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ABSTRACT

Motivation: There is extensive interest in automating the collection,

organization and analysis of biological data. Data in the form of

images in online literature present special challenges for such efforts.

The first steps in understanding the contents of a figure are

decomposing it into panels and determining the type of each

panel. In biological literature, panel types include many kinds of

images collected by different techniques, such as photographs of

gels or images from microscopes. We have previously described the

SLIF system (http://slif.cbi.cmu.edu) that identifies panels containing

fluorescence microscope images among figures in online journal

articles as a prelude to further analysis of the subcellular patterns in

such images. This system contains a pretrained classifier that uses

image features to assign a type (class) to each separate panel.

However, the types of panels in a figure are often correlated, so that

we can consider the class of a panel to be dependent not only on its

own features but also on the types of the other panels in a figure.

Results: In this article, we introduce the use of a type of probabilistic

graphical model, a factor graph, to represent the structured

information about the images in a figure, and permit more robust

and accurate inference about their types. We obtain significant

improvement over results for considering panels separately.

Availability: The code and data used for the experiments described

here are available from http://murphylab.web.cmu.edu/software

Contact: murphy@cmu.edu

1 INTRODUCTION

The dramatic increase in biological data in recent years,

especially with respect to the sequences and structures of

genes and proteins, has led to the creation of a number of
biological databases. The information in these databases is

largely incorporated by computer-generated links to relevant

entries in other structured databases or entered manually by
scientists in the relevant fields. Such structured databases

are well suited to collect, store and deliver clearly

specified information, but they usually do not typically allow

uncertainty, alternative views or conflicting evidence. To

capture these nuances, results of traditional biological research

are most commonly communicated via journal articles in which

raw data, methods, processed results and conclusions are

mixed. In order to take full advantage of both paradigms, it is

necessary to have approaches that can bridge between the

systematic, structured information in biological databases and

the idiosyncratic, unstructured information in journal articles.
The SLIF (Subcellular Location Image Finder) system was

developed to illustrate the feasibility of addressing this need for

information that is contained in both text and images in journal

articles (Murphy et al., 2001, 2004). Figures in journal articles

may consist of multiple panels of many different types.

The SLIF system focuses on initially identifying the type of

each panel, and then doing extensive analysis on one type of

images, fluorescence microscope images (FMI). FMI can

capture information about the distribution of proteins and

other biological macromolecules inside cells, and previous

results have illustrated the value of the SLIF system for the

specific task of identifying images depicting particular sub-

cellular location patterns. More recently, other systems

for figures in biomedical journal articles have been described.

Rafkind et al. (2006) automatically classified general biological

images in journals into five categories (gel images, graphs,

images of things, mixtures and models) using text and image

features. Yu and Lee (2006) sought to make a connection

between abstract sentences and biological images in the same

article, so that the biological images can be accessed from

abstract sentences. These two systems considered each figure as

a single object. However, a figure very often contains multiple

panels that may consist of more than one type of image. Thus

processing figures at the level of each panel, as is done in SLIF,

can yield a more accurate reflection of figure content. In a

similar vein, Shatkay et al. (2006) classified the panels in

journal figures into hierarchical categories, and then used the

categories as a feature vector to represent the article for

document retrieval purposes.

In this article, we focus on improving the recognition of

FMI. High accuracy for this task is important for SLIF, since*To whom correspondence should be addressed.
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only panels considered to be FMI should be further processed
to analyze subcellular patterns. Our starting point is to use edge

and intensity histogram features with support vector machines
to assign a type to each panel. Since the types of panels

in a figure are often correlated, we conjectured that the
performance on individual panels could be improved by

considering information from more than one panel at a time.

To this end, some simple voting methods can be used, such as
the plurality voting method and the Borda count method, in

which the type of each object is determined using information
on the types of other objects. As these methods only need to

calculate a function of the class probabilities of all or some
objects, their computational cost is very low. However, these

voting functions cannot capture the spatial relationships among

the objects. Probabilistic graphical models provide a convenient
and powerful way to represent uncertain information about

objects and to facilitate reasoning. Therefore, in this article, a
type of probabilistic graphical model, the factor graph, is

applied to capture information from all panels and collectively
classify all interrelated images in a figure.

