains the T states that have not yet been visited. The

set F for the next iteration is selected choosing a suitable

BDD that represents all newly reached states and possi-

bly some of the already visited ones, as in [2] (procedure

1Let f : Bi ! Bj be a Boolean function and C � Bi a subset of
its domain. The image of C according to f is:

Img(f; C) = fy 2 Bj j 9x 2 C ^ y = f(x)g

Best BDD). The termination condition is to �nd a least

�xed-point or equivalently to test for the emptiness of N

at each step. The number of iterations of this algorithm

gives the sequential depth of the machine.

Traversal (�, S0)
f

R = F = N = S0;
while (N 6= ;)

f

T = Img (�, F);

N = T � R;

R = R + N;
F = Best BDD (N, R);

g

return (R);

g

Figure 1: Exact Forward Traversal.

Moving from one step to the next one in symbolic traver-

sal, the BDDs of all the sets, in particular F and R, become

larger and very complex. Symbolic traversals experience

two bottlenecks: 1) a monolithic BDD representing a set

may be too large, 2) it may be impossible to perform an

image computation because of the size of the BDDs in-

volved in intermediate computations.

Our approach faces the above problems by:

� temporarily simplifying FSMs by latch removal and

reinsertion at the end of the traversal process

� decomposing state sets when, during traversal, they

become too large to be represented as a monolithic

BDD or when image computation is too expensive.

2.2 Simpli�cation Based on Temporary �{Latch

Removal

Detecting latches not feeding the next state functions may

reduce the size of state sets at intermediate traversal levels.

We call these latches �{latches.

We partition latches in two subsets A and B, such that the

sB variables are not in the true support2 of the � functions:

sA = fsi j si 2 supp(�)g

sB = s� sA
Conversely, also the � functions are partitioned in the cor-

responding �A and �B subsets. We restrict traversal to the

sub-space of S described by sA variables, using only �A,

and we compute RA(sA).

The full reached state set is eventually computed as:

R = Img(�;RA)

The advantage of this delayed use of the �B functions is

that the BDD of R at the �xed point is normally smaller

than the state sets at intermediate traversal levels [4].

Thus we globally simplify the traversal procedure by tem-

porary removing some latches, and we re-introduce them

2Given a vector of Boolean variables x = (x1; x2; : : : ; xn) and
a Boolean function f(x), the \true support" of f is the set of vari-
ables on which the function depends, i.e. the positive and negative

cofactors of f with respect to xi di�er: supp(f) = fxijfx
i
6= f �x

i
g.

only at the last image computation step, when the reached

state set has possibly a simpler BDD representation.

Latch removal can be accomplished by recursively remov-

ing the sA variables that are not in the true support of

�A (but are in the true support of �B) and so on. This

procedure requires two or more �nal steps of image com-

putation.

A limit of the latch removal/reinsertion technique appears

in symbolic traversals used for veri�cation, when two ma-

chines are checked for equivalence and a counterexample

is possibly needed. Equivalence is normally checked dur-

ing traversal, the latter is stopped if the check fails, and

a counterexample is found by means of pre{image steps

across previously computed reached states sets. With our

technique, a complete knowledge of the reached state set

is only available at the �xed point, equivalence check must

thus be delayed to the end of traversal, and we cannot

guarantee minimum length counterexamples.

2.3 BDD Operations on Partitioned State Sets

Our purpose is to simplify a costly operation between two

BDDs a and b, a op b, resorting to a \divide{and-conquer"

strategy. The operation is performed as (a1 + a2) op b =

(a1 op b) + (a2 op b) where a1 and a2 can be recursively

partitioned. Decomposition is done by selecting a split-

ting variable v, that induces a partitioning also on the b

operand: a op b = (av op bv) + (a�v op b�v).

Recursive splitting is a very common practice with BDDs,

as it characterizes almost all BDD operators, but it nor-

mally follows a �xed variable selection scheme: variable

ordering. Our method is independent from variable or-

dering, and it possibly chooses di�erent splitting variables

when recurring in di�erent set partitions.

