Improved Risk Tail Bounds for On-Line Algorithms *

Nicolò Cesa-Bianchi
DSI, Università di Milano
via Comelico 39
20135 Milano, Italy
cesa-bianchi@dsi.unimi.it

Claudio Gentile
DICOM, Università dell'Insubria
via Mazzini 5
21100 Varese, Italy
gentile@dsi.unimi.it

Abstract

We prove the strongest known bound for the risk of hypotheses selected from the ensemble generated by running a learning algorithm incrementally on the training data. Our result is based on proof techniques that are remarkably different from the standard risk analysis based on uniform convergence arguments.

1 Introduction

In this paper, we analyze the risk of hypotheses selected from the ensemble obtained by running an arbitrary on-line learning algorithm on an i.i.d. sequence of training data. We describe a procedure that selects from the ensemble a hypothesis whose risk is, with high probability, at most

$$
M_{n}+O\left(\frac{(\ln n)^{2}}{n}+\sqrt{\frac{M_{n}}{n} \ln n}\right)
$$

where M_{n} is the average cumulative loss incurred by the on-line algorithm on a training sequence of length n. Note that this bound exhibits the "fast" rate $(\ln n)^{2} / n$ whenever the cumulative loss $n M_{n}$ is $O(1)$.
This result is proven through a refinement of techniques that we used in [2] to prove the substantially weaker bound $M_{n}+O(\sqrt{(\ln n) / n})$. As in the proof of the older result, we analyze the empirical process associated with a run of the on-line learner using exponential inequalities for martingales. However, this time we control the large deviations of the on-line process using Bernstein's maximal inequality rather than the Azuma-Hoeffding inequality. This provides a much tighter bound on the average risk of the ensemble. Finally, we relate the risk of a specific hypothesis within the ensemble to the average risk. As in [2], we select this hypothesis using a deterministic sequential testing procedure, but the use of Bernstein's inequality makes the analysis of this procedure far more complicated.
The study of the statistical risk of hypotheses generated by on-line algorithms, initiated by Littlestone [5], uses tools that are sharply different from those used for uniform convergence analysis, a popular approach based on the manipulation of suprema of empirical

[^0]processes (see, e.g., [3]). Unlike uniform convergence, which is tailored to empirical risk minimization, our bounds hold for any learning algorithm. Indeed, disregarding efficiency issues, any learner can be run incrementally on a data sequence to generate an ensemble of hypotheses.

The consequences of this line of research to kernel and margin-based algorithms have been presented in our previous work [2].

Notation. An example is a pair (x, y), where $x \in \mathcal{X}$ (which we call instance) is a data element and $y \in \mathcal{Y}$ is the label associated with it. Instances x are tuples of numerical and/or symbolic attributes. Labels y belong to a finite set of symbols (the class elements) or to an interval of the real line, depending on whether the task is classification or regression. We allow a learning algorithm to output hypotheses of the form $h: \mathcal{X} \rightarrow \mathcal{D}$, where \mathcal{D} is a decision space not necessarily equal to \mathcal{Y}. The goodness of hypothesis h on example (x, y) is measured by the quantity $\ell(h(x), y)$, where $\ell: \mathcal{D} \times \mathcal{Y} \rightarrow \mathbb{R}$ is a nonnegative and bounded loss function.

2 A bound on the average risk

An on-line algorithm A works in a sequence of trials. In each trial $t=1,2, \ldots$ the algorithm takes in input a hypothesis H_{t-1} and an example $Z_{t}=\left(X_{t}, Y_{t}\right)$, and returns a new hypothesis H_{t} to be used in the next trial. We follow the standard assumptions in statistical learning: the sequence of examples $Z^{n}=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right)$ is drawn i.i.d. according to an unknown distribution over $\mathcal{X} \times \mathcal{Y}$. We also assume that the loss function ℓ satisfies $0 \leq \ell \leq 1$. The success of a hypothesis h is measured by the risk of h, denoted by risk (h). This is the expected loss of h on an example (X, Y) drawn from the underlying distribution, $\operatorname{risk}(h)=\mathbb{E} \ell(h(X), Y)$. Define also riskemp (h) to be the empirical risk of h on a sample Z^{n},

$$
\operatorname{risk}_{\operatorname{emp}}(h)=\frac{1}{n} \sum_{t=1}^{n} \ell\left(h\left(X_{t}\right), Y_{t}\right) .
$$