Below we will briefly introduce SLIF, explain how to
construct a factor graph according to intuitions about the

interaction among panels in a figure, describe the assignment
of class probabilities to panels using probabilistic inference,

present experimental results, and give conclusions and

directions for further work.

2 SLIF

SLIF contains several modules for image and text processing,

and the structured SLIF database is built by combining their
results.

2.1 Figure processing

Figure processing in SLIF consists of extracting figures from
articles, splitting each into panels (meaningful subfigures),

identifying fluorescence microscope panels, detecting panel
annotations, and classifying and analyzing subcellular patterns.

The methods used for each of these steps, and evaluations of
their accuracy, have been described in detail previously

(Murphy et al., 2004).

2.1.1 Extracting figures from online journal articles The
original SLIF system used a web robot to retrieve PDF

versions of online journal articles that might have relevant

images. The current version processes articles in XML format,
extracting matching figures and captions.

2.1.2 Splitting figures into panels For figures composed of

multiple panels, the individual panels must be isolated in order
to interpret them appropriately. Fluorescence microscope

panels usually have a dark background with light areas
showing where fluorescence was detected. Based on this fact,

a recursive algorithm was proposed for finding the light
boundaries between micrographs even when the panels are

not arranged in a symmetric pattern (Murphy et al., 2001).

Journal figures contain other types of panels that are not
surrounded by a boundary, and the performance of the

recursive algorithm may degenerate for these types. However,

it works well for separating micrographs from the remainder of
the figure, so this is not a major problem for SLIF.

2.1.3 Identifying FMI After the panels have been isolated,
the next task is to identify what type of image they contain, the

focus of this article. The initial approach in SLIF consisted of a

k-nearest neighbor classifier built on a collection of hand-

labeled panels. For each panel, a histogram of pixel intensities

was constructed with 64 equally spaced bins ranging from the
minimum to the maximum pixel intensity in that panel; the

frequencies of the bins were used as features. These achieved a

precision of 100% and recall of 90% on panels extracted from

PDF files (Murphy et al., 2001). As journal articles became

increasingly available in XML format with assoc-

iated figure files, SLIF was modified to be able to process

articles in this format. The initial FMI classifier did not
perform as well for the more variable images thus obtained.

Therefore, we developed an improved classifier for FMI panels

(Hua et al., 2007). This uses edge features in addition to

intensity histogram features. Using a support vector machine,

the new classifier achieved a precision, recall and F-measure of

85% on a randomly chosen set of panels from a large collection

of articles from the Proceedings of the National Academy of
Sciences, USA (Hua et al., 2007).

2.1.4 Detecting panel annotations Fluorescence micrograph
panels typically may have three types of annotations contained

within them. The first is a panel serial label that follows the

arrangement order of panels in a figure and connects panels to

information in the caption. The second is a scale bar whose

length is usually defined in the caption. The third is text or
symbols that are used for attracting the reader’s attentions to

specific locations in the figure. All of these annotations need to

be detected, analyzed and then removed from the image before

further processing (Kou et al., 2003). The current version of

SLIF can automatically detect and recognize internal labels

(labels that are embedded in the panels, the most common

situation), with a precision of 79.1% and recall of 70.7% (Kou
et al., 2003). In the FMI recognition method discussed in this

article, panel serial labels will be an important alternative

source for representing the structured information among the

panels in a figure.

2.1.5 Analyzing subcellular patterns The steps above com-

plete the task of finding FMI in journal articles. While SLIF

then uses a number of methods (Chen et al. 2006b) for
extracting appropriate subcellular location information from

these FMI, those methods will not be discussed here since the

focus of this article is on FMI recognition.

2.2 Text processing

Text processing in SLIF focuses on information extraction

from the captions of figures, and the resulting information is

combined with image information to form an integrated SLIF
database. Caption processing has three goals: identifying the

‘image pointers’ [e.g. ‘(A)’] in the caption that refer to panel

serial labels in the figure, dividing the caption into fragments

(or ‘scopes’) that refer to an individual panel or the entire

figure, and recognizing protein and cell names. The first of
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these is the only one that is required for the work described in

this article, since caption processing can aid identification of

the type of panel. The list of ‘image pointers’ obtained by

interpreting the caption associated with a figure can correct

possible missing or incorrect panel serial labels obtained by

detecting panel annotations. Using string matching approaches

to align ‘image pointers’ and panel serial labels, the precision

and recall for recognizing panel serial labels was improved to

83.2% and 74.0%, respectively (Kou et al., 2003). It should be

noted that in this article we use the term ‘panel class label’ to

represent the type of a panel and ‘panel serial label’ to represent

its arrangement order in a figure.