The advantage of applying op on decomposed sets stems

from lowering overall complexity in terms of memory and

execution time. This is not achieved with elementary BDD

operations like Apply, ITE, Cofactor, because they work

in single depth{�rst traversal of BDDs, and complexity

is close to the size of the BDD of the result. With such

operations, partitioning the operands by means of split-

ting variables is equivalent to pushing them onto the top

of variable ordering. Other evaluations are implemented

as chains of elementary operators, and the cost of inter-

mediate steps may be signi�cantly larger than the size of

the result. This is the kind of operators we optimize. In

particular, we addressed to image computations and/or in-

ner conjunction{abstraction steps of image computations

themselves (see section 4). Partitioning is a good solution

in both cases, because applying all the steps in sequence

on each input partition can drastically reduce the cost of

intermediate steps.

A further improvement is attained by downloading parti-

tions to mass storage when not directly involved in com-

putations.

3 Set Decomposition

Good decomposition of state sets is a key issue. As BDD

operations have a complexity depending on the size of the

operands, our target is to obtain balanced partitions with

minimum overall BDD size.

We experimented with Ravi's et al. strategies [4] but as

their purpose is to obtain dense, not balanced BDDs, we

didn't obtain good results. Instead, we use a decompo-

sition based on single splitting variable selection. The

pseudo code of the partitioning procedure is shown in �g-

ure 2. Given a BDD f , representing a set of states, par-

titioning is attempted if its size exceeds a threshold: we

heuristically choose a splitting variable v, with procedure

Select Var, then we partition f in two subsets fv and

f�v, and we possibly recur.

Single variable selection is simpler than multiple variable

or cube selection and it allows partitioning a set in non

overlapping subsets, by taking the right and left cofactors

of the selected variable. In general the splitting variable

Split (f , th)

f

if (jf j < th)

return (f);
v = Select Var (f);

return (v � Split (fv, th), v � Split (f
v
, th));

g

Figure 2: Splitting a BDD.

returned by Select Var (�gure 3) is not the top variable.

It is chosen depending on heuristic estimations done on the

BDD of the input function f .

Select Var (f)
f

min = +1;
foreach v 2 supp(f)

f

nv = Count (f , v);

n
v
= Count (f , v);

if (Cost (jf j, nv, nv, v) < min)

f

vmin = v;

min = Cost (jf j, nv, nv, v);
g

g

return (vmin);

g

Figure 3: Selecting the best splitting variable.

For each variable v in the true support of f , function

Count is called to estimate the size of the f function con-

strained either by v or by v. This is done directly on the

BDD of f without computing the fv and f
v
cofactors (�g-

ure 4): the BDD of f is analyzed by restricting the visit to

the proper state subspace (represented by the c constrain-

ing parameter). Estimating the node count has a relevant

impact on time performance, because explicit computation

of fv and f
v
for all v implies generating many unused BDD

nodes, with several activations of the garbage collection

procedure. The returned value is an overestimation of the

correct value, because it ignores possible BDD reductions

in fv and fv. Reductions occur at BDD nodes above v in

variable ordering. Due to this, the overestimation tends to

grow as the position of v increases in variable ordering.

Given the estimated node counts nv and nv, we compute

the cost of splitting with v (function Cost): a split should

produce balanced BDDs with the smallest global number

of BDD nodes.

We experimented with several cost functions, and a good

compromise was obtained with:

Cost(jf j;nv; nv; v) = w1
n
v
+n

v
�jf j

jf j
+

w2
abs(n

v
�n

v
)

jf j
+w3�(v)

where the three terms represent, respectively, the overall

Count (f , c)
f

if (IsConstant (f) or Visited (f))
return (0);

v = TopVar (f);
if (v = TopVar (c))

return (1 + Count (fc, c));
else

return (1 + Count (fv, c) + Count (fv, c));
g

Figure 4: Counting the Number of Nodes of the Cofactors.

expected node count, the size imbalance, and a correction

term taking into account the error introduced in Count.

The overall node count is computed without considering

subtree sharing between fv and fv, because operations will

be applied to single partitions, and because each partition

is possibly downloaded to a distinct �le, without sharing

nodes with other partitions. The correction term �(v) is

presently limited to a linear function of the variable or-

dering, returning 1 for the top variable and 0 for the bot-

tom one: this heuristically compensates the overestimation

done by Count. We plan to extend � to include a measure

of the importance of the variable during image computa-

tion (e.g. if and when it is existentially quanti�ed), and

also a sort of history, granting lower � values to variables

used with pro�t in previous partitioning processes. w1,

w2, and w3 are generic weights: good values for them have

been determined experimentally as w1 = 1, w2 = 0:8 and

w3 = 0:3.