Given a sample Z^{n} and an on-line algorithm A, we use $H_{0}, H_{1}, \ldots, H_{n-1}$ to denote the ensemble of hypotheses generated by A. Note that the ensemble is a function of the random training sample Z^{n}. Our bounds hinge on the sample statistic

$$
M_{n}=M_{n}\left(Z^{n}\right)=\frac{1}{n} \sum_{t=1}^{n} \ell\left(H_{t-1}\left(X_{t}\right), Y_{t}\right)
$$

which can be easily computed as the on-line algorithm is run on Z^{n}.
The following bound, a consequence of Bernstein's maximal inequality for martingales due to Freedman [4], is of primary importance for proving our results.

Lemma 1 Let L_{1}, L_{2}, \ldots be a sequence of random variables, $0 \leq L_{t} \leq 1$. Define the bounded martingale difference sequence $V_{t}=\mathbb{E}\left[L_{t} \mid L_{1}, \ldots, L_{t-1}\right]-\bar{L}_{t}$ and the associated martingale $S_{n}=V_{1}+\ldots+V_{n}$ with conditional variance $K_{n}=\sum_{t=1}^{n} \operatorname{Var}\left[L_{t} \mid\right.$ $\left.L_{1}, \ldots, L_{t-1}\right]$. Then, for all $s, k \geq 0$,

$$
\mathbb{P}\left(S_{n} \geq s, K_{n} \leq k\right) \leq \exp \left(-\frac{s^{2}}{2 k+2 s / 3}\right)
$$

The next proposition, derived from Lemma 1, establishes a bound on the average risk of the ensemble of hypotheses.

Proposition 2 Let H_{0}, \ldots, H_{n-1} be the ensemble of hypotheses generated by an arbitrary on-line algorithm A. Then, for any $0<\delta \leq 1$,
$\mathbb{P}\left(\frac{1}{n} \sum_{t=1}^{n} \operatorname{risk}\left(H_{t-1}\right) \geq M_{n}+\frac{36}{n} \ln \left(\frac{n M_{n}+3}{\delta}\right)+2 \sqrt{\frac{M_{n}}{n} \ln \left(\frac{n M_{n}+3}{\delta}\right)}\right) \leq \delta$.
The bound shown in Proposition 2 has the same rate as a bound recently proven by Zhang [6, Theorem 5]. However, rather than deriving the bound from Bernstein inequality as we do, Zhang uses an ad hoc argument.

Proof. Let

$$
\mu_{n}=\frac{1}{n} \sum_{t=1}^{n} \operatorname{risk}\left(H_{t-1}\right) \quad \text { and } \quad V_{t-1}=\operatorname{risk}\left(H_{t-1}\right)-\ell\left(H_{t-1}\left(X_{t}\right), Y_{t}\right) \quad \text { for } t \geq 1
$$

Let κ_{t} be the conditional variance $\operatorname{Var}\left(\ell\left(H_{t-1}\left(X_{t}\right), Y_{t}\right) \mid Z_{1}, \ldots, Z_{t-1}\right)$. Also, set for brevity $K_{n}=\sum_{t=1}^{n} \kappa_{t}, K_{n}^{\prime}=\left\lfloor\sum_{t=1}^{n} \kappa_{t}\right\rfloor$, and introduce the function $A(x)=$ $2 \ln \frac{(x+1)(x+3)}{\delta}$ for $x \geq 0$. We find upper and lower bounds on the probability

$$
\begin{equation*}
\mathbb{P}\left(\sum_{t=1}^{n} V_{t-1} \geq A\left(K_{n}\right)+\sqrt{A\left(K_{n}\right) K_{n}}\right) . \tag{1}
\end{equation*}
$$

