
Improved Reliability of FPGA-based PUF Identification Generator
Design
Gu, C., Hanley, N., & O'Neill, M. (2017). Improved Reliability of FPGA-based PUF Identification Generator
Design. ACM Transactions on Reconfigurable Technology and Systems, 10(3), [20].
https://doi.org/10.1145/3053681

Published in:
ACM Transactions on Reconfigurable Technology and Systems

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 ACM.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:26. Aug. 2022

https://doi.org/10.1145/3053681
https://pure.qub.ac.uk/en/publications/310272fb-8d7b-4654-a45e-84836ffbbe98

Improved Reliability of FPGA-based PUF Identification Generator
Design

Chongyan Gu, CSIT, ECIT, Queen’s University Belfast, Queen’s Road, United Kingdom, BT3 9DT

Neil Hanley, CSIT, ECIT, Queen’s University Belfast, Queen’s Road, United Kingdom, BT3 9DT

Máire O’Neill, CSIT, ECIT, Queen’s University Belfast, Queen’s Road, United Kingdom, BT3 9DT

Physical unclonable functions (PUFs), a new form of physical security primitive, enable digital identifiers

to be extracted from devices, such as field programmable gate arrays (FPGAs). Many PUF implementations

have been proposed to generate these unique n-bit binary strings. However, they often offer insufficient

uniqueness and reliability when implemented on FPGAs, and can consume excessive resources. To address

these problems, in this paper we present an efficient, lightweight and scalable PUF identification (ID) gen-

erator circuit that offers a compact design with good uniqueness and reliability properties, and is specifi-

cally designed for FPGAs. A novel post-characterisation methodology is also proposed, which improves the

reliability of a PUF without the need for any additional hardware resources. Moreover, the proposed post-

characterisation method can be generally used for any FPGA-based PUF designs. The PUF ID generator

consumes 8.95% of the hardware resources of a low-cost Xilinx Spartan-6 LX9 FPGA and 0.81% of a Xilinx

Artix-7 FPGA. Experimental results show good uniqueness, reliability, and uniformity with no occurrence

of bit-aliasing. In particular, the reliability of the PUF is close to 100% over an environmental temperature

range of 25oC to 70oC with ±10% variation in the supply voltage.

Additional Key Words and Phrases: Physical unclonable functions, identification generation, authentication,

field programmable gate arrays (FPGAs), reliability.

1. INTRODUCTION

Physical unclonable functions (PUFs) allow hardware devices to be physically and
uniquely identified by associating unique n-bit binary string identifiers with the de-
vices, such as FPGAs. This has opened the door to a number of new security-orientated
FPGA design opportunities, such as intellectual property protection, cloning preven-
tion or complex security-on-chip designs. PUF designs have been extensively studied
for hardware targets, both application specific ICs (ASICs) and field programmable
field arrays (FPGAs), and recently have begun to appear in commercial products such
as the latest version of the NXP SmartMX micro-controller integrated circuit (IC) tar-
geted at transport and banking markets [Intrisic-ID 2015], and the new Microsemi
SmartFusion2 SoC FPGA line [Microsemi 2015]. The Xilinx UltraScale+ devices also
have the option of using PUF for masking of the key used for bitstream encryption
(note that it is not accessible for user designs), and have published whitepapers on
how to enhance boot security with the use of a user designed "soft" PUF in the FPGA
fabric [Peterson 2015]. Ideally, PUFs should offer a tamper-evident, unpredictable and
unclonable solution. However, due to machine learning attacks [Rührmair et al. 2010]
and physical attacks, e.g. fault injection [Delvaux and Verbauwhede 2014], side chan-
nel attacks [Mahmoud et al. 2013] for some PUF designs their responses can be pre-
dicted. Recently, countermeasures have also been proposed to improve the physical
security of PUF designs, e.g. modeling attack resistant PUFs [Kumar and Burleson
2014] [Vijayakumar and Kundu 2015]. Some of these proposals will be discussed in
the next section. One advantage of using PUF over other approaches is that any de-
vice tampering can affect the PUF response and hence might be detected. Instead of
storing a preset identifier in non-volatile memory (NVM) they exploit process variation
effects via a “variability aware” circuit to generate a unique n-bit binary string iden-
tifier (response) from an FPGA when given a corresponding N -bit input (challenge).
Since, ideally, each i-th challenge, Ci, uniquely maps to exactly one response, Ri, with-

out noise, they can be grouped together into so-called challenge-response pairs (CRPs),
where CRPi = {Ci, Ri}.

To enable practical use of the identifiers generated using the FPGA-based PUFs they
have to 1) be unique so that no two devices map to the same ID, 2) offer high reliability
to ensure that a device can repeatedly return the correct ID with as few noisy bits as
possible, and 3) be efficient and feasible to implement on an FPGA. However, to date
wide spread adoption in FPGAs has been limited as PUFs are difficult to implement
and integrate on such devices, can require considerable FPGA logic resources, and
have insufficient tolerance to temperature and voltage variations.

Uniqueness in PUF IDs is inherently difficult to achieve as they exploit manufactur-
ing process variations, which FPGA microelectronic designers strive to minimize. If the
level of variability is not sufficient, two challenges, C1 and C2, may map to the same
or related responses for different FPGA instances i.e., C1 → R1 and C2 → R1. Fur-
thermore, as FPGAs have highly regular and scalable architectures to allow them to
implement arbitrary logic functions efficiently, this directly affects the implementation
options. The design tools create layouts with unbalanced routing and interconnects
with large capacitance, both of which introduce bit biases and skew in PUF response
bits i.e., bit-aliasing.

Reliability in PUF ID generator designs is affected by environmental variations, the
most significant of which are core supply voltage and temperature fluctuations. If an
FPGA’s core supply voltage levels diverge significantly from the recommended value
gate delays will change and can cause incorrect ID responses. Similarly, elevated local
temperatures will impact an FPGA’s performance and response bit accuracy. Changes
in temperature cause transistor threshold voltages to decrease and carrier mobility to
increase: the former tends to speed up a circuit, while the latter tends to slow it down.
Depending on which effect is dominant, a circuit may show either negative tempera-
ture dependence if the delay increases with temperature, positive temperature depen-
dence if it decreases with temperature, or mixed temperature dependence if the trend
is non-uniform [Wolpert and Ampadu 2012]. Ultimately, both types of environmental
variation causes reliability issues.

In previous work by the authors [Gu et al. 2014], a novel FPGA-based PUF ID gener-
ator was proposed, which consumes minimal FPGA logic resources, and can be easily
scaled to form an n-bit PUF ID generator and implemented in a low-cost FPGA device,
such as a Spartan-6 LX9. Experimental results demonstrate that this PUF ID genera-
tor design achieves good uniqueness and reliability. Each 1-bit ID cell is implemented
as a hard-macro on an FPGA ensuring balanced and stable routing for reliable op-
eration. This is important when generating identifiers under different environmental
conditions and minimizes statistical bias. Although the reliability of our previous work
(93%) is sufficient for ID generation and authentication, for other applications, such as
key generation, a more robust response is required. Ideally the aim is to improve the
reliability result without utilising extra hardware resource on an FPGA, which is one
focus of this paper.

In this paper, we build upon our previous work and propose a reliable characteri-
sation process. We also provide a more complete analysis of the FPGA-based PUF ID
generator. Specifically, our scientific research contributions are as follows:

— We propose a reliable and efficient post-processing characterisation process, which
can be implemented on FPGA without any additional hardware resources. This char-
acterisation process can be utilized to improve the reliability of any FPGA-based PUF
ID generator design. It is employed to enhance the reliability of the 128-bit PUF ID
generator previously proposed by the authors [Gu et al. 2014].

— The application of this automated characterisation process is presented, and an im-
provement in the reliability of the 128-bit PUF ID generator from 93.93% to 98.74%
without the requirement of any additional hardware resources, and to 99.60% when
simple majority voting post-processing is also employed, is shown.

— A more comprehensive evaluation of the PUF ID generator design previously pro-
posed by the authors [Gu et al. 2014] is also presented, and includes an analysis of
uniformity and bit-aliasing, with results of 51.06% and 56.48% achieved respectively
pre-characterisation.

— The proposed improved 128-bit PUF ID generator is shown to achieve good overall
results in terms of uniqueness, uniformity and bit-aliasing, with values of 45.60%,
50.60%, and 56.48% respectively using the proposed characterisation process, and
a further improvement to 45.60%, 50.54% and 56.58% respectively using majority
voting.