4 Partitioned Symbolic Traversal

The basic idea of the partitioned traversal is to perform

each step using a \divide{and-conquer" approach. Every

time complexity exceeds a threshold, we split the problem

in sub-problems whose complexity is smaller. This is done

at two levels:

� image computations

� conjunction{abstraction steps within image compu-

tations.

In the �rst case, if we decompose the current state set C(s)

as Cv(s) +Cv(s), its image according to � is equivalent to

the union of the images of Cv(s) and Cv(s):

Img(�;C(s)) = Img(�; (Cv(s) +Cv(s)))

= Img(�v; Cv(s)) + Img(�v; Cv(s))

In the second case the approach is similar. We compute

images resorting to partitioned transition relations. LetM

be a FSM. The transition relation TM associated to M is:

TM (x; s; y) =

nY

i=1

(yi � �i(x;s)) =

nY

i=1

ti(x; s; yi)

A transition relation is often called partitioned if conjunc-

tions are not performed once and forall, but tis are kept

separate until image computations. The image of a set

C(s) is de�ned as:

Img(�;C(s)) = 9x;s (TM (x; s; y) �C(s))

= 9x;s (
Qn

i=1
ti(x; s; yi) �C(s))

We compute images with a partitioned transition rela-

tion by resorting to early quanti�cation during conjunction

steps. Suppose that some input and current state variables

appear just in the �rst i partitions. Let Ei be sets of such

variables. Early quanti�cation eliminates variables belong-

ing to the Ei sets before conjoining the ti+1 term:

Img(�; C(s)) = 9x;s(
Qn

i=1
ti(x; s; y) �C(s))

= 9(x;s)2En (tn � (9(x;s)2E
n�1

(tn�1 � : : : �

9(x;s)2E1
(t1 �C(s)))))

The atomic operation in image computation is conjunction-

quanti�cation. The decomposition technique can be ap-

plied to the i{th conjunction step 9(x;s)2E
i

(ti � : : :) as in-

troduced before.

In general, the �rst method is better when the overall im-

age computation is far too expensive whereas the second

one optimizes the previous one when only a few steps of

the image computation are particularly expensive. In both

cases we can recompose the resulting set after a decom-

posed operation, or we can carry on operations in the par-

titioned form.

4.1 Traversal Procedure with Decomposed Image

Figure 5 shows the pseudo-code for the decomposed traver-

sal. It is derived from the standard traversal of �gure 1.

Rp, Fp, and Np represent set R, F, and N in monolithic or

partitioned form. They are initially set to S0. At each step,

for each subset of Fp the image computation procedure is

called. Images are collected in Tp. This allows the image

computation procedure to work on just a subset at a time,

decreasing peak BDD size. Internally the image function

can decompose sets as previously introduced but this is

not shown in the pseudo-code.

After image computation, functions Set Diff, Set Union,

and Re Partition are called. These functions are rel-

atively simple and perform the computation of sets Np,

Fp, and Rp for the next iteration. In particular, function

Re Partition carries out set union and set splitting, ac-

cording to the size of their BDD representation and to

Partitioned Traversal (�, S0, th)
f

Rp = Fp = Np = S0;
while (Np 6= ;)

f

Tp = ;;

foreach f 2 Fp

Tp = (Tp, Img (�, f));

Np = Fp = Set Diff (Tp, Rp);
Rp = Set Union (Np, Rp);

Fp = Re Partition (Fp, th);
Rp = Re Partition (Rp, th);

g

return (Rp);

g

Figure 5: Exact Partitioned Forward Traversal.

parameter th. It calls directly procedure Split (see section
3) when necessary. The th parameter controls the com-
plexity of the image computation procedure and the size
and number of the state set partitions.