3 FACTOR GRAPHS FOR IDENTIFYING FMI

The classification methods previously implemented in SLIF for

identifying FMI classify the panels individually based on their

own properties. In fact, identifying FMI from multiple panels

in a figure, however, is a special classification problem that

involves sets of related objects whose class labels tend to be

consistent with each other. In other words, all of the panels in a

figure, or sets of neighboring panels in a figure, are often of the

same image class. We will consider how to ‘revise’ the class

probabilities of the panels (obtained by classifying them

independently) by using potential interactions between them.

Probabilistic graphical models provide a theoretical foundation

and a practical tool for this task. In this article, a factor graph is

introduced to represent and process this interaction mecha-

nism. Factor graphs (Kschischang et al., 2001) are more general

than other graphical models (such as Bayesian networks and

Markov random fields) in terms of their ability to express

information. The advantages of factor graphs for our problem

are that the interaction between panels need not be modeled as

a causal entity, and cycles can be supported.

3.1 Preprocessing

Before creating the factor graph, we need to prepare the data

that will be used as the inputs at each node. These steps are

included in the overall SLIF pipeline described above, but are

identified here as particularly needed for inference about

panel types. First, the initial classification results for each

panel are obtained by classifying panels independently using

their image features. Various classification approaches can

be used in this step, but the outputs should be the class

probabilities of each panel, i.e. each panel i has a probability

p(xi¼FMI) of being classified as FMI and a probability

p(xi¼ non-FMI)¼ 1� p(xi¼FMI) of being classified as any of

the other type. Second, panel serial labels are detected and

recognized. This is a challenging problem because the serial

label is usually a single character embedded in a complex

background; we have described various strategies for improving

performance (Kou et al., 2003). However, for some figures, we

still do not obtain their panel serial labels for various reasons

(including the possibility that the panel serial labels are outside

the panels rather than within them), so that the information

about the panel arrangement in a figure cannot be derived from

panel serial labels. Therefore, the third type of information

we compute about each panel is its position within the figure.

The recursive panel splitting method used in SLIF always
returns rectangular panels, so the positions of the two diagonal

corners of the rectangle, or the position of the center and the

side lengths of the rectangle, determine the position of a panel.

In the work described here, we have explored using panel serial

labels, panel positions or both to provide information about the
arrangement of panels in a figure.

3.2 Constructing the factor graph

A factor graph explicitly indicates how a joint function of many

variables can be factored into a product of local functions (also

called potential functions) of smaller sets of variables. The joint

function is usually the joint probability distribution. A factor
graph is defined as a bipartite graph with two vertex (node)

types: variable vertices Vx and factor vertices Vf of size n and m,

respectively such that the ith node in Vf is connected to the jth

node in Vx if and only if xj is an argument of function fi. Let

X¼ {x1, x2, . . . , xn} be a set of variables. Consider a function

f(X) with factors as follows

f x1, x2, . . . ,xnð Þ ¼
Ym
i¼ 1

fi Cið Þ ð1Þ

where Ci is the set of variables (a clique of vertex fi), which are
the arguments of the local function fi. Figure 1b and c show the

graph representations of

f ðX Þ ¼fA x1, x2ð Þ fB x1, x2, x3ð Þ fC x2, x3 , x4ð Þ fD x3, x4, x5ð Þ

fE x4, x5, x6ð Þ fF x5, x6ð Þ

and

f ðX Þ ¼fA x1, x2, x3ð Þ fB x1, x2, x4ð Þ fC x1, x3, x4, x5ð Þ

fD x2, x3, x4, x6ð Þ fE x3, x5, x6ð ÞfF x4, x5, x6ð Þ

The variable vertices are marked as circles and the factor

vertices as squares.
Many problems in recognition and learning are formulated

as minimizing or maximizing a global function marginalized for

a subset of its arguments. For the problem of identifying FMI

from a figure, one of main contributions of this article is a

computational framework in the form of a factor graph that

can factor a complex joint distribution of the class probabilities
of panels in a figure into a product of their local interaction