The rest of this paper is organized as follows. Section II discusses the related work of
PUF designs. Section III introduces the principle of the PUF ID generator’s operation.
The implementation of the 128-bit PUF ID generator design is described in section
IV and the post-characterisation process is outlined in section V. The evaluation of
the proposed improved PUF ID generator design is given in section VI to validate the
work. Finally, conclusions are drawn in section VII.

2. RELATED WORK

Since the first concrete implementation of a PUF was proposed [Pappu et al. 2002],
many researchers have reported a range of different PUFs targeting both ASICs and
FPGAs, e.g. static RAM (SRAM) PUFs [Guajardo et al. 2007; Holcomb et al. 2009],
Latch PUF [Su et al. 2008], Flip-flop PUF [Maes et al. 2008], Buskeeper PUF [Simons
et al. 2012], Butterfly PUF [Kumar et al. 2008], Ring Oscillator (RO) PUF [Suh and
Devadas 2007; Murphy et al. 2012], Configurable RO (CRO) PUF [Yu et al. 2012],
Arbiter PUF [Gassend et al. 2002] [Gu et al. 2016], Bistable Ring (BR) PUF [Chen
et al. 2011], processor-based PUF [Maiti and Schaumont 2012], reconfigurable PUF
(rPUF) [Kursawe et al. 2009]. Also, Charles et al. [Herder et al. 2014] and Sklavos
[Sklavos 2013] provide a detailed introduction to PUF based security analysis and
implementation. The RO PUF designs exploit the difference in period between two
identical ring oscillators by incrementing two counters and then comparing the value
reached in a given time frame. This structure at a minimum requires two configurable
logic blocks (CLBs) on FPGA, even though strategies exist to re-use oscillators [Maiti
et al. 2012]. The Arbiter PUF uses n-bit differential delay lines and a latch arbiter
to generate a 1-bit PUF response. It is difficult to implement this design on FPGA as
it requires the whole structure to be balanced to generate 1-bit, and then duplicated
k times. Although Majzoobi et al. [Majzoobi et al. 2014] and Hori et al. [Hori et al.
2014] implemented Arbiter PUFs on FPGAs, they introduced an extra tuning circuit
or reported results with low uniqueness. In memory-based PUFs, like SRAM PUFs,
the initial state of static RAM cells, formed by two cross coupled inverters (also often
known as a bistable latch) in FPGAs, is exploited to produce IDs based on different
memory blocks on different FPGAs. However, SRAM PUFs require a device power-
up operation to generate each ID. Although most FPGAs have SRAM memory, some
SRAMs have an initial state which prevents them entering a random value during the
start up stage. To address this Kumar et al. [Kumar et al. 2008] proposed a logical
alternative called Butterfly PUF to emulate the behavior of an SRAM PUF on Virtex-5
FPGAs. It can be invoked at any time rather than only at power-up. It operates using
two cross-coupled latches forming a bistable circuit, where the preset/clear force it
into metastability. It still suffers from issues due to metastability, and indeed not all

FPGAs feature preset/reset pins in the required format. They reported 94% reliability
over temperature variations, however, reliability over voltage changes is not provided.
For 64 Butterfly PUF cells, 130 slices are consumed.

Improving the reliability has been the subject of much research with both SRAM and
RO PUF designs. Efforts to improve the reliability of SRAM PUF have been proposed
by many researchers, e.g. Bhargava et al. [Bhargava and Mai 2014], Garg et al. [Gary
and Kim 2014] and Cortez et al. [Cortez et al. 2013]. However, aging testing based rein-
forcement techniques or special circuitry are required. Guajardo et al. [Guajardo et al.
2007] and Bohm et al. [Bohm et al. 2011] utilise error correction codes, BCH code or
repetition code, to reduce the error rate for SRAM PUFs. A fuzzy extractor is used for
error correction to enhance the reliability in the SRAM PUF design proposed by Hol-
comb et al. [Holcomb et al. 2013], the Flip-flop PUF design by Maes et al. [Maes et al.
2008], and the Butterfly PUF design by Kumar et al. [Kumar et al. 2008]. All these
post processing methods incur additional hardware resource usage. Majority voting
(or 1-out-of-k-method) is a straightforward and simple way to reduce noise. However,
its usefulness depends on the level of noise. For example, in the case of 50% noise, even
if majority voting is applied, the result cannot be improved. Hence, a lightweight reli-
ability improvement is needed to enhance the reliability of FPGA-based PUF designs
in general.

To distinguish between different intrinsic PUF designs, Guajardo et al. [Guajardo
et al. 2007] introduced two PUF subtypes with regard to the behavior of CRPs, namely
“Weak PUF” and “Strong PUF”. Weak PUFs exhibit the following characteristics: 1)
they may have very few challenges and in the extreme case they may generate just
one response; 2) it is assumed that an attacker can not access the response of Weak
PUFs as one or a few CRPs could be used to build a model of the security system. The
previously mentioned SRAM PUF and Butterfly PUF are examples of Weak PUFs. For
many applications, their responses can be useful for key generation as an intrinsic
key, in place of secure memory. Compared to other key storage approaches in which
keys are stored in NVM, the key is intrinsically linked to the physical hardware of the
device itself. Furthermore, Weak PUFs are low-cost since they do not need any special
manufacturing process. Compared to Weak PUFs, Strong PUFs have the following
characteristics: 1) they may have many possible CRPs; 2) an attacker may have access
to the CRPs, however it should be impossible for them to determine or attack the CRPs
in a given time frame, for example, a few days or weeks.

Practical realisations of the Strong PUF definition of Guajardo et al. [Guajardo et al.
2007] has proven to be somewhat more difficult than originally anticipated. For ex-
ample, the Arbiter PUF was an example of a Strong PUF, however, it is known that
Arbiter PUFs can be modeled as linear additive models [Rührmair et al. 2010], and
recent work has shown how to attack the non-linearity of XOR-Arbiter PUFs using
reliability-based evolution strategies [Becker 2015]. Hence, in more recent literature,
a Strong PUF is required to have a number of CRPs that scales exponentially with the
circuit area, but no other constraints such as resistance against modeling are imposed.
For Weak PUF, such attacks do not apply as it is assumed that there is no external
access to the response for an attacker. Hence, machine learning attacks are not con-
sidered here. For Strong PUFs, poor reliability is one reason why XOR PUFs can be
attacked, as described in [Becker 2015]. Hence, the characterisation process presented
in this paper to help achieve high reliability, may be helpful for Strong PUFs to protect
against machine learning attacks.

3. PUF ID GENERATOR CIRCUIT DESIGN

The previously proposed PUF ID generator design by the authors [Gu et al. 2014] com-
prises of n elementary 1-bit PUF ID cells and is designed to fit compactly in one FPGA

slice, as shown in Fig.1. An n-bit PUF ID generator circuit is formed by instantiating
an array of n 1-bit ID cells. A 1-bit response is generated as follows: two matched time
delay paths, T0 and T1, implemented by two D type flip-flops are excited simultane-
ously by the rising edge of a START signal connected to their clock pins after first
being reset by CLEAR; since flip-flops are coarse grained delay components, the rising
edge on their Q outputs propagate the excited signal differently, thus racing against
each other; the timing of two delay lines will differ due to underlying manufacturing
variability; cross-coupled NAND gates are utilized to decide which transition arrived
first and sets their output to either binary 10 or 01. A timing diagram of the 1-bit PUF
ID generator design is shown in Fig. 2. It can be seen that a CLEAR signal is first acti-
vated to reset the circuit and on the rising edge of a START signal the delay paths are
activated. The output signals, Z0 and Z1, will be 01 when Q0 and Q1 are 10 whenever
the arrival time of the delay path T0 is faster. A multiplexer outputs a unique 1-bit re-
sponse depending on the value of the challenge. This PUF ID generator bit generation
circuitry requires two LUTs, two flip-flops and one multiplexer per bit.

Q

Q
SET

CLR

S

R

Q

Q
SET

CLR

S

R

D

Q

Q
SET

CLR

S

R

D

START

M
U
X

CLEAR

CHALLENGE

1-bit

RESPONSE

Z0

Z1

Q0

Q1

SLICET0

T1

1

1

Fig. 1. circuit design.

START

CLEAR

Q0

Q1

Z1

Z0

ΔT

Fig. 2. Timing diagram.