5 Experimental Results

Symbolic techniques were until now restricted to medium{
small circuits. Our main novelty is to propose a tech-
nique that can deal with some of the larger ISCAS'89 and
ISCAS'89{addendum'93 circuits.
We included the improved techniques described in the pre-
vious sections in a traversal program written in C on top of
the Colorado University Decision Diagram (CUDD) pack-
age [5]. The overall tool includes all recently published dy-
namic reordering techniques and a traversal method based
on a partitioned and clustered transition relations with
sorting heuristics and other optimizations derived from [1],
[3], [7], [8], [9]. We use this tool both without and with the
improved method based on simpli�cation of �{latches and
partitioning: in the former case we consider our tool as
\state-of-the-art", and we use it to measure the improve-
ment attained with our novel techniques.
An important role in saving main memory is played by
storing (and loading) BDDs on secondary memory. By
doing this we decrease the number of BDD nodes we deal
with to a minimum required by the active partitions. As a
consequence we decrease the amount of working memory
required and we avoid page faulting problems. BDDs are
downloaded by resorting to compression techniques, and
they require an average memory occupancy of 6 bytes per
node.
Our experiments ran on a 200 MHz DEC Alpha with a
256 Mbyte main memory, by imposing a working mem-
ory limit of 228 Mbyte. In all the following tables Circuit
indicates the name of the circuit, # FF the number of ip-
ops, # Level indicates the number of traversal iterations
(partial or total), # Nodes is the number of BDD nodes
and # States is the number of states of the reachable state
set. # �{FF indicates the number of �{latches removed
and # Part. indicates the maximum number of partitions
used. Disk indicates maximum mass memory (in Mbyte)

used to download BDDs. Due to the compression tech-
nique this amount is about 1=4 of the space the same BDDs
occupy in main memory. Mem. is the maximum quantity
of main memory used (in Mbyte). Time indicates the total
execution time (in seconds, unless otherwise stated).
Table 1 collects data for circuits that we traverse up to
the �xed point. To the best of our knowledge, these are
the �rst results on exact forward traversal for all these
circuits. Table 2 shows data for s1423, s5378 and some
others ISCAS'89{addendum'93 we couldn't traverse com-
pletely. Complete traversal of s3271 and s3330 cannot be
achieved without our improved approach. In the case of
circuits s1423, s5378 and s6669, although not able to com-
plete traversal, we increase the number of traversal itera-
tions. In almost all other circuits we improve memory and
time performance.
Circuit s1269 is traversed with the standard approach.
With the improved one we decrease memory usage from
74 to 28 Mbyte, with a minimum time overhead. The de-
composition procedure works quite well in this case as the
BDDs are easily partitioned in a balanced way. For ex-
ample we are able to decompose the reached set at level
3, consisting of 78940 nodes, in 7 subsets, each having less
that 10000 nodes. Levels 3 and 4 are the dominant ones for
traversal, while after level 4 the size of the reachable state
set decreases by two orders of magnitude and all other lev-
els are very simple to compute. Only one �{latch removal
is possible: being the advantage attained negligible we do
not present data for this technique.
Circuit s1512 is sequentially very deep but single image
computations are not particularly expensive; partitioning
is worthwhile from level 300 to 600: using up to 4 parti-
tions we reduce memory usage from 96 to 41 Mbyte, and
execution time from 64h to 42h.
Traversal of circuit s3271 is completed at level 17 by the
improved approach, while the standard one stops at level
9. A comparison for the �rst 9 traversal iterations shows
a memory reduction from 214 to 41 Mbyte, with a 10%
gain in time. Maximum memory usage in the other traver-
sal iterations (partitioned approach) is 149 Mbyte, plus
11:8 Mbyte of disk storage. The most critical levels are 11
and 12, requiring approximately 50 hours of CPU time.
In the case of circuit s3330, the improved approach obtains
relevant gains over the standard one. Apart from com-
pleting traversal, this circuit is characterized by a dom-
inant role of the �{latch removal/re-insertion technique.
We could remove 12 �{latches and the improved approach
needs only 24 Mbyte instead of 113 to reach level 4 and it is
able to traverse completely the circuit with only 107 Mbyte.
Table 3 shows the size (BDD nodes) of the reached state
set and the execution time in the �rst 5 traversal itera-
tions. As far as comparison is possible, BDD size and time
are reduced by an order of magnitude or even more.
Circuit s4863 is not really critical: we obtain some advan-
tages in terms of memory, counterbalanced by an overhead
in execution time. This is essentially due to the fact that
state sets are not suitable for balanced partitioning.