The upper bound is determined through a simple stratification argument over Lemma 1. We can write

$$
\begin{aligned}
\mathbb{P}\left(\sum_{t=1}^{n} V_{t-1}\right. & \left.\geq A\left(K_{n}\right)+\sqrt{A\left(K_{n}\right) K_{n}}\right) \\
& \leq \mathbb{P}\left(\sum_{t=1}^{n} V_{t-1} \geq A\left(K_{n}^{\prime}\right)+\sqrt{A\left(K_{n}^{\prime}\right) K_{n}^{\prime}}\right) \\
& \leq \sum_{s=0}^{n} \mathbb{P}\left(\sum_{t=1}^{n} V_{t-1} \geq A(s)+\sqrt{A(s) s}, K_{n}^{\prime}=s\right) \\
& \leq \sum_{s=0}^{n} \mathbb{P}\left(\sum_{t=1}^{n} V_{t-1} \geq A(s)+\sqrt{A(s) s}, K_{n} \leq s+1\right) \\
& \leq \sum_{s=0}^{n} \exp \left(-\frac{(A(s)+\sqrt{A(s) s})^{2}}{\frac{2}{3}(A(s)+\sqrt{A(s) s})+2(s+1)}\right) \quad \text { (using Lemma 1). }
\end{aligned}
$$

Since $\frac{(A(s)+\sqrt{A(s) s})^{2}}{\frac{2}{3}(A(s)+\sqrt{A(s) s})+2(s+1)} \geq A(s) / 2$ for all $s \geq 0$, we obtain

$$
\begin{equation*}
(1) \leq \sum_{s=0}^{n} e^{-A(s) / 2}=\sum_{s=0}^{n} \frac{\delta}{(s+1)(s+3)}<\delta . \tag{2}
\end{equation*}
$$

As far as the lower bound on (1) is concerned, we note that our assumption $0 \leq \ell \leq 1$ implies $\kappa_{t} \leq \operatorname{risk}\left(H_{t-1}\right)$ for all t which, in turn, gives $K_{n} \leq n \mu_{n}$. Thus

$$
\begin{aligned}
(1) & =\mathbb{P}\left(n \mu_{n}-n M_{n} \geq A\left(K_{n}\right)+\sqrt{A\left(K_{n}\right) K_{n}}\right) \\
& \geq \mathbb{P}\left(n \mu_{n}-n M_{n} \geq A\left(n \mu_{n}\right)+\sqrt{A\left(n \mu_{n}\right) n \mu_{n}}\right) \\
& =\mathbb{P}\left(2 n \mu_{n} \geq 2 n M_{n}+3 A\left(n \mu_{n}\right)+\sqrt{4 n M_{n} A\left(n \mu_{n}\right)+5 A\left(n \mu_{n}\right)^{2}}\right) \\
& =\mathbb{P}\left(x \geq B+\frac{3}{2} A(x)+\sqrt{B A(x)+\frac{5}{4} A^{2}(x)}\right),
\end{aligned}
$$

where we set for brevity $x=n \mu_{n}$ and $B=n M_{n}$. We would like to solve the inequality

$$
\begin{equation*}
x \geq B+\frac{3}{2} A(x)+\sqrt{B A(x)+\frac{5}{4} A^{2}(x)} \tag{3}
\end{equation*}
$$

w.r.t. x. More precisely, we would like to find a suitable upper bound on the (unique) x^{*} such that the above is satisfied as an equality.
A (tedious) derivative argument along with the upper bound $A(x) \leq 4 \ln \left(\frac{x+3}{\delta}\right)$ show that

$$
x^{\prime}=B+2 \sqrt{B \ln \left(\frac{B+3}{\delta}\right)}+36 \ln \left(\frac{B+3}{\delta}\right)
$$

makes the left-hand side of (3) larger than its right-hand side. Thus x^{\prime} is an upper bound on x^{*}, and we conclude that

$$
(1) \geq \mathbb{P}\left(x \geq B+2 \sqrt{B \ln \left(\frac{B+3}{\delta}\right)}+36 \ln \left(\frac{B+3}{\delta}\right)\right)
$$

which, recalling the definitions of x and B, and combining with (2), proves the bound.

3 Selecting a good hypothesis from the ensemble

If the decision space \mathcal{D} of A is a convex set and the loss function ℓ is convex in its first argument, then via Jensen's inequality we can directly apply the bound of Proposition 2 to the risk of the average hypothesis $\bar{H}=\frac{1}{n} \sum_{t=1}^{n} H_{t-1}$. This yields

$$
\begin{equation*}
\mathbb{P}\left(\operatorname{risk}(\bar{H}) \geq M_{n}+\frac{36}{n} \ln \left(\frac{n M_{n}+3}{\delta}\right)+2 \sqrt{\frac{M_{n}}{n} \ln \left(\frac{n M_{n}+3}{\delta}\right)}\right) \leq \delta \tag{4}
\end{equation*}
$$