The use of cross-coupled NAND gates as an arbiter ensures that the feedback paths
are balanced, symmetrical and contribute minimally to T0 and T1. The arbiter design
also increases reliability as the effects on each feedback path are equally balanced.
Previous work by Lim et al. [Lim et al. 2005] uses a D-latch for the arbiter, but it
introduces a 10% skew on the response.

In order to maximize variation and to avoid bit aliasing in the ID responses the
wiring paths must be placed and routed as symmetrically as possible so as to min-
imize the nominal delay difference between the two paths. In FPGAs this can be ac-
complished by manual routing and timing analysis, but due to the natural architecture
of FPGAs this is inherently problematic. Careful place and route in the target device
ensures an estimated delay difference between the paths of only 10 ps according to the
design tool.

Due to external influences as mentioned previously (temperature and supply volt-
age), some bits will be unstable and vary between 0 and 1. The straight forward so-
lution to this problem is to obtain each response bit N (N=5 for this work) times and
then use the majority as the correct bit. As the number of repetitions increases, the
probability of an undecipherable error decreases proportionately. This does not work
however when significant instability in the bit response occurs. In the next section, a
characterisation process is proposed to address instability and improve reliability.

4. IMPLEMENTATION OF PROPOSED PUF ID GENERATOR DESIGN

The previously proposed n-bit PUF ID generator design is implemented in Xilinx
Spartan-6 FPGA and each bit is implemented as a hard macro, as shown in Fig.3.
The floor plan location is set by declaring location (LOC) constraints using Xilinx’s
Unified Constraints Format (UCF) file.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.
8X16 PUF ARRAY

PUF CELL Pin (IOB) DSP slice Block

RAM
LUT slice

Hard

macro

Fig. 3. Floor plan of a 128-bit PUF ID generator based on a 1-bit single slice hard macro.

To ensure that the ID response bits are a function of device variability only, it is
essential that all circuit elements are identical and routing is balanced. Otherwise, the
response bits will exhibit bit-bias due to the interconnect and layout mismatch. The
authors in [Suh and Devadas 2007] suggest using FPGA hard-macros as a solution to
help meet strict design parameters. Therefore, in this research the circuit elements are
manually placed and routed and a hard-macro, as shown in Fig.4, is used to implement
a 1-bit ID cell, which occupies exactly one slice of the target Xilinx Spartan-6 FPGA
device. Fig.5 shows an example of the unbalanced routing that results from automated
place and route of the design, which will lead to a bias of the response. Other FPGA
families can be targeted using the 1-bit ID cell by re-creating the hard-macro. A 5-bit
majority voting circuit for each 1-bit ID cell is also implemented as a hard macro in
one slice.

Fig. 4. Balanced routing Fig. 5. unbalanced routing

The cross-coupled NAND gate arbiter is implemented in two LUTs, the D type flip
flops are implemented in two registers; and the 2:1 selector is implemented in a mul-
tiplexer. These are easily instantiated in hardware description language (HDL) (e.g.,
Verilog) by using a stub file, which can be declared multiple times as desired to build
n-bit PUF ID generators. In this work 128 hard-macros, arranged in an 8 × 16 ar-
ray, are used to construct the 128-bit PUF ID generator as shown in Fig. 3. The Xilinx
Spartan-6 device employed in this work is the XC6SLX9, which has 1,430 slices, half of
which are SLICEXs, a quarter of which are SLICELs and a quarter SLICEMs [Xilinx
2011]. Compared to SLICEX, the SLICEL and SLICEM primitives have wide MUXs
and carry chain components. As the proposed design does not need wide MUXs or carry
chains it can be implemented in any type of slice, and for this work it is implemented
in SLICEX primitives.

Since a 1-bit ID cell only occupies half a Spartan-6 slice, the remaining resources can
be used to implement other functionality or alternatively a second 1-bit ID cell yielding
2-bits of an ID response per slice [Gu and O’Neill 2015]. For this work, a single bit per
slice is implemented, such that each ID cell occupies the upper half of the slice and the
upper slice within a CLB. Utilizing only half a slice allows a great amount of flexibility
in the design of complex systems as the ID hard-macro cells can be placed anywhere
on the FPGA floor plan to maximize overall resource consumption and to minimize
routing congestion.

5. POST-CHARACTERISATION METHODOLOGY

To improve the reliability of the PUF ID generator design, a post-characterisation
phase to analyse the robustness is introduced to find the unstable bits in an FPGA
layout. Robustness represents how reliable the PUF ID generator design is at nomi-
nal supply voltage and room temperature. It is generally calculated by the intra-chip
hamming distance between S sample responses from the same PUF device under the
same operational conditions. A manual characterisation process is employed to prove
the feasibility of this methodology.

.
.

.

.
.

.

.
.

.

.
.

.

PUF CELL Pin (IOB) DSP slice Block RAMLUT slice

8X16 PUF ARRAY

Unstable bit

Stable bit

Fig. 6. Characterising the floor plan of a 128-bit PUF ID generator based on a 1-bit single slice hard macro.

Start

Generate S samples from N-bit PUF ID generator

Identify the unstable bits (m)

Generate the N-bit response

Replace m unstable bits with the new positions

End

Implement N-bit PUF ID generator

Evaluate the robustness of S N-bit PUF ID generator responses

Find m new positions and declare

the LOC constraints in the UCF

Declare the LOC

constraints in the UCF

Generate S samples of m-bit PUF ID generator

Evaluate the robustness of S m-bit PUF ID

generator responses

Stable?

Yes

No

Update and save the LOC

constraints in the UCF

Fig. 7. The flow chart of characterising the floor plan of PUF ID generator IP core architecture.

5.1. Manual Characterisation Process

A flow chart outlining the steps involved in the characterisation process is shown in
Fig.7. The steps are as follows:

— Implement an N-bit PUF ID generator in the target FPGA, e.g. Spartan-6, as shown
in Fig.3.

— Generate S responses from the N-bit PUF ID generator, where S is the sample num-
ber

— Evaluate the robustness of S N-bit PUF ID generator responses (robustness repre-
sents the reliability of the PUF design under normal operating conditions);

— Identify the unstable bits (m) and their positions in the floor plan of the FPGA,
— Find m stable bits and their position as shown in Fig.6;
— Move the PUF cells in unstable bit positions to stable bit positions (repeat several

times until all PUF cells positions are stable). The placement of the PUF ID cells
is achieved by manually declaring LOC constraints using Xilinx’s UCF in the Xilinx
ISE tool;

— Update and save the final bit file with the new bit positions as the default floor plan;
— Generate the N-bit PUF ID generator response.

In this work the characterisation process was first manually executed following the
above steps, which demonstrates the feasibility of the technique. However, an auto-
mated post-processing characterisation process was also considered to improve the
efficiency of the approach.

5.2. Automated Characterisation Process

The flow chart for the automated characterisation process is similar to that of the man-
ual process and is shown in Fig.8. Algorithm 1 describes in detail the execution of each
step in the process and includes six phases. Similar to the manual characterisation
process, the automated process explores the most stable bit output for the response
in order to improve the reliability of the PUF ID generator design. Moreover, the au-
tomated characterisation process simplifies the post processing, and only needs to be
carried out once to find out all the unstable and stable bit positions over the whole
FPGA device. The execution time depends on the size of the FPGA, where the larger
the FPGA, the longer the time it takes to identify the unstable and stable bit positions.

ALGORITHM 1: Pseudo-code for automated characterisation process

1: Phase0: Setup
2: Declare the position of an M -bit PUF ID cell in the UCF, where M is the maximum available slices
of the target FPGA
3: Implement M -bit PUF ID generator design on the FPGA
4: Phase1: PUF Response
5: for i = 0 to S do (where S is the sample number for robustness)
6: Generate the response of the M -bit PUF ID generator
7: end for
8: Phase2: Evaluate
9: Evaluate the robustness of S M -bit PUF ID generator responses
10: Phase3: Identify
11: Identify the unstable bits (p) and the stable bits (q) of the robustness result
12: Note the position of the stable bits (q)
13: Phase4: Choose
14: Randomly choose the position of n stable bits from the q bits as the position of N -bit PUF ID
generator, where N is the required bit length of the PUF ID generator
15: Update and declare the position of the N -bit PUF ID cell in the UCF
16: Phase5: Generate
17: Generate the response of the N -bit PUF ID generator

6. EVALUATION OF PROPOSED IMPROVED PUF ID GENERATOR DESIGN

6.1. Experimental Setup

The Xilinx ISE Design Suite 14.7 tool was used for the proposed design and Matlab
was utilised to communicate with and test the PUF IP core, with a simple interface
written to send and receive data over the USB-UART port of target FPGA boards. To
evaluate the manual characterisation process, the 128-bit PUF ID generator design
was implemented on a Spartan XC6SLX9 microboard which comprises of a low-cost
Xilinx Spartan-6 (CSG324) FPGA device (45nm technology). The 128-bit identification
generator design was programmed into ten identical Spartan-6 LX9 Microboards as
shown in Fig.9. One was manually modified to conduct temperature and voltage ex-
periments by varying the core voltage (±10%) and the temperature from 25oC to 70oC
as shown in Fig. 9.