Circuit s5378opt is an optimized version of the original

s5378 ISCAS'89 benchmark, which has been obtained by

iterative application of the redundancy removal procedure

of [6], based on the approximate traversal techniques. The

resulting circuit is sensibly smaller and contains 58 less

latches than the original one. Ravi et al. [4] could traverse

the circuit up to level 12. We could traverse it without op-

timizations but our �{latch removal/re-insertion strategy

decreases both peak BDD size and CPU time.

S1423 is the �rst circuit we describe with partial traversal

data. Despite its relatively small size, it is very di�cult to

handle during reachability analysis, and this is proved by

the extensive experiments described in [4] and [6]. Ravi

et al. [4], using the state transition function, which they

deemed to be more powerful than the transition relation,

couldn't go beyond the 11th level with a pure breadth-

�rst traversal. To the best of our knowledge, nobody has

already presented data beyond that limit. Our standard

approach is able to deal with the circuit up to level 12. Af-

terwards, we have to resort to the decomposed approach.

Advantages are obtained also before level 12, both in terms

of CPU time (from 5410 to 2730 seconds) and memory re-

quired, decreased from 116 Mbyte (BDD peak size 2514569

nodes) to 32 Mbyte (BDD peak size 563251 nodes).

Table 4 shows the impact of di�erent partitioning thresh-

olds on this circuit from level 12 to level 13, using sec-

ondary memory. Column # Threshold indicates the num-

ber of nodes above which we partition sets. Peak Size is

the size of the biggest BDD we produce during image com-

putations. This table shows that a higher number of par-

titions may improve memory and time performance. For

s1423 our decomposition technique works quite well, as,

despite the relatively small number of state variables (74),

the BDD sizes are enormous. We reach level 14; at that

level the monolithic representation of the reachable state

set is impossible to obtain.

Circuit s5378 (not optimized by means of redundancy re-

moval) is even harder. The standard approach reaches

level 3. The BDD of the reachable state set in this case is

not large, but di�cult to decompose in balanced subsets,

because of the large number of state variables (179). In

this case we can remove 17 �{latches; this reduces the size

of the reachable state set from 276102 nodes to 217509 at

level 4. Due to the incomplete traversal, without reaching

the �xed point, we present data without �{latch removal

for a correct evaluation of the reached state set. With our

current implementation of decomposed traversal we reach

level 4.

For circuit s6669 we are able to reach level 3 only with

�{latches removed.

6 Conclusions

Symbolic FSM state space exploration techniques repre-

sent one of the major recent results of formal veri�ca-

tion. Their limit resides in the inability to deal with large

circuits. In this paper we propose a simpli�ed approach

based on temporary latch removal and a decompose for-

ward traversal. The overall approach is exact and de-

creases peak BDD size during image computation and the

representation limits of the reachable state sets. Exper-

imental results show that our approach works well with

uniform and large sets. We therefore succeeded in han-

dling circuits that were, up to now, beyond the scope of

symbolic techniques.

Acknowledgments

We wish to thank Fabio Somenzi, CU Boulder, for provid-

ing us with the CUDD package. We also wish to thank

Enrico Macii and Massimo Poncino, Politecnico di Torino,

for providing us with the s5378opt benchmark.

References

[1] H. Touati, H. Savoj, B. Lin, R.K. Brayton, A.

Sangiovanni-Vincentelli, \Implicit enumeration of �-

nite state machines using BDDs," in Proc. IEEE IC-

CAD'90, November 1990, pp. 130{133

[2] H. Cho, G. Hachtel, S.W. Jeong, B. Plessier, E.