Observe that this is a $O(1 / n)$ bound whenever the cumulative loss $n M_{n}$ is $O(1)$.
If the convexity hypotheses do not hold (as in the case of classification problems), then the bound in (4) applies to a hypothesis randomly drawn from the ensemble (this was investigated in [1] though with different goals).
In this section we show how to deterministically pick from the ensemble a hypothesis whose risk is close to the average ensemble risk.
To see how this could be done, let us first introduce the functions

$$
\mathcal{E}_{\delta}(r, t)=\frac{8 B}{3(n-t)}+\sqrt{\frac{2 B r}{n-t}} \quad \text { and } \quad c_{\delta}(r, t)=\mathcal{E}_{\delta}\left(r+\sqrt{\frac{2 B r}{n-t}}, t\right)
$$

with $B=\ln \frac{n(n+2)}{\delta}$.
Let riskemp $\left(H_{t}, t+1\right)+\mathcal{E}_{\delta}\left(\right.$ riskemp $\left.\left(H_{t}, t+1\right), t\right)$ be the penalized empirical risk of hypothesis H_{t}, where

$$
\operatorname{risk}_{\mathrm{emp}}\left(H_{t}, t+1\right)=\frac{1}{n-t} \sum_{i=t+1}^{n} \ell\left(H_{t}\left(X_{i}\right), Y_{i}\right)
$$

is the empirical risk of H_{t} on the remaining sample Z_{t+1}, \ldots, Z_{n}. We now analyze the performance of the learning algorithm that returns the hypothesis \widehat{H} minimizing the penalized risk estimate over all hypotheses in the ensemble, i.e., ${ }^{1}$

$$
\begin{equation*}
\widehat{H}=\underset{0 \leq t<n}{\operatorname{argmin}}\left(\operatorname{risk}_{\mathrm{emp}}\left(H_{t}, t+1\right)+\mathcal{E}_{\delta}\left(\operatorname{risk}_{\operatorname{emp}}\left(H_{t}, t+1\right), t\right)\right) . \tag{5}
\end{equation*}
$$

[^1]Lemma 3 Let H_{0}, \ldots, H_{n-1} be the ensemble of hypotheses generated by an arbitrary online algorithm A working with a loss ℓ satisfying $0 \leq \ell \leq 1$. Then, for any $0<\delta \leq 1$, the hypothesis \widehat{H} satisfies

$$
\mathbb{P}\left(\operatorname{risk}(\widehat{H})>\min _{0 \leq t<n}\left(\operatorname{risk}\left(H_{t}\right)+2 c_{\delta}\left(\operatorname{risk}\left(H_{t}\right), t\right)\right)\right) \leq \delta
$$

Proof. We introduce the following short-hand notation

$$
\begin{aligned}
& R_{t}=\operatorname{risk}_{\operatorname{emp}}\left(H_{t}, t+1\right), \quad \widehat{T}=\underset{0 \leq t<n}{\operatorname{argmin}}\left(R_{t}+\mathcal{E}_{\delta}\left(R_{t}, t\right)\right) \\
& T^{*}=\underset{0 \leq t<n}{\operatorname{argmin}}\left(\operatorname{risk}\left(H_{t}\right)+2 c_{\delta}\left(\operatorname{risk}\left(H_{t}\right), t\right)\right)
\end{aligned}
$$

Also, let $H^{*}=H_{T^{*}}$ and $R^{*}=$ riskemp $\left(H_{T^{*}}, T^{*}+1\right)=R_{T^{*}}$. Note that \widehat{H} defined in (5) coincides with $H_{\widehat{T}}$. Finally, let

$$
Q(r, t)=\frac{\sqrt{2 B(2 B+9 r(n-t))}-2 B}{3(n-t)}
$$

With this notation we can write

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{risk}(\widehat{H})>\operatorname{risk}\left(H^{*}\right)+2 c_{\delta}\left(\operatorname{risk}\left(H^{*}\right), T^{*}\right)\right) \\
& \quad \leq \mathbb{P}\left(\operatorname{risk}(\widehat{H})>\operatorname{risk}\left(H^{*}\right)+2 c_{\delta}\left(R^{*}-Q\left(R^{*}, T^{*}\right), T^{*}\right)\right) \\
& \quad+\mathbb{P}\left(\operatorname{risk}\left(H^{*}\right)<R^{*}-Q\left(R^{*}, T^{*}\right)\right) \\
& \quad \leq \mathbb{P}\left(\operatorname{risk}(\widehat{H})>\operatorname{risk}\left(H^{*}\right)+2 c_{\delta}\left(R^{*}-Q\left(R^{*}, T^{*}\right), T^{*}\right)\right) \\
& \quad+\sum_{t=0}^{n-1} \mathbb{P}\left(\operatorname{risk}\left(H_{t}\right)<R_{t}-Q\left(R_{t}, t\right)\right)
\end{aligned}
$$

