Improved rough approximations based on variable J-containment neighborhoods

Tingting Zheng ${ }^{1}$ (${ }^{\text {© }}$

Received: 13 January 2023/Accepted: 23 March 2023
© The Author(s) 2023

Abstract

Classic generalized rough set model in neighborhood systems provides a more general framework for depicting approximations, while it may meet the non-reflexive situations. Some scholars put forward different neighborhoods, such as adhesion neighborhoods (briefly, P_{j}-neighborhoods), containment neighborhoods (briefly, C_{j}-neighborhoods), and $E_{j}-$ neighborhoods. However, not all of them are reflexive. Moreover, the granularity of P_{j}-neighborhoods and C_{j}-neighborhoods are too fine, and that of E_{j}-neighborhoods too coarse. To solve the problem, we aim to design a novel construction approach of neighborhoods, called variable j-containment neighborhoods (briefly, V_{j}^{β}-neighborhoods), which satisfies the reflexivity and the granularity so flexible that the neighborhood space can adjust the granularity to meet the needs of problems. We generalize three kinds of rough approximations in V_{j}^{β}-neighborhood spaces and discuss their properties. What's more, we analyze the topology structures relying on V_{j}^{β}-neighborhood spaces and compare our proposed approach with the existing approaches. By selecting the appropriate parameter β, our neighborhood system is more flexible in adjusting the granularity to fit problem requirements. And illustrative examples demonstrate the advantages of the proposed rough set model to attribute reduction in incomplete information systems.

Keywords Variable j-containment neighborhood (V_{j}^{β}-neighborhood) • Lower and upper approximation • Attribute reduction • Topology structure • Accuracy measure • Dependence measure

1 Introduction

Rough set theory, proposed by Pawlak (1991), described as a pair of approximations, is a useful tool associated with granular computing for manipulating incomplete, vague, and imperfect knowledge. It has been applied to many fields of science and engineering, such as data mining, imaging process, medical diagnosis, oil extraction, and so on. The classical rough set model is built in equivalence relations. Based on equivalence classes, the uncertain knowledge is evaluated by the exact lower and upper approximations.

[^0]However, the indiscernibility relation is too restrictive to extend the applications of rough set theory. Some researchers focus on the relations in the fuzzy environment. Akram et al. $(2020,2021)$ studied the accuracy measures of fuzzy indiscernibility relations to extract granular structures. Other researchers try to define rough set models based on neighborhood systems rather than based on some relations. Lin (1997) proposed the concept of a general neighborhood system, as a "finite type" topology, which can express some negligible uncertainty effectively. Yao (1998) introduced a framework for the formulation, interpretation, and comparison of neighborhood systems and gave the relation between generalizing rough sets and neighborhood-based rough sets. Lin (1998a, 1998b) and EI-Bably et al. (2022) discussed the general topology in generalized neighborhood rough sets. Wu and Zhang (2002) systemically studied six classes of k-step neighborhood systems based on binary relations in a finite universe. Lately, Akram et al. (2023) provided rough

Pythagorean fuzzy set models in k-step neighborhood systems. Yang et al. (2011) improved the accuracy of approximation using the coverings induced by maximal consistent blocks in incomplete information systems. Furthermore, Wang et al. (2018) proposed the notion of local neighborhood rough sets, motivated by local rough sets (Qian et al. 2018), to analyze big data using a semi-supervised approach with limited labeled data. Recently, Trivedi and Ramanna (2021) developed a hybrid geometry method with Voronoi diagrams and tolerance-based neighborhoods. These works make neighborhood rough sets more realistic and useful.

In practical applications, due to the missing of acquiring data, the uncertainty values of data characters, and the limitation of some human factors, the information systems are often incomplete. We cannot be sure whether an element must belong to the neighborhood of an element. And sometimes, it is possible to encounter that a neighborhood is not reflexive, such that the lower and upper approximations cannot include the target subsets. Abd El-Monsef et al. (2014) proposed the eight types of N_{j}-neighborhood, and Atef et al. (2020) derived the three types of rough sets in N_{j}-neighborhood spaces, where $j=1,2, \cdots, 8$. Herein, N_{1}-neighborhoods and N_{2}-neighborhoods can be regarded as classic right and left neighborhoods induced by any binary relations, respectively, while the other six N_{j} neighborhoods are the extensions of N_{1} or N_{2}-neighborhoods. And EI Atik et al. (2021) used N_{j}-neighborhoods to approximate graphs. Furthermore, Atef et al. $(2020,2022)$ presented the three types of rough set models in adhesion neighborhood (briefly, P_{j}-neighborhood) spaces. The $P_{j^{-}}$ neighborhood rough sets can increase the accuracy measure and reduce the boundary regions of subsets. Al-shami (2021) put forward three rough set models based on $E_{j^{-}}$ neighborhoods and constructed rough approximations induced by E_{j} topology. And Al-shami et al. (2021) introduced the concept of containment neighborhoods (briefly, C_{j}-neighborhoods) and improved the accuracy of rough set models induced by C_{j}-neighborhoods comparing with N_{j}, E_{j}-neighborhoods. And these new models are used for COVID-19 medical diagnosis.