Schwarz, F. Somenzi, \ATPG Aspects of FSM Veri-

�cation," in Proc. IEEE ICCAD'90, November 1990,

pp. 134{137

[3] O. Coudert, J.C. Madre, \A Uni�ed Framework for

the Formal Veri�cation of Sequential Circuits" in

Proc. IEEE ICCAD'90, November 1990, pp. 126{129

[4] K. Ravi, F. Somenzi, \High-Density Reachability

Analysis," in Proc. IEEE ICCAD'95, November 1995,

pp. 154{158

[5] F. Somenzi, \CUDD: CUDecision Diagram Package {

Release 1.0.4," Technical Report, Dept. of Electrical

and Computer Engineering, University of Colorado,

Boulder, November 1995

[6] H. Cho, G.D. Hatchel, E. Macii, M. Poncino, K. Ravi,

F. Somenzi, \Approximate Finite State Machine

Traversal: Extensions and New Results," IWLS'95:

IEEE International Workshop on Logic Synthesis,

Lake Tahoe, CA, USA, May 1995

[7] D. Geist, I. Beer, \E�cient Model Checking by Au-

tomated Ordering of Transition Relation Partitions,"

in Proc. CAV'94, June 1994, pp. 299-310

[8] R.K. Ranjan, A. Aziz, R.K. Brayton, B. Plessier, C.

Pixley, \E�cient BDD Algorithms for FSM Synthe-

sis and Veri�cation," IWLS'95: IEEE International

Workshop on Logic Synthesis, Lake Tahoe, CA, USA,

May 1995, poster presentation

[9] G. Cabodi, P. Camurati, S. Quer, L. Lavagno, E.

Macii, M. Poncino, E.M. Sentovich, \Enhancing

FSM Traversal by Temporary Re{Encoding," in Proc.

IEEE ICCD'96, October 1996

Circuit # FF # Level Reached Standard Approach Improved Approach

Nodes # States Mem. Time # �{FF # Part. Disk Mem. Time

s1269 37 10 612 1.1313�10
9

74 1322 0 7 0 28 1424

s1512 57 1024 1100 1.6574�10
12

96 64
h

0 4 0 41 42
h

s3271 116 9 1319332 4.9609�10
26

214 16.4
h

0 4 2.8 41 15.1
h

17 383521 1.3177�10
31 ovf � 0 9 11.8 149 137

h

s3330 132 4 998886 1.2915�10
16

113 1023 12 4 6.3 24 27

8 28748 7.2778�10
17 ovf � 12 4 9.7 107 4155

s4863 104 5 17557 2.1904�10
19

32.6 720 0 2 0 27.4 825

s5378opt 121 43 24651 2.5806�10
17

17 963 38 1 0 14.8 612

Table 1: Comparison on Traversal Results between Standard and Decomposed techniques on some ISCAS'89 circuits. ovf

means overow of BDDs nodes; � means data not available.

Circuit # FF # Level Reached Standard Approach Improved Approach

Nodes # States Mem. Time # �{FF # Part. Disk Mem. Time

s1423 74 12 1361263 2.3035�10
10

116 5410 0 16 22.6 32 2730

14 13738871 1.7945�10
11 ovf � 0 24 125.9 106 8.4

h

s5378 179 3 20274 1.7285�10
12

45 227 0 3 0 45 227

4 276102 2.6303�10
15 ovf � 0 5 5.3 78 3.5

h

s6669 239 2 14593 2.8657�10
45

13 61 35 2 0 12.3 48

3 2494135
�

� ovf � 35 9 22.7 97 530

Table 2: Comparison on Partial Traversal Results between Standard and Decomposed techniques on some ISCAS'89

circuits. ovf means overow of BDDs nodes; � means data not available; � indicates that we use the partial reachable

state set without re-inserting �{latches.

Level Standard Approach Improved Approach

Reached Time Reached Time

Nodes # Nodes

1 7804 3.6 1285 2.5

2 9415 6.7 1411 3.7

3 358359 62.6 17432 7.6

4 998886 1023 102929 38.2

5 ovf � 190958 2648.5

Table 3: Experiments on circuit s3330 from level 1 to level 5. Standard approach compared to the improved one with 12

latches removed and no partitioning. ovf means overow of BDDs nodes; � means data not available.

Threshold # Part. Peak Size Mem. Time

125000 17 500894 97.5 6388

150000 14 689007 110 6700

175000 11 784992 134 7589

200000 8 918679 142 7920

Table 4: Experiments with di�erent partition thresholds on circuit s1423 from level 12 to level 13.