functions.
The key task of constructing a factor graph is to define the

local functions that describe the interaction among the panels in

a figure. These functions can be learned from examples, or

directly specified from domain intuition/knowledge. In our

problem, we postulate that the local functions should favor the

same class label for all panels in the same clique. In this case, a
common approach is to use a Potts model (Potts, 1952), which

penalizes assignments that do not have the same label in the

clique. Since every clique of a Potts model has only two variable

vertices, the local functions are simple and inference becomes

efficient and fast. However, the Potts model does not perfectly
capture the notion that influence on the class label of a vertex

should reflect the class labels of all its neighbors. We have

previously described an alternative potential function, the

voting potential, which sums the contributions of each neighbor

Graphical models for figure content recognition
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of an object into a vote that then influences that object’s

classification (Chen et al., 2006a). When this model is applied to

identify FMI, each variable vertex xi represents a panel in

a figure (with value equal to the class of the panel, in our case

either FMI or non-FMI), and it has a corresponding factor

node fi that captures the intuition that the class probability of

panel i is influenced by the class probabilities of the other

panels in the same clique (these panels are also called the

neighbors of panel i), i.e. the panel i tends to have a same class

label as the other panels. The function fi can be defined as

fi xi, N xið Þð Þ ¼
�þ

P
xj2NðxiÞ

� xi, xj
� �

�þ si
ð2Þ

where the assignment of xi is FMI or non-FMI. N(xi) is the

neighbors of panel i except itself, and Si is the number of

vertices in N(xi). � is a control parameter (the smaller � is, the

more strongly the class probability of panel i is influenced by its

neighboring panels). � is an indicator function that is 1 when

the value of xi is equal to that of xj and 0 otherwise.

However, the above function considers that the panels in

N(xi) have the same impact on panel i, which is not always right

in most cases. Here we extend it by proposing a weighted voting

potential, in which every neighbor of one panel has its

individual strength of impact on it so that they can contribute

different influences. Compared with the original voting

potential, the weighted voting potential may represent interac-

tions more precisely. Therefore, a new local function can be

defined as

fi xi, N xið Þð Þ ¼
�þ

P
xj2NðxiÞ

wij� xi, xj
� �

�þ
P

xj2NðxiÞ
wij

ð3Þ

where wij is the strength of impact of panel j on panel i.
Now the remaining task is to decide the neighbors of each

panel, and their corresponding strengths of impact on that one,

which can be computed with their positions and serial labels in

a figure. From a large number of figures in journal biological

articles, we found that if two panels have the same or

consecutive panel serial labels, or their positions are close to

each other, they have a large interaction. Thus wij is defined as

wij ¼� � li,lj
� �

þ 0:5 � li, lj þ 1
� �

þ � li, lj � 1
� �� �� �

þ ð1� �Þ
dist panel ði, jÞ

size figure

� �
ð4Þ

where li is the index of panel serial label of panel i, dist_ panel

(i,j) is the Euclidean distance between centers of panel i and j,

and size_ figure is the diagonal length of the figure. The first

term in the right side of Equation (4) represents the information

derived from panel serial labels, the second term represents the

information derived from panel positions and � controls the

balance between them (e.g. if the panel serial labels cannot be

accurately extracted, � should be 0, and the first term will be

ignored). The position information is calculated as Euclidean

distance between two panels normalized by the diagonal size of

the figure containing them.
The neighbors of panel i are given by

xj 2 NðxiÞ, ifwij � T,

xj =2NðxiÞ, ifwij5T:

�
ð5Þ

This also serves to limit the size of the clique to improve the

computational efficiency of the factor graph.