However, it should be noted that the above neighborhood systems may have some limitations in practical applications. First, for example, let $U=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $B=\left\{\left(x_{1}, x_{2}\right),\left(x_{2}, x_{1}\right),\left(x_{2}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{3}, x_{3}\right)\right\}$ be a binary relation on U and $N_{1}(x)=\{y \in U \mid(x, y) \in B\}$ be the N_{1}-neighborhood of an element $x \in U$, defined by Atef et al. (2022). Then, $N_{1}\left(x_{1}\right)=\left\{x_{2}\right\}$ which shows N_{1} neighborhood systems may not satisfy the reflexivity. Second, Atef et al. (2022), Al-shami (2021) and Al-shami et al. (2021) gave the following concepts:
$P_{j}(x)=\left\{y \in U \mid N_{j}(y)=N_{j}(x)\right\}$,
$C_{j}(x)=\left\{y \in U \mid N_{j}(y) \subseteq N_{j}(x)\right\}$,
$E_{j}(x)=\left\{y \in U \mid N_{j}(y) \cap N_{j}(x) \neq \emptyset\right\}$.
Here, $j=1,2,3,4$. Obviously that $C_{j}(x) \subseteq E_{j}(x)$. And if the binary relation inducing N_{j}-neighborhoods is serial, and $P_{j}(x) \subseteq C_{j}(x)$. It is easy to notice that both P_{j} and C_{j} neighborhoods' constrained characteristics are too harsh, while that of E_{j}-neighborhoods are too loose to adapt to most situations. That results in the granularity of P_{j} and $C_{j^{-}}$ neighborhoods being too fine and that of E_{j}-neighborhoods being too coarse.

To solve the problem, we introduce a parameter β as a threshold of the inclusion degrees and propose the notion of variable j-containment neighborhoods (briefly, V_{j}^{β} neighborhoods). For incomplete information systems, the rough set model based on V_{j}^{β}-neighborhoods allows a flexible neighborhood region by a precision variable.

The motivation of this paper includes: (1) How to avoid non-reflexive neighborhoods? (2) How to build the novel neighborhood systems such that whose granularity is coarser than E_{j}-neighborhood systems' and finer than C_{j} neighborhood systems'? (2) How to construct the approximations based on the novel neighborhoods? (3) What is the topological structure of the novel neighborhood spaces? (4) How to select the proper granularity for facing real data mining?

The paper is organized as follows. Section 2 recalls some basic concepts of neighborhood systems, rough sets based on generalized neighborhoods, and general topology. In Sect. 3, we analyze the problem of the existing generalized constructed neighborhood systems and introduce the concept of V_{j}^{β}-neighborhood according to variable inclusion degrees, and discuss the properties of the novel neighborhood. Furthermore, we define the three pairs of approximation sets in V_{j}^{β}-neighborhood spaces and deduce the relationship among them in Sect. 4. Section 5 analyzes the topology structure of V_{j}^{β}-neighborhood spaces and discusses the interior and closure operators in the novel spaces. And Sect. 6 shows the application of rough approximations based on V_{j}^{β}-neighborhoods. Finally, we give some conclusions and make a plan for future research in the last section.

2 Preliminaries

Throughout this paper, let U be a nonempty finite universe.

2.1 Binary relation and neighborhood

Definition 1 (Lin 1998a; Yao 1998) A binary relation B on U is a subset of the Cartesian product $U \times U$. For any $x \in U$, the binary neighborhood of x is defined by $B_{s}(x)=\{y \in U \mid(x, y) \in B\}$.