To evaluate the automated characterisation process, the 128-bit PUF ID design
was implemented on Digilent Nexys4 microboard which comprises of a Xilinx Artix-7

Start

Generate S samples of M-bit PUF ID generator

Identify the unstable bits (p) and the stable bits (q)

Generate the N-bit response

End

Implement M-bit PUF ID generator

Evaluate the robustness of S M-bit PUF ID generator responses

Choose n stable bits

Declare the LOC

constraints in the UCF

Update and save the LOC

constraints in the UCF

Fig. 8. Flow chart of automated characterisation process

Modified LX9 microboard LX9 microboard in heat chamber

Fig. 9. Experimental setup

XC7A100T FPGA (28nm technology) to prove its feasibility on a more recent technol-
ogy. The communication and control units on the Xilinx Artix-7 FPGA are similar to
those on the Xilinx Spartan-6. One Xilinx Artix-7 FPGA was again modified to conduct
temperature and voltage experiments. The core voltage was varied by ±10% and the
temperature from 0oC to 75oC. The core voltage of the Artix-7 FPGA is 1.0 volts, which
differs from the Spartan-6 FPGA which has a core voltage of 1.2 volts.

There are four important metrics used to quantify the performance of a PUF ID
generator circuit: uniqueness, reliability, uniformity and bit-aliasing. These are used
to evaluate the improved PUF ID generator design.

6.2. Uniqueness

Uniqueness measures inter-chip variation by evaluating how easily a particular PUF
ID generator circuit design can differentiate between k different devices. Specifically, it
quantifies the average inter-chip hamming distances (HDs) between sets of responses
extracted from different devices, which implement the same PUF ID generator circuit

0 20 40 60 80 100

Inter-chip hamming distance (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

F
re

qu
en

cy
 o

f o
cc

ur
en

ce

Inter-chip Hamming distance
Empirical normal distribution
Standard binomial distribution

Fig. 10. Uniqueness result

and have been supplied with the same challenge, to show the extent of the difference
of responses.

Ideally, when a PUF ID generator circuit is implemented on different devices it
should produce an average inter-chip HD of 50% when compared between two devices
supplied with the same challenge, implying that, on average, half the response bits are
different between the two devices even though the same challenge has been used.

Accordingly, a percentage figure-of-merit for uniqueness based on average inter-chip
HD can be defined. If two chips i and j both implement the same PUF ID generator
circuit and have n-bit responses Ri and Rj to the same challenge, C, then uniqueness
expressed as the average inter-chip HD among k devices is defined as:

Uniqueness =
2

k(k − 1)

k−1∑

i=1

k∑

j=i+1

HD(Ri, Rj)

N
× 100 (1)

A probability density function (PDF) plot of the
HD(Ri,Rj)

N
× 100 values is shown in

Fig.10, where values near to 50% indicate higher uniqueness. The distribution is Gaus-
sian, clustering around the uniqueness value of 45.60%. This confirms a uniqueness
approaching the ideal value can be expected for the proposed PUF ID generator on this
particular FPGA.

6.3. Reliability

Ideally a given PUF ID generator circuit, implemented in any device should be able
to perfectly reproduce its output whenever it is queried with a challenge. However in
practice, environmental changes, such as temperature and power supply voltage vari-
ations, as well as the natural properties of metastability in PUF ID generator circuits
induce noise in the responses. Therefore, reliability is used to quantify a PUF ID gen-
erator’s ability to reproduce a response. Reliability can be regarded as a percentage
measure of the number of noisy ID response bits.

For a device i, reliability is established as a single value by finding the average intra-

chip HD of s response samples, R
′

i, taken at different operating conditions compared

to a baseline N-bit reference response, Ri, taken at nominal operating conditions. The
average intra-chip HD is estimated as follows:

HDINTRA =
1

s

s∑

t=1

HD(Ri, R
′

i,t)

N
× 100 (2)

where R(i, t)
′

is the t−th sample of R
′

i. The percentage figure of merit for reliability
can be defined as:

Reliability = 100− HDINTRA (3)

Obviously, the ideal value for reliability is 100%. To investigate the reliability of
the proposed PUF ID generator design, a 128-bit reference response Ri was extracted
from a chip i under normal conditions, that is at room temperature and with normal

supply voltage. This is compared with the responses R
′

i, taken under varying operating
conditions. Note, robustness can be calculated using the same formula as reliability.
The only difference is that the response samples for robustness are derived under
nominal operating conditions.

1.1 1.15 1.2 1.25 1.3
70

75

80

85

90

95

100

Index of voltage

R
el

ia
bi

lit
y

(%
)

Voltage

Original PUF
Original PUF post characterization
Raw PUF post characterization and including majority voting

Fig. 11. Reliability comparison over supply voltage variation

6.3.1. Reliability with manual characterisation process. The temperature was varied from
25 oC to 70 oC (5 oC each step) using a convection heat chamber while the core sup-
ply voltage was varied by ±10% 0.2 Volts using a DC regulated power supply. This
covered the permitted operating range of the FPGA and swept all combinations of op-
erating points. Fig.11 and Fig.12 show the results and compare the responses from
the previously presented PUF ID generator design, with those from the PUF ID gen-
erator design post-characterisation, as well as the PUF ID generator design post-
characterisation that includes majority function circuit. Over all voltage operating
points the improved PUF ID generator designs exhibit a high level of reliability of
between 93% and 100% for the design post-characterisation, and between 96.5% and
100% for the design that employs both characterisation and majority function circuitry.
For the temperature results, both improved PUF ID generator designs achieve relia-
bility of 100% for the FPGAs under evaluation. As expected, the designs that use the
characterisation and majority function circuitry are more reliable than the original

25 30 35 40 45 50 55 60 65 70
80

82

84

86

88

90

92

94

96

98

100

Index of temperature

R
el

ia
bi

lit
y

(%
)

Temperature

Original PUF
Original PUF post characterization
Raw PUF post characterization and including majority voting

Fig. 12. Reliability comparison over ambient temperature variation

PUF ID generator PUF ID generator with

post-characterisation

PUF ID generator with

post-characterisation and

majority function

Fig. 13. Reliability variation maps of 128-bit responses based on the PUF ID generator design, the PUF ID
generator design post-characterisation and the PUF ID generator design post-characterisation with majority
function circuitry.

PUF ID generator design. The average reliability results are listed in Table V. As dis-
cussed in the previous section the improvement is due to changing the position of the
unreliable 1-bit ID cells which improves the robustness of the response bits.

To estimate the fluctuation in reliability of each bit, the variation of each response
bit was compared under normal operating conditions and varying operating conditions.
A variation map is used to explain the effects of the ID cell positioning on the response
bits. A group of 128-bit responses was extracted under various environmental con-
ditions. The variation from the original response bit is obtained by comparing these
responses to the reference response obtained under normal conditions. At each specific
position, the difference between the derived response and the reference response can
be represented as either ‘0’ or ‘1’, where ‘0’ means no difference between responses and
‘1’ means the response from the conditioned situation is different to the one obtained
under normal conditions. Therefore, the sum of the difference in responses at each po-
sition Sri,l can be found, where ri,l denotes the l-th position bit on the i-th chip. Fig.13
shows the distribution of differences (Sri,l) from the reliability results for the 128-bit

positions. X represents the bit position on the x-axis of the floor plan in Fig.3, and Y
represents the bit position on the y-axis of the floor plan. The ranges of X and Y are
1 → 8 and 1 → 16 respectively, which indicate the response position as follows:

ri,l ⇒ {lX , lY } (4)

where lX and lY are the x-axis and y-axis response position ri,l. The subfigures re-
spectively show the distribution of the difference on reliability for the PUF ID gen-
erator design, the PUF ID generator design using the characterisation process and
the PUF ID generator design post-characterisation and including the majority func-
tion circuitry. The colorbar ranges are 0 → 120 in Fig.13, where the samples are from
12 different voltages×10 different temperatures. The darker color indicates that the
difference value, Sri,l , at position ri,l is larger. In other words, the PUF ID generator
exhibits more instability at specific positions. After the manual characterisation pro-
cess, this instability is reduced. Moreover, using the majority function, the variation
of the response is essentially eliminated. It is clear that the characterisation process
significantly improves the PUF ID generator design in terms of reliability, and by itself
provides close to optimal results.