Applying the standard Bernstein's inequality (see, e.g., [3, Ch. 8]) to the random variables R_{t} with $\left|R_{t}\right| \leq 1$ and expected value $\operatorname{risk}\left(H_{t}\right)$, and upper bounding the variance of R_{t} with risk $\left(H_{t}\right)$, yields

$$
\mathbb{P}\left(\operatorname{risk}\left(H_{t}\right)<R_{t}-\frac{B+\sqrt{B\left(B+18(n-t) \operatorname{risk}\left(H_{t}\right)\right)}}{3(n-t)}\right) \leq e^{-B}
$$

With a little algebra, it is easy to show that

$$
\operatorname{risk}\left(H_{t}\right)<R_{t}-\frac{B+\sqrt{B\left(B+18(n-t) \operatorname{risk}\left(H_{t}\right)\right)}}{3(n-t)}
$$

is equivalent to $\operatorname{risk}\left(H_{t}\right)<R_{t}-Q\left(R_{t}, t\right)$. Hence, we get

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{risk}(\widehat{H})>\operatorname{risk}\left(H^{*}\right)+2 c_{\delta}\left(\operatorname{risk}\left(H^{*}\right), T^{*}\right)\right) \\
& \quad \leq \mathbb{P}\left(\operatorname{risk}(\widehat{H})>\operatorname{risk}\left(H^{*}\right)+2 c_{\delta}\left(R^{*}-Q\left(R^{*}, T^{*}\right), T^{*}\right)\right)+n e^{-B} \\
& \quad \leq \mathbb{P}\left(\operatorname{risk}(\widehat{H})>\operatorname{risk}\left(H^{*}\right)+2 \mathcal{E}_{\delta}\left(R^{*}, T^{*}\right)\right)+n e^{-B}
\end{aligned}
$$

where in the last step we used

$$
Q(r, t) \leq \sqrt{\frac{2 B r}{n-t}} \quad \text { and } \quad c_{\delta}\left(r-\sqrt{\frac{2 B r}{n-t}}, t\right)=\mathcal{E}_{\delta}(r, t)
$$

Set for brevity $\mathcal{E}=\mathcal{E}_{\delta}\left(R^{*}, T^{*}\right)$. We have

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{risk}(\widehat{H})>\operatorname{risk}\left(H^{*}\right)+2 \mathcal{E}\right) \\
& \quad=\mathbb{P}\left(\operatorname{risk}(\widehat{H})>\operatorname{risk}\left(H^{*}\right)+2 \mathcal{E}, R_{\widehat{T}}+\mathcal{E}_{\delta}\left(R_{\widehat{T}}, \widehat{T}\right) \leq R^{*}+\mathcal{E}\right)
\end{aligned}
$$

(since $R_{\widehat{T}}+\mathcal{E}_{\delta}\left(R_{\widehat{T}}, \widehat{T}\right) \leq R^{*}+\mathcal{E}$ holds with certainty)
$\leq \sum_{t=0}^{n-1} \mathbb{P}\left(R_{t}+\mathcal{E}_{\delta}\left(R_{t}, t\right) \leq R^{*}+\mathcal{E}, \operatorname{risk}\left(H_{t}\right)>\operatorname{risk}\left(H^{*}\right)+2 \mathcal{E}\right)$.
Now, if $R_{t}+\mathcal{E}_{\delta}\left(R_{t}, t\right) \leq R^{*}+\mathcal{E}$ holds, then at least one of the following three conditions $R_{t} \leq \operatorname{risk}\left(H_{t}\right)-\mathcal{E}_{\delta}\left(R_{t}, t\right), \quad R^{*}>\operatorname{risk}\left(H^{*}\right)+\mathcal{E}, \quad \operatorname{risk}\left(H_{t}\right)-\operatorname{risk}\left(H^{*}\right)<2 \mathcal{E}$ must hold. Hence, for any fixed t we can write