Definition 2 (Lin 1998a; Yao 1998) A binary relation B on U is said to be:
(i) reflexive if for any $x \in U, x \in B_{s}(x)$;
(ii) symmetric if for any $x, y \in U$, $y \in B_{s}(x) \Rightarrow x \in B_{s}(y) ;$
(iii) transitive if for any $x, y, z \in U$, $y \in B_{s}(x), z \in B_{s}(y) \Rightarrow z \in B_{s}(x) ;$
(iv) equivalent if it is reflexive, symmetric, and transitive ;
(v) serial if for any $x \in U$, there exists a $y \in U$, such that $y \in B_{s}(x)$;
(vi) inverse serial if for any $x \in U$, there exists a $y \in U$, such that $x \in B_{s}(y)$;
(vii) Euclidean, if for any $x, y, z \in U$, $y \in B_{s}(x), z \in B_{s}(x) \Rightarrow z \in B_{s}(y)$.

2.2 Rough set based on existing constructed neighborhoods

Abd El-Monsef et al. (2014) first proposed the notions of j neighborhood of an element, and Atef et al. $(2020,2022)$ and Al-shami et al. $(2021,2021)$ generalized them to the following other three kinds of constructed neighborhoods. They tried to construct rough sets in these new neighborhood spaces.

Definition 3 (Abd EI-Monsef et al. 2014; Atef et al. 2020) Let B be a binary relation on U and $x \in U$. The $N_{j^{-}}$ neighborhoods of x (denoted by $N_{j}(x)$) are defined as follows $(j=1,2, \cdots, 8)$:
(i) $\quad N_{1}(x)=\left\{y \in U \mid y \in B_{s}(x)\right\}$;
(ii) $N_{2}(x)=\left\{y \in U \mid x \in B_{s}(y)\right\}$;
(iii) $\quad N_{3}(x)=\left\{\begin{array}{l}\bigcap_{x \in N_{1}(y)} N_{1}(y), \\ \emptyset,\end{array}\right.$
(iv) $\quad N_{4}(x)=\left\{\begin{array}{l}\bigcap_{x \in N_{2}(y)} N_{2}(y), \\ \emptyset,\end{array}\right.$
(v) $\quad N_{5}(x)=N_{1}(x) \cap N_{2}(x)$;
(vi) $\quad N_{6}(x)=N_{1}(x) \cup N_{2}(x)$;
(vii) $\quad N_{7}(x)=N_{3}(x) \cap N_{4}(x)$;
(viii) $\quad N_{8}(x)=N_{3}(x) \cup N_{4}(x)$.

Here, N_{j} can be regarded as a map which associates each $x \in U$ with its N_{j}-neighborhood in 2^{U}. The triple $\left(U, B, N_{j}\right)$ is called an N_{j}-neighborhood space.

Definition 4 (Atef et al. 2020) Let $\left(U, B, N_{j}\right)$ be an N_{j} neighborhood space $(j=1,2, \cdots, 8)$ and $X \subseteq U$. The pair $\left\langle B_{N_{j}}(X), \overline{B_{N_{j}}}(X)\right\rangle$ of lower and upper approximation of X based on N_{j}-neighborhoods is defined by
$B_{N_{j}}(X)=\left\{x \in U \mid N_{j}(x) \subseteq X\right\} ;$
$\overline{B_{N_{j}}}(X)=\left\{x \in U \mid N_{j}(x) \cap X \neq \emptyset\right\}$.

Definition 5 (Al-shami 2021; Atef et al. 2020) Let B be a binary relation on U and $x \in U$. The P_{j}-neighborhoods of x (denoted by $\left.P_{j}(x)\right)$ are defined as follows $(j=1,2, \cdots, 8)$:
(i) $\quad P_{1}(x)=\left\{y \in U \mid N_{1}(y)=N_{1}(x)\right\} ;$
(ii) $\quad P_{2}(x)=\left\{y \in U \mid N_{2}(y)=N_{2}(x)\right\}$;
(iii) $\quad P_{3}(x)=\left\{y \in U \mid N_{3}(y)=N_{3}(x)\right\}$;
(iv) $\quad P_{4}(x)=\left\{y \in U \mid N_{4}(y)=N_{4}(x)\right\}$;
(v) $\quad P_{5}(x)=P_{1}(x) \cap P_{2}(x)$;
(vi) $\quad P_{6}(x)=P_{1}(x) \cup P_{2}(x)$;
(vii) $\quad P_{7}(x)=P_{3}(x) \cap P_{4}(x)$;
(viii) $\quad P_{8}(x)=P_{3}(x) \cup P_{4}(x)$.