3.3 Probabilistic inference on a factor graph

After a factor graph is constructed, the next task is to infer the

class probabilities of panels by Bayesian reasoning. The belief

propagation (BP) scheme is commonly used, in which the Sum-

Product algorithm can compute marginal probabilities and

then compute the assignment of each variable that maximizes

its individual marginal (Pearl, 1988). It is based on message

passing according to a simple rule: ‘the message sent from a

node v on an edge e is the product of the local function at v (or

the unit function if v is a variable node) with all messages

received at v on edges other than e, summarized for the variable

associated with e’ (Kschischang et al., 2001).
In the Sum-Product algorithm, the message from the variable

node xi to the factor node fi is defined as

vxi!fj xið Þ ¼ evidence xið Þ
Y

t2NðxiÞn fj

�t!xi xið Þ
ð6Þ

where evidence(xi) is the initial class probability of panel i. N(xi)

is a set of factor nodes that are connected to variable node xi by

edges. The message from the factor node fj to the variable node

xi is defined as

�fj!xi xið Þ ¼
X

Nð fjÞnxi

f N fj
� �� � Y

xh2Nð fjÞnxi

�xh!fj xhð Þ

0
@

1
A ð7Þ

where N(fj) is a set of variable nodes that are connected to

factor node fj by edges. After the message-passing computation

is completed, the marginal probability of panel i can be

calculated by

p xi evidencejð Þ ¼ evidence xið Þ
Y

t2NðxiÞ

�t!xi xið Þ
ð8Þ

(a) (b)

(c)

Fig. 1. Illustration of construction of factor graphs. (a) An

example figure with six panels (from Hersh et al., 2002). (b) A factor

graph for the figure in panel (A) in which the neighbors of a panel are

determined by its panel serial label. For example, the class probability

of panel D is influenced by the class probabilities of panel C and panel

E. (c) A factor graph in which the neighbors of a panel are determined

by their positions. The class probability of panel D is influenced by the

class probabilities of panels B, C and F.
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If the factor graph is a factor tree (cycle-free), the two

messages for each edge (from variable node to factor, and from

factor node to variable node) only need to be computed once,

and the Sum-Product algorithms can produce exact inference

results. Otherwise, if a factor graph has cycles, more complicated

and approximate inference mechanisms are needed. Among

them, the loopy belief propagation (LBP) is commonly used

(Yedidia et al., 2000). Since the factor graphs discussed in this

article always have cycles, we chose to use the LBP-based Sum-

Product algorithm. The iterative procedure of LBP is:

(1) Compute all messages from variable nodes to factor

nodes with Equation (6)

(2) Compute all messages from factor nodes to variable

nodes with Equation (7)

(3) Repeat until convergence condition is satisfied.

According to Equation (7), the computational cost of a

message from a factor node to a variable node is linearly scaled

to the number of arguments of the corresponding potential

function, that is cm, where c is the number of classes (here we only

two class labels FMI and non-FMI, so c¼ 2) andm is the size of

the corresponding potential function. Therefore BP, and even

LBP, becomes computationally intractable when the size of the

cliques and the number of classes are too large. To speed upLBP,

even further approximations are required. Some forms

of approximations have been proposed by discarding low-

likelihood states (Coughlan and Ferreira, 2002), pruning edges,

quantizing the potential function or redefining the messages

(Minka, 2001). No matter which approximation method is used,

we would like to know what effect the approximations intro-

duced will have on the overall inference performance. Some

theoretical results concerning the convergence of message app-

roximation and its distance bound to the LBPmessage have been

achieved (Ihler et al., 2005). They assume that there are ‘true’

messages (as the ‘true’ messages are usually not acquired, in

practice they can be replaced with the messages of the standard

LBP). If the error between approximate messages and ‘true’

message satisfies some conditions, these approximations may be

guaranteed to converge to some regions of fixed points, as well as

have bounds on the resulting error over ‘true’ LBP. However,

perhaps more important in practice, many experimental results

have shown that if the difference between the approximate

messages and the ‘true’ message is relatively small, the overall

solutions will not have obvious changes. This gives us freedom to

construct approximate algorithms of LBP on a factor graph.