$$
\begin{align*}
\mathbb{P}\left(R_{t}+\right. & \left.\mathcal{E}_{\delta}\left(R_{t}, t\right) \leq R^{*}+\mathcal{E}, \operatorname{risk}\left(H_{t}\right)>\operatorname{risk}\left(H^{*}\right)+2 \mathcal{E}\right) \\
\leq & \mathbb{P}\left(R_{t} \leq \operatorname{risk}\left(H_{t}\right)-\mathcal{E}_{\delta}\left(R_{t}, t\right), \operatorname{risk}\left(H_{t}\right)>\operatorname{risk}\left(H^{*}\right)+2 \mathcal{E}\right) \\
& +\mathbb{P}\left(R^{*}>\operatorname{risk}\left(H^{*}\right)+\mathcal{E}, \operatorname{risk}\left(H_{t}\right)>\operatorname{risk}\left(H^{*}\right)+2 \mathcal{E}\right) \\
& +\mathbb{P}\left(\operatorname{risk}\left(H_{t}\right)-\operatorname{risk}\left(H^{*}\right)<2 \mathcal{E}, \operatorname{risk}\left(H_{t}\right)>\operatorname{risk}\left(H^{*}\right)+2 \mathcal{E}\right) \\
\leq & \mathbb{P}\left(R_{t} \leq \operatorname{risk}\left(H_{t}\right)-\mathcal{E}_{\delta}\left(R_{t}, t\right)\right)+\mathbb{P}\left(R^{*}>\operatorname{risk}\left(H^{*}\right)+\mathcal{E}\right) \tag{7}
\end{align*}
$$

Plugging (7) into (6) we have

$$
\begin{aligned}
& \mathbb{P}\left(\operatorname{risk}(\widehat{H})>\operatorname{risk}\left(H^{*}\right)+2 \mathcal{E}\right) \\
& \quad \leq \sum_{t=0}^{n-1} \mathbb{P}\left(R_{t} \leq \operatorname{risk}\left(H_{t}\right)-\mathcal{E}_{\delta}\left(R_{t}, t\right)\right)+n \mathbb{P}\left(R^{*}>\operatorname{risk}\left(H^{*}\right)+\mathcal{E}\right) \\
& \quad \leq n e^{-B}+n \sum_{t=0}^{n-1} \mathbb{P}\left(R_{t} \geq \operatorname{risk}\left(H_{t}\right)+\mathcal{E}_{\delta}\left(R_{t}, t\right)\right) \leq n e^{-B}+n^{2} e^{-B}
\end{aligned}
$$

where in the last two inequalities we applied again Bernstein's inequality to the random variables R_{t} with mean $\operatorname{risk}\left(H_{t}\right)$. Putting together we obtain

$$
\mathbb{P}\left(\operatorname{risk}(\widehat{H})>\operatorname{risk}\left(H^{*}\right)+2 c_{\delta}\left(\operatorname{risk}\left(H^{*}\right), T^{*}\right)\right) \leq\left(2 n+n^{2}\right) e^{-B}
$$

which, recalling that $B=\ln \frac{n(n+2)}{\delta}$, implies the thesis.
Fix $n \geq 1$ and $\delta \in(0,1)$. For each $t=0, \ldots, n-1$, introduce the function

$$
f_{t}(x)=x+\frac{11 C}{3} \frac{\ln (n-t)+1}{n-t}+2 \sqrt{\frac{2 C x}{n-t}}, \quad x \geq 0,
$$

where $C=\ln \frac{2 n(n+2)}{\delta}$. Note that each f_{t} is monotonically increasing. We are now ready to state and prove the main result of this paper.

Theorem 4 Fix any loss function ℓ satisfying $0 \leq \ell \leq 1$. Let H_{0}, \ldots, H_{n-1} be the ensemble of hypotheses generated by an arbitrary on-line algorithm A and let \widehat{H} be the hypothesis minimizing the penalized empirical risk expression obtained by replacing c_{δ} with $c_{\delta / 2}$ in (5). Then, for any $0<\delta \leq 1, \widehat{H}$ satisfies

$$
\mathbb{P}\left(\operatorname{risk}(\widehat{H}) \geq \min _{0 \leq t<n} f_{t}\left(M_{t, n}+\frac{36}{n-t} \ln \frac{2 n(n+3)}{\delta}+2 \sqrt{\frac{M_{t, n} \ln \frac{2 n(n+3)}{\delta}}{n-t}}\right)\right) \leq \delta
$$