The triple $\left(U, B, P_{j}\right)$ is called a P_{j}-neighborhood space.
Definition 6 (Atef et al. 2020) Let $\left(U, B, P_{j}\right)$ be a $P_{j^{-}}$ neighborhood space $(j=1,2, \cdots, 8)$ and $X \subseteq U$. The pair $\left\langle B_{P_{j}}(X), \overline{B_{P_{j}}}(X)\right\rangle$ of lower and upper approximation of X based on P_{j}-neighborhoods is defined by

$$
\begin{aligned}
& B_{P_{j}}(X)=\left\{x \in U \mid P_{j}(x) \subseteq X\right\} \\
& \overline{\overline{B_{P_{j}}}}(X)=\left\{x \in U \mid P_{j}(x) \cap X \neq \emptyset\right\} .
\end{aligned}
$$

Definition 7 (Al-shami et al. 2021) Let B be a binary relation on U and $x \in U$. The E_{j}-neighborhoods of x (denoted by $\left.E_{j}(x)\right)$ are defined as follows $(j=1,2, \cdots, 8)$:
(i) $\quad E_{1}(x)=\left\{y \in U \mid N_{1}(y) \cap N_{1}(x) \neq \emptyset\right\} ;$
(ii) $\quad E_{2}(x)=\left\{y \in U \mid N_{2}(y) \cap N_{2}(x) \neq \emptyset\right\}$;
(iii) $\quad E_{3}(x)=\left\{y \in U \mid N_{3}(y) \cap N_{3}(x) \neq \emptyset\right\}$;
(iv) $\quad E_{4}(x)=\left\{y \in U \mid N_{4}(y) \cap N_{4}(x) \neq \emptyset\right\} ;$
(v) $\quad E_{5}(x)=E_{1}(x) \cap E_{2}(x)$;
(vi) $\quad E_{6}(x)=E_{1}(x) \cup E_{2}(x)$;
(vii) $\quad E_{7}(x)=E_{3}(x) \cap E_{4}(x)$.
(viii) $\quad E_{8}(x)=E_{3}(x) \cup E_{4}(x)$.

The triple $\left(U, B, E_{j}\right)$ is called an E_{j}-neighborhood space.
Definition 8 (Al-shami et al. 2021) Let $\left(U, B, E_{j}\right)$ be an E_{j}-neighborhood space $(j=1,2, \cdots, 8)$ and $X \subseteq U$. The
pair $\left\langle\underline{B_{E_{j}}}(X), \overline{B_{E_{j}}}(X)\right\rangle$ of lower and upper approximation of X based on E_{j}-neighborhoods is defined by
$B_{E_{j}}(X)=\left\{x \in U \mid E_{j}(x) \subseteq X\right\} ;$
$\overline{B_{E_{j}}}(X)=\left\{x \in U \mid E_{j}(x) \cap X \neq \emptyset\right\}$.

Definition 9 (Al-shami 2021) Let B be a binary relation on U and $x \in U$. The C_{j}-neighborhoods of x (denoted by $\left.C_{j}(x)\right)$ are defined as follows $(j=1,2, \cdots, 8)$:
(i) $\quad C_{1}(x)=\left\{y \in U \mid N_{1}(y) \subseteq N_{1}(x)\right\} ;$
(ii) $\quad C_{2}(x)=\left\{y \in U \mid N_{2}(y) \subseteq N_{2}(x)\right\}$;
(iii) $\quad C_{3}(x)=\left\{y \in U \mid N_{3}(y) \subseteq N_{3}(x)\right\}$;
(iv) $\quad C_{4}(x)=\left\{y \in U \mid N_{4}(y) \subseteq N_{4}(x)\right\}$;
(v) $\quad C_{5}(x)=C_{1}(x) \cap C_{2}(x)$;
(vi) $\quad C_{6}(x)=C_{1}(x) \cup C_{2}(x) ;$
(vii) $\quad C_{7}(x)=C_{3}(x) \cap C_{4}(x)$;
(viii) $\quad C_{8}(x)=C_{3}(x) \cup C_{4}(x)$.

The triple $\left(U, B, C_{j}\right)$ is called a C_{j}-neighborhood space.
Definition 10 (Al-shami 2021) Let $\left(U, B, C_{j}\right)$ be a $C_{j}{ }^{-}$ neighborhood space $(j=1,2, \cdots, 8)$ and $X \subseteq U$. The pair $\left\langle\underline{B_{C_{j}}}(X), \overline{B_{C_{j}}}(X)\right\rangle$ of lower and upper approximation of X based on C_{j}-neighborhoods is defined by
$\underline{B_{C_{j}}}(X)=\left\{x \in U \mid C_{j}(x) \subseteq X\right\} ;$
$\overline{B_{C_{j}}}(X)=\left\{x \in U \mid C_{j}(x) \cap X \neq \emptyset\right\}$.