Here, we developed two message approximation methods to

simplify the standard LBP Sum-Product algorithm, both based

on the idea of prior updating (Chen and Murphy, 2006; Chen

et al., 2006a) that considers only important and dominant

messages to be updated in iterations, and furthermore uses

approximations for even these remaining messages. The first

approximate method only selects the messages from each factor

fi to its corresponding variable xi to be updated, and the other

messages from factor fi to N(fi)\xi are ignored (all given a unit

function). The reason is that the factor node fi captures the

information of panel i being influenced by its neighboring

panels, so that it plays a dominant role in updating the

probability of panel i. Although this approximation can speed

up LBP, we still need to scan all arguments of the potential

functions. Therefore, our second approximation method also

approximates Equation (7) by

�fj!xi xi ¼ kð Þ ¼
�þ

P
xh2Nð fjÞnxi

wjhvxh!fj xh ¼ kð Þ

�þ
P

xh2Nð fjÞnxi
wjh

ð9Þ

where k represents the kth class label. This equation need not

scan all arguments of the potential functions. These two

simplified LBP algorithms are refereed to as PULBP1 and

PULBP2, respectively. The next section will demonstrate that

inference results with these simplified LBP algorithms are

almost the same as those with standard LBP, but that the

computational cost can be greatly reduced.

4 EXPERIMENTAL RESULTS

We used two datasets for testing panel recognition perfor-

mance. Both were created by choosing a random set of panels

from the results of SLIF processing on a collection of articles in

the Proceedings of the National Academy, USA (volumes

94–99) and categorizing each panel as FMI or non-FMI by

visual inspection of the figure and caption (Hua et al., 2007).

� Dataset A: 86 figures with 570 panels, of which 287 panels

are FMI. For these figures, the labels were not embedded in

the panels, so the current version of SLIF cannot automati-

cally assign them. They were therefore manually assigned.

� Dataset B: 89 figures with 525 panels, of which 371 panels

are FMI. In this set, all panel serial labels were

automatically obtained.

An improved SVM-based FMI classifier (Hua et al., 2007)

was used as the baseline for comparison to other methods, and

its output was used as the evidence in the factor graph (Platt,

1999). For evaluation, we measured accuracy [(TPþTN)/

total], precision [TP/(TPþFP)], recall [TP/(TPþFN)] and

F-measure, [2*prec*recall/(precþ recall)], where TP is True

Positives, FP False Positives, TN True Negatives, FN False

Negatives and positive is FMI. We chose F-measure as our

primary figure of merit.
Before giving an overall evaluation of the performance of the

graphical models, we will examine three typical cases and how

inference results compare to manually assigned ground truth.

In these examples, the PULBP2 inference algorithm was used.
Figure 2 shows a typical figure for which graphical model

inference maintained the correct initial classification results.

Table 1 shows the class probabilities for each panel as given by

the baseline classifier and the PULBP2 algorithm for various

values of the inference parameters. In this case, the individual

panels were all correctly classified by the baseline classifier.

The interaction between panels in the factor graph modifies the

initial class probabilities for each panel, but does not alter

the correct initial result.
Figure 3 and Table 2 show a typical case where the correct

class labels of all panels are the same (FMI), and most but not

all of the panels are correctly classified by the initial classifier.

Using the graphical model, the panels that were not initially

correct are assigned their correct label. This is because the

Graphical models for figure content recognition
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influence of the panels with the correct class label is stronger

than that of the ones with the wrong class label, and the initial

probabilities of the incorrectly classified panels were not high

(and were therefore easy to push above or below the

recognition threshold). This example illustrates the kind of

improvement that we sought to obtain.
Figure 4 and Table 3 show a more complex case in which

more than one type of image exists and one of the FMI panels

is incorrectly classified. The incorrect panel can be easily

corrected to FMI even in the presence of non-FMI panels.

The above examples illustrate the mechanism by which

graphical models may be expected to improve the recognition

of FMI. Encouraged by these results, we carried out a more

quantitative evaluation of the performance of the graphical

model methods. Figure 5 shows the F-measures for the three

inference algorithms for various values of the two parameters,

� and �, in our model. � controls the strength of the interaction

between neighboring panels, so �¼ 0, 2 and 5 represent strengths

ranging from large to small. Compared with the baseline

classifier, the F-measures of the three factor graph inference

algorithms for various values of the parameters were improved

from 1% to 4%. Table 4 shows the average performances on the

two datasets for the three algorithms, which are calculated by

averaging their performance measures over the parameter

combination of �¼ 0, 0.5, 1 and �¼ 0, 2, 5.