Table I. BER results for voltage variations for the original design, the design post-characterisation and the
design post-characterisation and including error correction circuitry.

Design
BER (%) SD Mean

1.08v 1.10v 1.12v 1.14v 1.16v 1.18v 1.22v 1.24v 1.26v 1.28v 1.30v 1.32v (%) (%)

Original 9.2 9.8 10.4 9.8 8.6 7.3 9.8 8.0 8.0 7.3 7.3 9.2 1.1 8.7

CHAR 5.5 6.1 6.1 0 0 0 0 0 1.2 0 1.2 1.8 1.6 0.9

CHAR & MAJ 2.4 1.2 0.6 0 0 0 0 0 0 0 0 0 0.8 0.4

Table II. BER results for temperature variations for the original design, the design post-characterisation and
the design post-characterisation and including error correction circuitry.

Design
BER (%) SD Mean

25 °C 30 °C 35 °C 40 °C 45 °C 50 °C 55 °C 60 °C 65 °C 70 °C (%) (%)

Original 4.3 3.7 4.3 4.3 3.1 2.5 2.5 3.1 3.7 3.7 0.7 3.5

CHAR 0 0 0 0 0 0 0 0 0 0 0 0

CHAR & MAJ 0 0 0 0 0 0 0 0 0 0 0 0

The bit error rate (BER) of the PUF responses for different voltages and tempera-
tures was investigated. Table I and Table II show the BER, standard deviation (SD)
and mean (Mean) values across the voltage range from 1.08 v to 1.32 v and across
the temperature range from 25 °C to 70 °C. The PUF ID generator design post-
characterisation and including majority voting provides the lowest BER, SD and Mean
when the voltage is varied. Interestingly decreasing the core voltage has little effect
on the BER. The SD = 0.8% × 128bit = 1bit, which means that there is variation in
just 1-bit of the 128 bit response, and the average BER is 0.4%. The BER, SD and
Mean values of both the design post-characterisation (CHAR) and the design post-
characterisation and including error correction circuitry (CHAR & MAJ) over temper-
ature changes are zero indicating that no errors occur in these designs.

6.3.2. Reliability with automated characterisation process. Initially the robustness of the
PUF ID cell design (that is the intra HD of responses from the same device under
nominal operating conditions) on an Artix-7 device was calculated for every slice to
visualise the variability across a more recent FPGA.

A 128-bit reference response, Ri, is extracted from a chip i (Artix-7 FPGA) at room
temperature and with normal supply voltage. This is compared to the responses Rs

i ,
taken under the same operating conditions, where s = 1000 samples. Eq.2 and Eq.3

Fig. 14. Heat map of stable and unstable bits of the compact PUF ID generator design on an Artix-7 FPGA

are used in calculate robustness. Fig.14 depicts the heat map which shows the stable
and unstable bits of a sample chip i. The percentage of stable ’0’ bits is 27.12%, the
percentage of stable ’1’ bits is 30.75%, and the percentage of the remaining unstable
bits is 42.13%. The robustness distribution of stable and unstable bits in the Artix-7
FPGA is shown in Fig.15.

Table III presents detailed robustness results of the stable ’0’ bits, stable ’1’ bits and
the unstable bits on each Artix-7 FPGA, and also presents the mean and standard
deviation (STD) values over 10 FPGAs. It can be seen that the distribution of stable ’0’
bits, stable ’1’ bits and unstable bits on the 10 FPGAs is very similar and has a very
small STD.

To evaluate the reliability of the proposed PUF ID generator design when the au-
tomated characterisation process is applied, 128-bit reference responses, Ri, were ex-
tracted from a chip i under normal conditions. These are compared with responses

R
′

i, taken under varying operating conditions. Temperature was varied from 0 oC to
75 oC (in steps of 5 oC) using a thermal electric plate while the core supply voltage was
varied by 1.0 Volts ±10% using a DC regulated power supply. This covered the permit-
ted operating range of the FPGA and swept all combinations of operating points. Fig.16
shows the results and compares the responses from the PUF ID generator design, with
those from the PUF ID generator design post auto-characterisation as well as the PUF
ID generator design post auto-characterisation that includes majority voting. Over all
voltage operating points the improved PUF ID generator designs exhibit a high level
of reliability of between 95% and 100% for the design post auto-characterisation, and
between 97% and 100% for the design that employs both auto-characterisation and

Fig. 15. Robustness distribution of the compact PUF ID generator in Artix-7 FPGA

Table III. Robustness results of stable ’0’ bits, stable ’1’ bits, and unstable
bits on the ten Artix-7 FPGAs

FPGA Bits Stable 0’s Stable 1’s Unstable

1 15850 4299 (27.12%) 4874 (30.75%) 6677 (42.12%)

2 15850 4951 (31.23%) 4388 (27.68%) 6511 (41.07%)

3 15850 4579 (28.89%) 4728 (29.83%) 6543 (41.28%)

4 15850 4242 (26.76%) 4831 (30.47%) 6777 (42.75%)

5 15850 4986 (31.45%) 4832 (30.48%) 6032 (38.05%)

6 15850 5505 (34.73%) 5492 (34.65%) 4853 (30.61%)

7 15850 4338 (27.36%) 4582 (28.90%) 6930 (43.72%)

8 15850 4048 (25.53%) 5080 (32.05%) 6722 (42.41%)

9 15850 4262 (26.89%) 5113 (32.25%) 6475 (40.85%)

10 15850 5572 (35.15%) 4041 (25.49%) 6237 (39.35%)

Mean 4678 (29.51%) 4796 (30.25%) 6376 (40.22%)

STD 546 (3.44%) 403 (2.54%) 595 (3.75%)

All 1 (0.006%) 0 (0.000%) 15849 (99.99%)

majority voting. For the temperature results, both improved PUF ID generator designs
achieve reliability close to 100%.

Table IV. Reliability results of manual and automated characterisation processes on Spartan-6 and Artix-7 FPGAs

FPGA Over voltage variation (%) Over temperature variation (%) Average (%)

Spartan6
Original

Manual
CHAR

Manual
CHAR+MAJ

Original
Manual
CHAR

Manual
CHAR+MAJ

Original
Manual
CHAR

Manual
CHAR+MAJ

90.87% 98.83% 99.55% 95.54% 100% 100% 93.21% 99.42% 99.78%

Artix7
Original

Auto
CHAR

Manual
CHAR+MAJ

Original
Auto

CHAR
Auto

CHAR+MAJ
Original

Auto
CHAR

Auto
CHAR+MAJ

91.40% 97.58% 99.35% 96.46% 99.89% 99.84% 93.93% 98.74% 99.60%

A comparison of the improved designs post-manual characterisation and post-
automated characterisation are provided in Table IV. It is clear from the results that
the post-characterisation processes are an effective way to improve the reliability of
the PUF ID generator design.

3w9 3w92 3w94 3w96 3w98 T Tw32 Tw34 Tw36 Tw38 TwT
75

83

85

93

95

T33

IndexOofOvoltage

R
e

lia
b

ili
ty

Om
c

p

Voltage

mOriginalOPUFpOReliabilityOonOvoltageOchangingAOtemperatureOatO23C

mAuto−characterizedOPUFpOReliabilityOonOvoltageOchangingAOtemperatureOatO23C

mAuto−characterizedOPUFOwithOmajorityOvotingpOReliabilityOonOvoltageOchangingAOtemperatureOatO23C

3 T3 23 33 43 53 63 73
83

85

93

95

T33

IndexOofOtemperature

R
e

lia
b

ili
ty

Om
c

p

Temperature

mOriginalOPUFpOReliabilityOonOtemperatureOchangingAOvoltageOatOTw3v

mAuto−characterizedOPUFpOReliabilityOonOtemperatureOchangingAOvoltageOatOTw3v

mAuto−characterizedOPUFOwithOmajorityOvotingpOReliabilityOonOtemperatureOchangingAOvoltageOatOTw3v

Fig. 16. Reliability results of 128-bit PUF ID generator based on the original PUF ID generator design,
the PUF ID generator design post auto-characterisation and the PUF ID generator design post auto-
characterisation with majority voting.