2.3 General topology

Definition 11 (Kelley 1995) Let \mathcal{U}_{x} be the non-void family of all neighborhoods of x, here $x \in U$. Then:
(i) If $X \in \mathcal{U}_{x}$, then $x \in X$;
(ii) If $X, Y \in \mathcal{U}_{x}$, then $X \cap Y \in \mathcal{U}_{x}$;
(iii) If $X \in \mathcal{U}_{x}$ and $X \subseteq Y$, then $Y \in \mathcal{U}_{x}$;
(iv) If $X \in \mathcal{U}_{x}$, then there is a member Y of \mathcal{U}_{x}, such that $Y \subseteq X$ and $Y \in \mathcal{U}_{y}$ for each y in Y.

If all the family \mathcal{U}_{x} satisfy (i), (ii), and (iii) for all x in U, then the family \mathcal{T} of all sets X, such that $U \in \mathcal{U}_{x}$ whenever $x \in U$, is a topology of U. If (iv) is also satisfied, then \mathcal{U}_{x} is the neighborhood system of x relative to the topology \mathcal{T}.

Definition 12 (Kelley 1995) Let U be a topology space, $x \in U$, and \mathcal{U}_{x} be a neighborhood system of x. If the subset \mathcal{V}_{x} of \mathcal{U}_{x} satisfies every neighborhood of x contains a member of \mathcal{V}_{x}, then \mathcal{V}_{x} is called a base of \mathcal{U}_{x}, or a local base at x.

Interior and closure operators are fundamental concepts in a topology space. Kuratowski's axiom gives the characters of interior and closure operators.

Theorem 1 (Kelley 1995) Let (U, \mathcal{T}) be a topology space. A closure (or interior) operator $\mathrm{cl}: 2^{U} \rightarrow 2^{U}$ (or int : $2^{U} \rightarrow 2^{U}$) satisfies that for any $X, Y \subseteq U$, the following holds:
(i) $\quad \operatorname{cl}(\emptyset)=\emptyset($ or $\operatorname{int}(U)=U)$;
(ii) $\quad \operatorname{cl}(X \cup Y)=\operatorname{cl}(X) \cup \operatorname{cl}(Y) \quad($ or $\quad \operatorname{int}(X \cap Y)=$ $\operatorname{int}(X) \cap \operatorname{int}(Y)) ;$
(iii) $\quad X \subseteq \operatorname{cl}(X)($ or $\operatorname{int}(X) \subseteq X)$;
(iv) $\quad \operatorname{cl}(\operatorname{cl}(X))=\operatorname{cl}(X)(\operatorname{or} \operatorname{int}(X)=\operatorname{int}(\operatorname{int}(X)))$.

3 Variable j-containment neighborhoods

3.1 Existing neighborhood analysis

For N_{j}-neighborhood space, we can find N_{1}, N_{2}, N_{5}, and N_{6}-neighborhood operators are consistent with the successor, predecessor, predecessor-and-successor, and pre-decessor-or-successor neighborhoods presented by Yao (1998), respectively. And the lower and upper approximations in Definition 4 can be seen as the rough sets in binary neighborhood system in Lin (1998b) or 1-neighborhood systems (Yao 1998).

For P_{j}-neighborhood space, the eight P_{j}-neighborhood operators form the eight partitions on U. They transform the eight original spaces into the eight finest approximation spaces based on equivalence relations, respectively. Their equivalent classes are the finest granular, which can keep all the information of the original space, which can be seen as the core knowledge of their original spaces in Zheng (2020).

For C_{j}-neighborhood space, since $P_{j}(x) \subseteq C_{j}(x)$ for any j and any $x \in U$, the granular of $\left(U, B, C_{j}\right)$ is coarser than that of $\left(U, B, P_{j}\right)$ (Proposition 3.4 in Al-shami (2021)). However, the condition is still too strict. Such as $C_{1}-$ neighborhood, if $y \in C_{1}(x)$, then $N_{1}(y) \subseteq N_{1}(x)$. That means only those elements whose N_{1}-neighborhood is completely contained in $N_{1}(x)$ can enter the C_{1}-neighborhood of x.