Fig. 2. This figure (from Zheng et al., 2000) includes four panels. Panels

(A–C) are FMI, and panel (D) is not.

Table 1. Inference results for the case shown in Figure 2

Actual

class

Initial FMI

probabilities

Final FMI

probabilities

(�¼ 0, �¼ 2)

Final FMI

probabilities

c(�¼ 0,5, �¼ 2)

Final FMI

probabilities

(�¼1, �¼ 2)

FMI 0.740 0.838 0.882 0.883

FMI 0.704 0.809 0.835 0.863

FMI 0.695 0.800 0.762 0.742

Non 0.000 0.000 0.000 0.000

Shown are the initial label probabilities of the panels, obtained using a single

panel (baseline) classifier, and the final label probabilities of the panels, obtained

using a factor graph with the PULBP2 algorithm.

Fig. 3. This figure (from Hong et al., 2001) includes six panels, all of

which are FMI.

Fig. 4. This figure (from Contreras et al., 2002) has four top FMI

panels and two bottom non-FMI panels.

Table 3. Inference results for the case shown in Figure 4

Actual

class

Initial label

probabilities

Final label

probabilities

(�¼ 0, �¼ 2)

Final label

probabilities

(�¼ 0.5, �¼ 2)

Final label

probabilities

(�¼ 1, �¼ 2)

FMI 0.877 0.947 0.955 0.972

FMI 0.869 0.940 0.953 0.974

FMI 0.810 0.905 0.917 0.940

FMI 0.491 0.664 0.667 0.675

Non 0.038 0.045 0.025 0.006

Non 0.018 0.004 0.003 0.003

Note that the factor graph corrects the incorrect panel (bold) even when both

types are present.

Table 2. Inference results for the case shown in Figure 3

Actual

class

Initial FMI

probilities

Final FMI

probabilities

(�¼ 0, �¼ 2)

Final FMI

probabilities

(�¼ 0.5, �¼ 2)

Final FMI

probabilities

(�¼ 1, �¼ 2)

FMI 0.792 0.958 0.946 0.938

FMI 0.784 0.956 0.948 0.946

FMI 0.718 0.939 0.928 0.921

FMI 0.796 0.959 0.942 0.932

FMI 0.731 0.925 0.916 0.926

FMI 0.492 0.797 0.726 0.672

Note that in this case the factor graph corrects the misclassification of the last

panel (bold).
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Although the above experiments appear to show that

recognition performance is improved using factor graphs,

we wished to determine if these effects were statistically

significant. We created 30 samples by randomly selecting a

baseline classifier (RBF kernel SVM with argument ranging

from 5 to 20), and used random � (0–1) and � (0–5) values to

analyze them with all three methods. We then tested the null

hypothesis that a given performance measure (precision, recall,

F-measure) for a given method was equal to that of the SVM.

This was rejected at the 0.005 significance level for all three

measures and all three methods.
The performance of the factor graph method can be also

evaluated at the level of entire figures rather than on individual

panels. That is, a figure is considered to be correctly classified

only if all its panels are correctly classified. Table 5 shows the

average accuracies of figure recognition for LBP, PULBP1 and

PULBP2. Compared with the baseline classifier, the improve-

ments ranged from 20% to 25%, which are much larger than

the improvements of accuracy at the panel level (2–4%, Table 4).

This phenomenon reflects the characteristics of graphical

model methods. The figures that are wrongly recognized by

the initial classifier can be categorized into two types in terms of

the proportion of the panels with the wrong class label in a

figure. The first type has a small number of panels with the

wrong class label, so the influence of the panels with the correct
class label is strong and the panels that were not initially correct

are easily assigned their correct class label using graphical model

methods. The second type of figure has a larger number of

incorrect panels, so graphical model methods fail because the

panels with the correct class label may not have enough strength

to influence the ones with the wrong class label. Although the

number of panels in the first type of figures that were corrected

by graphical model methods is not large relative to the total
panels with the wrong class label, the number of these figures is

large relative to the total figures, which made improvement

measures different at the panel and figure levels.