where $M_{t, n}=\frac{1}{n-t} \sum_{i=t+1}^{n} \ell\left(H_{i-1}\left(X_{i}\right), Y_{i}\right)$. In particular, upper bounding the minimum over t with $t=0$ yields

$$
\begin{equation*}
\mathbb{P}\left(\operatorname{risk}(\widehat{H}) \geq f_{0}\left(M_{n}+\frac{36}{n} \ln \frac{2 n(n+3)}{\delta}+2 \sqrt{\frac{M_{n} \ln \frac{2 n(n+3)}{\delta}}{n}}\right)\right) \leq \delta \tag{8}
\end{equation*}
$$

For $n \rightarrow \infty$, bound (8) shows that $\operatorname{risk}(\widehat{H})$ is bounded with high probability by

$$
M_{n}+O\left(\frac{\ln ^{2} n}{n}+\sqrt{\frac{M_{n} \ln n}{n}}\right)
$$

If the empirical cumulative loss $n M_{n}$ is small (say, $M_{n} \leq c / n$, where c is constant with n), then our penalized empirical risk minimizer \widehat{H} achieves a $O\left(\left(\ln ^{2} n\right) / n\right)$ risk bound. Also, recall that, in this case, under convexity assumptions the average hypothesis \bar{H} achieves the sharper bound $O(1 / n)$.

Proof. Let $\mu_{t, n}=\frac{1}{n-t} \sum_{i=t}^{n-1} \operatorname{risk}\left(H_{i}\right)$. Applying Lemma 3 with $c_{\delta / 2}$ we obtain

$$
\begin{equation*}
\mathbb{P}\left(\operatorname{risk}(\widehat{H})>\min _{0 \leq t<n}\left(\operatorname{risk}\left(H_{t}\right)+c_{\delta / 2}\left(\operatorname{risk}\left(H_{t}\right), t\right)\right)\right) \leq \frac{\delta}{2} \tag{9}
\end{equation*}
$$

We then observe that

$$
\begin{aligned}
& \min _{0 \leq t<n}\left(\operatorname{risk}\left(H_{t}\right)+c_{\delta / 2}\left(\operatorname{risk}\left(H_{t}\right), t\right)\right) \\
& \quad=\min _{0 \leq t<n} \min _{t \leq i<n}\left(\operatorname{risk}\left(H_{i}\right)+c_{\delta / 2}\left(\operatorname{risk}\left(H_{i}\right), i\right)\right) \\
& \quad \leq \min _{0 \leq t<n} \frac{1}{n-t} \sum_{i=t}^{n-1}\left(\operatorname{risk}\left(H_{i}\right)+c_{\delta / 2}\left(\operatorname{risk}\left(H_{i}\right), i\right)\right) \\
& \quad \leq \min _{0 \leq t<n}\left(\mu_{t, n}+\frac{1}{n-t} \sum_{i=t}^{n-1} \frac{8}{3} \frac{C}{n-i}+\frac{1}{n-t} \sum_{i=t}^{n-1}\left(\sqrt{\frac{2 C \operatorname{risk}\left(H_{i}\right)}{n-i}}+\frac{C}{n-i}\right)\right)
\end{aligned}
$$

$$
\text { (using the inequality } \sqrt{x+y} \leq \sqrt{x}+\frac{y}{2 \sqrt{x}} \text {) }
$$

$$
=\min _{0 \leq t<n}\left(\mu_{t, n}+\frac{1}{n-t} \sum_{i=t}^{n-1} \frac{11}{3} \frac{C}{n-i}+\frac{1}{n-t} \sum_{i=t}^{n-1} \sqrt{\frac{2 C \operatorname{risk}\left(H_{i}\right)}{n-i}}\right)
$$

$$
\leq \min _{0 \leq t<n}\left(\mu_{t, n}+\frac{11 C}{3} \frac{\ln (n-t)+1}{n-t}+2 \sqrt{\frac{2 C \mu_{t, n}}{n-t}}\right)
$$

$$
\text { (using } \sum_{i=1}^{k} 1 / i \leq 1+\ln k \text { and the concavity of the square root) }
$$