6.4. Uniformity

The uniformity of a PUF ID generator circuit measures the proportion of binary ones
and zeros in a response, i.e. one-to-zero ratio, and the likelihood of each value. If a
response possesses ideal uniformity and is truly random the distribution of bit values
will be 50% ones and zeros. Having this property is required from a security perspec-
tive to prevent an attacker from guessing if a response of a particular device is biased
towards a particular value. To estimate uniformity is simply a matter of finding the
hamming weight (HW) of a response, which will reveal the proportion of ones and
zeros, and any biases.

For device i and an n-bit response the percentage HW of the n−bit response is given
as follows:

(HW)l =
1

n

n∑

l=1

ri,l × 100 (5)

where, ri,l is the l-th position of the response bit on the i-th chip.
The proportion of 0’s and 1’s in a response is expected to be close to 50%, and in

this work the response uniformity is 51.06% for the original PUF ID generator de-
sign, 50.60% for the PUF ID generator design post-characterisation, and 50.54% for the
PUF ID generator design post-characterisation and including the majority function
circuitry, as shown in Table V.

6.5. Bit Aliasing

An effective PUF ID generator design should not exhibit bit-aliasing when imple-
mented on different devices. Bit-aliasing is when the ID response at stable positions
on different chips is identical or almost identical. To determine if bit-aliasing occurs,

the total number of 0s and 1s in a response from the same p−th position of k−devices
is calculated using the HW as follows:

(HW)p =
1

k

k∑

i=1

ri,p × 100 (6)

where, rp,i is the p-th position of a response bit on the i-th chip.
If bit-aliasing occurs and different devices generate the same response from many

physical positions, the security guarantees no longer hold. The percentage of 0s and 1s
at the same position in ten chips (k = 10) is evaluated and is shown in Table V. The
value for each of the designs is 56.48%, which means that all of the bit positions are
sufficiently different such that bit-aliasing is avoided for all three PUF ID generator
designs.

Table V. PUF ID generator results of the original design, the design post-characterisation and the design
post-characterisation and including error correction circuitry.

Metrics Original CHAR CHAR & MAJ
Uniqueness 48.52% 45.60% 45.60%
Reliability 92.00% 98.97% 99.58%
Uniformity 51.06% 50.60% 50.54%

Non-bit-aliasing 56.48% 56.48% 56.48%

Table VI. Comparison of hardware resource consumption and metrics of different Weak PUF designs.

PUF design U´ R´ Hardware
Resp
(bit)

Consumption

SRAM PUF [Guajardo et al. 2007] 49.97% > 88%t FPGA 128
4600 SRAM
memory bits

Latch PUF [Su et al. 2008] 50.55% 96.96%
0.13um
CMOS

128
1 latch for each

ID cell

Latch PUF [Yamamoto et al. 2011] 46% > 87%t Spartan 3 128 2× 128 slices

Flip-flop PUF [Maes et al. 2008] ≈ 50%∗ > 95%v Virtex 2 4096 4096 flip flops

Flip-flop PUF [van der Leest et al.
2010]

36% > 87%t ASIC 1024 1024 flip flops

Buskeeper PUF [Simons et al.
2012]

49%
> 80%t,
> 95%v

TSMC 65
nm

192 1GE1

Butterfly PUF [Kumar et al. 2008] ≈ 50%∗ 94% Virtex 5 64 130 slices

RO PUF [Suh and Devadas 2007] 46.15% 99.52% Virtex 4 128 16× 64 array2

CRO PUF [Merli et al. 2010] 43.50%
> 96%t,
≈ 100%∗

Spartan 3 127
64 slices for ROs
except counters

PUF ID generator [Gu et al. 2014]
48.52%(S-6),
49.90%(A-7)

93.21%(S-6),
93.93%(A-7)

Spartan 6,
Artix 7

128 128 slices

Ultra-compact PUF ID generator
[Gu and O’Neill 2015]

49.93% 93.96% Spartan 6 128 40 slices

Proposed improved PUF ID
generator

45.60%(S-6)
99.42%(M),
98.74%(A)

Spartan 6,
Artix 7

128 128 slices

1GE represented gate equivalent. 216 × 64 array = 1024 ROs; each RO consisting of 5 inverters and 1 AND.
U´is uniqueness, R´ is reliability. Resp is response. t under temperature variation. v under supply voltage
variation. ∗ required post-processing. M is manual characterisation process, A is automated characterisation
process.

Table V lists the results of all the evaluated PUF ID generator metrics. As previously
mentioned, the reliability result has significantly improved using characterisation and
a majority function, and is very close to the ideal value of 100%, with the uniformity
also improving. The uniqueness decreases slightly using the improved PUF ID genera-
tor design; however this could be optimized by changing the position of the 1-bit ID cell

hard-macro to also balance the percentage of 1s and 0s in each response. Bit-aliasing
does not occur in any of the designs.

6.6. Hardware Resources and Performance Analysis

For the manual characterisation process, ten identical Xilinx Spartan-6 boards were
tested, each assembled with identical parts and components. There are a total of 1, 430
slices on a Spartan-6 LX9 FPGA, where each slice contains four LUTs and eight flip-
flops. Each ID bit response generation design only needs one slice; hence, our 128-bit
identification generator without error correction circuitry occupies only 128

1430 × 100% =

8.95% of the total slice resource, and 128+128
1430 = 17.90% with error correction circuitry.

As can be seen the resource usage is minimal, even on a small FPGA. The layout is
controlled using hard macros, which helps achieve the minimal resource footprint.

For the automated characterisation process, ten identical Xilinx Artix-7 boards were
tested. Although a Xilinx Artix-7 FPGA does not have a SLICEX, its SLICEL and
SLICEM are essentially the same as that of a Xilinx Spartan-6. The SLICEL and
SLICEM of the Xilinx Artix-7 FPGA include all of the components of a SLICEX; hence
the 1-bit PUF ID generator can be implemented on either the SLICEM or SLICEL also.
In this experiment, a SLICEL is used to implement the hard macro. There are a total of
15, 850 slices on a Xilinx Artix-7 XC7A100T FPGA. Each 1-bit PUF ID generator design
only needs one slice; hence, the 128-bit PUF ID generator design without majority
voting circuitry occupies only 128

15,850 ×100% = 0.81% of the total slice resource available

on this FPGA.
The resource usage comparison between the proposed PUF ID generator and other

Weak PUFs implemented on hardware devices is shown in Table VI. The SRAM PUF
proposed by Guajardo et al. [Guajardo et al. 2007], using SRAM memory cell, can return
a response on power-up. The Latch PUF proposed by Su et al. [Su et al. 2008] is imple-
mented on an ASIC not FPGA. The Flip-flop PUF proposed by Maes et al. [Maes et al.

2008], similar to SRAM, uses the power-up values of the flip-flops, however its random-
ness is limited and post-processing is required. The Butterfly PUF [Kumar et al. 2008],
which is also suitable for FPGA implementation as it can be implemented using basic
logic gates, reported 94% reliability over temperature variations. However reliability
over voltage changes is not provided. It consumes 130 slices of a Xilinx Virtex-5 FPGA
device for a 64-bit response generation, hence uses twice the hardware resources of
the proposed 1-bit PUF ID generator design. The RO PUFs [Merli et al. 2010; Suh and
Devadas 2007] and the CRO PUF [Merli et al. 2010] have been implemented on differ-
ent FPGAs, e.g. Xilinx Virtex-4 and Spartan-3. The hardware resource consumption
is at least 384 slices for a 64-bit response. It can be seen that the proposed PUF ID
generator design is the most lightweight FPGA-based Weak PUF design reported to
date. Moreover, the performance results for uniqueness and reliability show the effec-
tiveness of the proposed PUF design.