Overall, the results indicate that recognition performance can
be improved by the factor graph method. All three inference

algorithms perform significantly better than the baseline

classifier, and there are no significant differences between

them in overall recognition performance. However, their

running times are very different, with PULBP2 being much

faster (Table 6). Both panel serial labels and positions well

represent the structuring information of panels in a figure, so

we can use either or both of them to improve FMI recognition.

� affects the recognition performance, but there is no general
rule for determining an optimal value. Performance can be

expected to be improved by the factor graph model as long as

� values are in a reasonable range.
For SLIF, we are often willing to sacrifice recall (number of

FMI found) to obtain higher precision (fraction of predicted

FMI correct). We therefore created precision-recall curves. The

panels were ranked from high to low according to the value of

their maximum marginal probability, and precision and recall

were calculated cumulatively as the minimum acceptable

marginal probability was decreased from 1 (Fig. 6). PULBP2
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Fig. 5. Performance of factor graph methods as a function of model

parameters. The F-measures for LBP (squares), PULBP1 (circles) and

PULBP2 (triangles) are shown for dataset A (left) and B (right) for

various values of � and for �¼ 0.5 (a,d), �¼ 1 (b,e) and �¼ 1 (c,f). Note

the roles of the model parameters: increasing � corresponds to a shift

from inference based solely on panel position to inference based solely

on panel serial label, and increasing � corresponds to decreasing

influence of neighboring nodes. The F-measure for the baseline

classifier is also shown (——).

Table 4. Panel classification performance of different algorithms

Accuracy Recall Precision F-measure

Baseline 79.1/72.4 79.8/69.3 77.4/89.2 78.6/78.0

LBP 81.1/76.0 78.8/70.6 82.9/93.5 80.7/80.5

PULBP1 81.1/75.4 79.3/70.2 82.5/93.1 80.8/80.0

PULBP2 81.2/75.4 80.4/70.6 81.9/92.7 81.1/80.1

Values shown are averages over the parameter combination of �¼ 0, 0.5 ,1 and

�¼ 0, 2, 5 on dataset A (first value in each cell) or B (second value).

Table 5. Accuracy at the figure level

Baseline LBP PULBP1 PULBP2

Dataset A 43.0 62.3 61.2 62.4

Dataset B 39.3 66.3 65.8 65.5

A figure is considered to be correct if all of its panels are correctly classified. The

average accuracy measures of each method are obtained by averaging their

accuracy over the parameter combination of �¼ 0, 0.5, 1 and �¼ 0, 2, 5.

Table 6. Elapsed CPU times for LBP, PULBP1 and PULBP2 using an

Intel Pentium 1.73GHz processor with 512MB memory

LBP PULBP1 PULBP2

Dataset A 4846 1115 101

Dataset B 2765 812 145

Values shown are average CPU times (in seconds) over the inference parameter

combinations of �¼ 0, 0.5, 1 and �¼ 0, 2, 5.
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provides better performance than the baseline classifier and very

high precisions can be obtained.

The graphical model method we have presented is based on

the interaction between the multiple panels in a figure. It was

therefore of interest to determine how the performance is

affected by the number of panels in a figure. The figures in

dataset A and B were partitioned into groups by the number of

panels. Then the panel recognition performance measures on

these groups were averaged over various values of parameters

and for both datasets. Figure 7 shows PULBP2 usually

produced better recognition performance than the baseline

classifier whenever more than one panel was present.
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Fig. 6. Recall-precision curves for PULBP2 for various inference

parameters. A threshold on the estimated marginal probability of each

panel classification was varied. Values shown are for �¼ 0 (left) and

�¼ 1 (right). (�¼ 0:� � �, �¼ 2:——, baseline classifier:——). Values

for �¼ 5 were similar to �¼ 2 (data not shown).
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Fig. 7. The average recognition measures of PULBP2 for the parameter

combination of �¼ 0, 0.5, 1 and �¼ 0, 2, 5 on the figures in dataset A and

B with different numbers of panels. The numbers of figures with each

number of panels from 2 to 12 are 13, 12, 49, 11, 25, 9, 25, 9, 5, 3 and 8,

respectively. (Baseline classifier: solid line, PULBP2: dashed line.)
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