$$
=\min _{0 \leq t<n} f_{t}\left(\mu_{t, n}\right)
$$

Now, it is clear that Proposition 2 can be immediately generalized to imply the following set of inequalities, one for each $t=0, \ldots, n-1$,

$$
\begin{equation*}
\mathbb{P}\left(\mu_{t, n} \geq M_{t, n}+\frac{36 A}{n-t}+2 \sqrt{\frac{M_{t, n} A}{n-t}}\right) \leq \frac{\delta}{2 n} \tag{10}
\end{equation*}
$$

where $A=\ln \frac{2 n(n+3)}{\delta}$. Introduce the random variables K_{0}, \ldots, K_{n-1} to be defined later. We can write

$$
\begin{aligned}
& \mathbb{P}\left(\min _{0 \leq t<n}\left(\operatorname{risk}\left(H_{t}\right)+c_{\delta / 2}\left(\operatorname{risk}\left(H_{t}\right), t\right)\right) \geq \min _{0 \leq t<n} K_{t}\right) \\
& \quad \leq \mathbb{P}\left(\min _{0 \leq t<n} f_{t}\left(\mu_{t, n}\right) \geq \min _{0 \leq t<n} K_{t}\right) \leq \sum_{t=0}^{n-1} \mathbb{P}\left(f_{t}\left(\mu_{t, n}\right) \geq K_{t}\right)
\end{aligned}
$$

Now, for each $t=0, \ldots, n-1$, define $K_{t}=f_{t}\left(M_{t, n}+\frac{36 A}{n-t}+2 \sqrt{\frac{M_{t, n} A}{n-t}}\right)$. Then (10) and the monotonicity of f_{0}, \ldots, f_{n-1} allow us to obtain

$$
\begin{aligned}
& \mathbb{P}\left(\min _{0 \leq t<n}\left(\operatorname{risk}\left(H_{t}\right)+c_{\delta / 2}\left(\operatorname{risk}\left(H_{t}\right), t\right)\right) \geq \min _{0 \leq t<n} K_{t}\right) \\
& \quad \leq \sum_{t=0}^{n-1} \mathbb{P}\left(f_{t}\left(\mu_{t, n}\right) \geq f_{t}\left(M_{t, n}+\frac{36 A}{n-t}+2 \sqrt{\frac{M_{t, n} A}{n-t}}\right)\right) \\
& \quad=\sum_{t=0}^{n-1} \mathbb{P}\left(\mu_{t, n} \geq M_{t, n}+\frac{36 A}{n-t}+2 \sqrt{\frac{M_{t, n} A}{n-t}}\right) \leq \delta / 2
\end{aligned}
$$

Combining with (9) concludes the proof.

4 Conclusions and current research issues

We have shown tail risk bounds for specific hypotheses selected from the ensemble generated by the run of an arbitrary on-line algorithm. Proposition 2, our simplest bound, is proven via an easy application of Bernstein's maximal inequality for martingales, a quite basic result in probability theory. The analysis of Theorem 4 is also centered on the same martingale inequality. An open problem is to simplify this analysis, possibly obtaining a more readable bound. Also, the bound shown in Theorem 4 contains $\ln n$ terms. We do not know whether these logarithmic terms can be improved to $\ln \left(M_{n} n\right)$, similarly to Proposition 2. A further open problem is to prove lower bounds, even in the special case when $n M_{n}$ is bounded by a constant.

References

[1] A. Blum, A. Kalai, and J. Langford. Beating the hold-out. In Proc. 12th COLT, 1999.
[2] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning algorithms. IEEE Trans. on Information Theory, 50(9):2050-2057, 2004.
[3] L. Devroye, L. Győrfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer Verlag, 1996.
[4] D. A. Freedman. On tail probabilities for martingales. The Annals of Probability, 3:100-118, 1975.
[5] N. Littlestone. From on-line to batch learning. In Proc. 2nd COLT, 1989.
[6] T. Zhang. Data dependent concentration bounds for sequential prediction algorithms. In Proc. 18th COLT, 2005.

[^0]: ${ }^{*}$ Part of the results contained in this paper have been presented in a talk given at the NIPS 2004 workshop on " (Ab) Use of Bounds".

[^1]: ${ }^{1}$ Note that, from an algorithmic point of view, this hypothesis is fairly easy to compute. In particular, if the underlying on-line algorithm is a standard kernel-based algorithm, \widehat{H} can be calculated via a single sweep through the example sequence.