7. CONCLUSIONS

In this paper, we have shown that an effective, reliable and low-cost PUF ID gener-
ator design is achievable for an FPGA device. A single ID cell fits efficiently within
one FPGA slice and can be tailored for instantiation as a hard-macro to achieve bal-
anced routing. The design is the most compact FPGA-based Weak PUF architecture
reported to date. An example 128-bit PUF ID generator is implemented on both a
Xilinx Spartan-6 and Artix-7 FPGA. It utilizes only half a slice for each 1-bit ID cell
which consumes only 8.95% of the overall hardware resources of the Spartan-6 de-
vice and 0.81% of the Artix-7 device. The manual characterisation post-processing en-
hances the reliability of the 128-bit PUF ID generator design from 93.21% to 99.42%

without the requirement of any additional hardware resources. A further improvement
to 99.78% is achieved when majority voting is also employed. An automated charac-
terisation method is presented, which improves the reliability of the 128-bit PUF ID
generator from 93.93% to 98.74% without the requirement of any additional hardware
resources, and 99.60% for the design that employs a majority voting. Overall, experi-
mental results demonstrate high uniqueness, reliability, uniformity and no bit-aliasing
with values of 45.60%, 50.60% and 56.48% using characterisation process, and values
of 45.60%, 50.54% and 56.58% using a further majority voting.

ACKNOWLEDGMENTS

This work has been supported by the KeyHAS project, the R&D program of IITP/MSIP (Study on secure key

hiding technology for IoT devices), and by the SPARKS project, funded by EU 7th Framework Programme

(FP7/2007-2013, grant agreement no. 608224; www.project-sparks.eu).

REFERENCES

Georg T. Becker. 2015. The Gap Between Promise and Reality: On the Insecurity
of XOR Arbiter PUFs. Springer Berlin Heidelberg, Berlin, Heidelberg, 535–555.
❉❖■✿http://dx.doi.org/10.1007/978-3-662-48324-4_27

Mudit Bhargava and Ken Mai. 2014. An efficient reliable PUF-based cryptographic key generator in 65nm
CMOS. In Proceedings of the ACM/IEEE Design, Automation and Test in Europe Conference and Exhi-
bition (DATE’14). 1–6. ❉❖■✿http://dx.doi.org/10.7873/DATE.2014.083

Christoph Bohm, Maximilian Hofer, and Wolfgang Pribyl. 2011. A microcontroller SRAM-PUF. In Proceed-
ings of the 5th International Conference on Network and System Security (NSS’11). 269–273.

Qingqing Chen, Gyorgy Csaba, Paolo Lugli, Ulf Schlichtmann, and Ulrich Ruhrmair. 2011. The Bistable
Ring PUF: A new architecture for strong Physical Unclonable Functions. In Proceedings of the IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST’11). San Diego, CA, 134–
141. ❉❖■✿http://dx.doi.org/10.1109/HST.2011.5955011

Mafalda Cortez, Said Hamdioui, Vincent van der Leest, Roel Maes, and Geert-Jan Schrijen. 2013. Adapt-
ing voltage ramp-up time for temperature noise reduction on memory-based PUFs. In Proceedings
of the IEEE International Symposium on Hardware-Oriented Security and Trust (HOST’13). 35–40.
❉❖■✿http://dx.doi.org/10.1109/HST.2013.6581562

Jeroen Delvaux and Ingrid Verbauwhede. 2014. Fault Injection Modeling Attacks on 65 nm Arbiter and RO
Sum PUFs via Environmental Changes. IEEE Trans. Circuits Syst. I, Reg. Papers 61, 6 (June 2014),
1701–1713. ❉❖■✿http://dx.doi.org/10.1109/TCSI.2013.2290845

Achiranshu Gary and Tony T. Kim. 2014. Design of SRAM PUF with improved uniformity and reliability uti-
lizing device aging effect. In Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS’14). IEEE, Melbourne, Australia, 1941–1944.

Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. 2002. Silicon Physical Random
Functions. In Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS
’02). ACM, New York, NY, USA, 148–160. ❉❖■✿http://dx.doi.org/10.1145/586110.586132

Chongyan Gu, Yijun Cui, Neil Hanley, and Máire O’Neill. 2016. Novel Lightweight FF-APUF Design for
FPGA. In Proceedings of 29th IEEE International System-on-Chip Conference, (SOCC’16). Seattle, WA,
USA.

Chongyan Gu, Julian Murphy, and Máire O’Neill. 2014. A unique and robust single slice FPGA identification
generator. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’14).
Melbourne, Australia, 1223–1226. ❉❖■✿http://dx.doi.org/10.1109/ISCAS.2014.6865362

Chongyan Gu and Máire O’Neill. 2015. Ultra-Compact and Robust FPGA-Based PUF Identification Gener-
ator. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’15). Lisbon,
Portugal. ❉❖■✿http://dx.doi.org/10.1109/ISCAS.2015.7168788

Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen, and Pim Tuyls. 2007. FPGA Intrinsic PUFs
and Their Use for IP Protection. Springer Berlin Heidelberg, Berlin, Heidelberg. 63–80 pages.
❉❖■✿http://dx.doi.org/10.1007/978-3-540-74735-2_5

Charles Herder, Meng-Day Yu, Farinaz Koushanfar, and Srinivas Devadas. 2014. Physical unclonable func-
tions and applications: A tutorial. Proc. IEEE 102, 8 (2014), 1126–1141.

Daniel E Holcomb, Wayne P Burleson, and Kevin Fu. 2009. Power-up SRAM state as an identifying finger-
print and source of true random numbers. IEEE Trans. Comput 58, 9 (2009), 1198–1210.

www.project-sparks.eu
http://dx.doi.org/10.1007/978-3-662-48324-4_27
http://dx.doi.org/10.7873/DATE.2014.083
http://dx.doi.org/10.1109/HST.2011.5955011
http://dx.doi.org/10.1109/HST.2013.6581562
http://dx.doi.org/10.1109/TCSI.2013.2290845
http://dx.doi.org/10.1145/586110.586132
http://dx.doi.org/10.1109/ISCAS.2014.6865362
http://dx.doi.org/10.1109/ISCAS.2015.7168788
http://dx.doi.org/10.1007/978-3-540-74735-2_5

Daniel E. Holcomb, Amir Rahmati, Mastooreh Salajegheh, Wayne P. Burleson, and Kevin Fu. 2013. DRV-
Fingerprinting: Using Data Retention Voltage of SRAM Cells for Chip Identification. Springer Berlin
Heidelberg, Berlin, Heidelberg, 165–179. ❉❖■✿http://dx.doi.org/10.1007/978-3-642-36140-1_12

Yohei Hori, Hyunho Kang, Toshihiro Katashita, Akashi Satoh, Shinichi Kawamura, and Kazukuni Kobara.
2014. Evaluation of Physical Unclonable Functions for 28-nm Process Field-Programmable Gate Arrays.
Journal of Information Processing 22, 2 (2014), 344–356.

Intrisic-ID. accessed 17th June 2015. NXP Secures Over Two Billion Payment and Govern-
ment ID Cards with SmartMX. (accessed 17th June 2015). https://www.intrinsic-id.com/
nxp-secures-over-two-billion-payment-and-government-id-cards-/with-smartmx/

Raghavan Kumar and Wayne Burleson. 2014. On design of a highly secure PUF based on non-linear
current mirrors. In Proceedings of the IEEE International Symposium on Hardware-Oriented Se-
curity and Trust HOST’14, Arlington, VA, USA, May 6-7, 2014. IEEE Computer Society, 38–43.
❉❖■✿http://dx.doi.org/10.1109/HST.2014.6855565

Sandeep S Kumar, Jorge Guajardo, Roel Maes, G-J Schrijen, and Pim Tuyls. 2008. The butterfly PUF pro-
tecting IP on every FPGA. In Proceedings of the IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST’08). 67–70. ❉❖■✿http://dx.doi.org/10.1109/HST.2008.4559053

Klaus Kursawe, Ahmad-Reza Sadeghi, Dries Schellekens, Boris Skoric, and Pim Tuyls. 2009. Reconfigurable
Physical Unclonable Functions - Enabling Technology for Tamper-resistant Storage. In Proceedings of
the IEEE International Workshop on Hardware-Oriented Security and Trust (HST ’09). IEEE Computer
Society, Washington, DC, USA, 22–29. ❉❖■✿http://dx.doi.org/10.1109/HST.2009.5225058

Daihyun Lim, Jae W Lee, Blaise Gassend, G Edward Suh, Marten Van Dijk, and Srinivas Devadas. 2005.
Extracting secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst 13, 10
(2005), 1200–1205.

Roel Maes, Pim Tuyls, and Ingrid Verbauwhede. 2008. Intrinsic PUFs from Flip-flops on Reconfigurable
Devices. In Proceedings of the 3rd Benelux Workshop on Information and System Security (WISSec’08).
Eindhoven,NL, 17.

Ahmed Mahmoud, Ulrich Rührmair, Mehrdad Majzoobi, and Farinaz Koushanfar. 2013. Combined Mod-
eling and Side Channel Attacks on Strong PUFs. IACR Cryptology ePrint Archive 2013 (2013), 632.
http://eprint.iacr.org/2013/632

Abhranil Maiti, Inyoung Kim, and Patrick Schaumont. 2012. A robust physical unclonable function with
enhanced challenge-response set. IEEE Trans. Inf. Forensics Security 7 (2012), 333–345.

Abhranil Maiti and Patrick Schaumont. 2012. A novel microprocessor-intrinsic Physical Unclonable Func-
tion. In Proceedings of the 22nd International Conference on Field Programmable Logic and Applications
(FPL’12). Oslo, Norway, 380–387. ❉❖■✿http://dx.doi.org/10.1109/FPL.2012.6339208

Mehrdad Majzoobi, Akshat Kharaya, Farinaz Koushanfar, and Srinivas Devadas. 2014. Automated Design,
Implementation, and Evaluation of Arbiter-based PUF on FPGA using Programmable Delay Lines.
IACR Cryptology ePrint Archive 2014 (2014), 639. http://eprint.iacr.org/2014/639

Dominik Merli, Frederic Stumpf, and Claudia Eckert. 2010. Improving the Quality of Ring Oscillator PUFs
on FPGAs. In Proceedings of the 5th Workshop on Embedded Systems Security (WESS ’10). ACM, New
York, NY, USA, Article 9, 9 pages. ❉❖■✿http://dx.doi.org/10.1145/1873548.1873557

Microsemi. accessed 17th June 2015. Microsemi SmartFusion2 SoC FPGAs Offer More Resources in Low
Density Devices With The Lowest Power, Proven Security and Exceptional Reliability. (accessed 17th
June 2015). http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2

Julian Murphy, Máire O’Neill, Frank Burns, Alex Bystrov, Alexandre Yakovlev, and Basel Halak. 2012.
Self-Timed Physically Unclonable Functions. In Proceedings of the 5th IFIP International Conference on
New Technologies, Mobility and Security (NTMS’12). Istanbul, Turkey, 1–5.

Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. 2002. Physical one-way functions. Science
297, 5589 (2002), 2026–2030.

Ed Peterson. 2015. Leveraging Asymmetric Authentication to Enhance Security-Critical Applications Using
Zynq-7000 All Programmable SoCs. (Oct. 2015). http://www.xilinx.com/support/documentation/white_
papers/wp468_asym-auth-zynq-7000.pdf

Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas, and Jürgen Schmidhuber.
2010. Modeling Attacks on Physical Unclonable Functions. In Proceedings of the 17th ACM Confer-
ence on Computer and Communications Security (CCS ’10). ACM, New York, NY, USA, 237–249.
❉❖■✿http://dx.doi.org/10.1145/1866307.1866335

Peter Simons, Erik van der Sluis, and Vincent van der Leest. 2012. Buskeeper PUFs, a promising alterna-
tive to D flip-flop PUFs. In Proceedings of the IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST’12). 7–12. ❉❖■✿http://dx.doi.org/10.1109/HST.2012.6224311

http://dx.doi.org/10.1007/978-3-642-36140-1_12
https://www.intrinsic-id.com/nxp-secures-over-two-billion-payment-and-government-id-cards-/with-smartmx/
https://www.intrinsic-id.com/nxp-secures-over-two-billion-payment-and-government-id-cards-/with-smartmx/
http://dx.doi.org/10.1109/HST.2014.6855565
http://dx.doi.org/10.1109/HST.2008.4559053
http://dx.doi.org/10.1109/HST.2009.5225058
http://eprint.iacr.org/2013/632
http://dx.doi.org/10.1109/FPL.2012.6339208
http://eprint.iacr.org/2014/639
http://dx.doi.org/10.1145/1873548.1873557
http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
http://www.xilinx.com/support/documentation/white_papers/wp468_asym-auth-zynq-7000.pdf
http://www.xilinx.com/support/documentation/white_papers/wp468_asym-auth-zynq-7000.pdf
http://dx.doi.org/10.1145/1866307.1866335
http://dx.doi.org/10.1109/HST.2012.6224311

Nicolas Sklavos. 2013. Securing Communication Devices via Physical Unclon-
able Functions (PUFs). Springer Fachmedien Wiesbaden, Wiesbaden, 253–261.
❉❖■✿http://dx.doi.org/10.1007/978-3-658-03371-2_22

Ying Su, Jeremy Holleman, and Brian P Otis. 2008. A digital 1.6 pJ/bit chip identification circuit using
process variations. IEEE J. Solid-State Circuits 43 (2008), 69–77.

G. Edward Suh and Srinivas Devadas. 2007. Physical Unclonable Functions for Device Authentication and
Secret Key Generation. In Proceedings of the 44th Annual Design Automation Conference (DAC ’07).
ACM, New York, NY, USA, 9–14. ❉❖■✿http://dx.doi.org/10.1145/1278480.1278484

Vincent van der Leest, Geert-Jan Schrijen, Helena Handschuh, and Pim Tuyls. 2010. Hardware Intrinsic
Security from D Flip-flops. In Proceedings of the 5th ACM Workshop on Scalable Trusted Computing
(STC ’10). ACM, New York, NY, USA, 53–62. ❉❖■✿http://dx.doi.org/10.1145/1867635.1867644

Arunkumar Vijayakumar and Sandip Kundu. 2015. A novel modeling attack resistant PUF design based
on non-linear voltage transfer characteristics. In Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2015, Grenoble, France, March 9-13, 2015, Wolfgang Nebel and
David Atienza (Eds.). ACM, 653–658. http://dl.acm.org/citation.cfm?id=2755903

David Wolpert and Paul Ampadu. 2012. Temperature effects in semiconductors. In Managing Temperature
Effects in Nanoscale Adaptive Systems. Springer, 15–33.

Xilinx. 2011. Spartan-6 Family Overview. (2011). http://www.xilinx.com/support/documentation/data_
sheets/ds160.pdf Accessed 29 April 2016.

Dai Yamamoto, Kazuo Sakiyama, Mitsugu Iwamoto, Kazuo Ohta, Takao Ochiai, Masahiko Takenaka,
and Kouichi Itoh. 2011. Uniqueness Enhancement of PUF Responses Based on the Locations of
Random Outputting RS Latches. In Cryptographic Hardware and Embedded Systems – CHES
2011: 13th International Workshop, Nara, Japan, September 28 – October 1, 2011. Proceedings,
Bart Preneel and Tsuyoshi Takagi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 390–406.
❉❖■✿http://dx.doi.org/10.1007/978-3-642-23951-9_26

Haile Yu, Philip H. W. Leong, and Qiang Xu. 2012. An FPGA chip identification generator using con-
figurable ring oscillators. IEEE Trans. Very Large Scale Integr. Syst. 20, 12 (Dec. 2012), 2198–2207.
❉❖■✿http://dx.doi.org/10.1109/TVLSI.2011.2173770

http://dx.doi.org/10.1007/978-3-658-03371-2_22
http://dx.doi.org/10.1145/1278480.1278484
http://dx.doi.org/10.1145/1867635.1867644
http://dl.acm.org/citation.cfm?id=2755903
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://dx.doi.org/10.1007/978-3-642-23951-9_26
http://dx.doi.org/10.1109/TVLSI.2011.2173770

	1 Introduction
	2 Related Work
	3 PUF ID Generator Circuit Design
	4 Implementation of Proposed PUF ID Generator Design
	5 Post-Characterisation Methodology
	5.1 Manual Characterisation Process
	5.2 Automated Characterisation Process

	6 Evaluation of Proposed Improved PUF ID Generator Design
	6.1 Experimental Setup
	6.2 Uniqueness
	6.3 Reliability
	6.3.1 Reliability with manual characterisation process
	6.3.2 Reliability with automated characterisation process

	6.4 Uniformity
	6.5 Bit Aliasing
	6.6 Hardware Resources and Performance Analysis

	7 Conclusions