For E_{j}-neighborhood space, take E_{1}-neighborhood as an example, although it relaxes the condition that is $N_{1}(y) \cap N_{1}(x) \neq \emptyset$, the neighborhood space may not cover the whole universe if there exists some neighborhood $N_{1}(x)=\emptyset$. And the granular of $\left(U, B, E_{j}\right)$ is the coarsest among the existing neighborhood spaces.

Based on the above analysis, we try to construct a novel neighborhood with strict variable conditions and demonstrate flexibility in granularity selection.

$3.2 V_{j}^{\beta}$-neighborhoods

This section will extend the above three generalized neighborhoods to variable containment neighborhoods based on inclusion degrees, which can hold the advantages of the above three neighborhoods. First, we define the inclusion degree of N_{j}-neighborhood spaces.

Definition 13 Let $\left(U, B, N_{j}\right)$ be a N_{j}-neighborhood space. For $x, y \in U$, the inclusion degree of $N_{j}(x)$ with respect to $N_{j}(y)$ is defined as follows $(j=1,2, \cdots, 8)$:
$D\left(N_{j}(x) / N_{j}(y)\right)= \begin{cases}\frac{\left|N_{j}(x) \cap N_{j}(y)\right|}{\left|N_{j}(y)\right|}, & N_{j}(y) \neq \emptyset ; \\ 1, & N_{j}(y)=\emptyset .\end{cases}$
Here, $|\cdot|$ means the cardinality of the set.
Definition 14 Let B be a binary relation on $U, \beta \subseteq(0,1]$ and $x \in U$. The V_{j}^{β}-neighborhoods of x (denoted by $\left.V_{j}^{\beta}(x)\right)$ are defined as follows $(j=1,2, \cdots, 8)$:
(i) $\quad V_{1}^{\beta}(x)=\left\{y \in U \mid D\left(N_{1}(x) / N_{1}(y)\right) \geqslant \beta\right\} ;$
(ii) $\quad V_{2}^{\beta}(x)=\left\{y \in U \mid D\left(N_{2}(x) / N_{2}(y)\right) \geqslant \beta\right\}$;
(iii) $\quad V_{3}^{\beta}(x)=\left\{y \in U \mid D\left(N_{3}(x) / N_{3}(y)\right) \geqslant \beta\right\}$;
(iv) $\quad V_{4}^{\beta}(x)=\left\{y \in U \mid D\left(N_{4}(x) / N_{4}(y)\right) \geqslant \beta\right\}$;
(v) $\quad V_{5}^{\beta}(x)=V_{1}^{\beta}(x) \cap V_{2}^{\beta}(x)$;
(vi) $\quad V_{6}^{\beta}(x)=V_{1}^{\beta}(x) \cup V_{2}^{\beta}(x)$;
(vii) $\quad V_{7}^{\beta}(x)=V_{3}^{\beta}(x) \cap V_{4}^{\beta}(x) ;$
(viii) $\quad V_{8}^{\beta}(x)=V_{3}^{\beta}(x) \cup V_{4}^{\beta}(x)$.

The triple $\left(U, B, V_{j}^{\beta}\right)$ is called a V_{j}^{β}-neighborhood space.
Example 1 Let B be a binary relation on $U=\left\{x_{1}, x_{2}, x_{3}\right.$, $\left.x_{4}, x_{5}\right\}$, where $B=\left\{\left(x_{1}, x_{1}\right),\left(x_{1}, x_{2}\right), \quad\left(x_{1}, x_{3}\right),\left(x_{2}, x_{3}\right)\right.$, $\left.\left(x_{2}, x_{4}\right),\left(x_{2}, x_{5}\right),\left(x_{3}, x_{3}\right),\left(x_{3}, x_{5}\right),\left(x_{4}, x_{3}\right),\left(x_{4}, x_{4}\right)\right\}$. Calculate all the $N_{j}, E_{j}, P_{j}, C_{j}$ and $V_{j}^{0.6}$-neighborhoods, $j=1,2, \cdots, 8$.

Tables 1, 2, 3, 4 and 5 show all the neighborhood spaces. We can find N_{j} and E_{j}-neighborhood spaces which show some empty neighborhoods of some objects, $P_{j^{-}}$ neighborhoods of five objects are almost all single point sets, while the granular of C_{j}-neighborhoods and $V_{j}^{0.6}$ neighborhoods are relatively moderate.

Proposition 2 Any V_{j}^{β}-neighborhood space satisfies the following properties: For any $x, y \in U$, any $j=1,2, \cdots, 8$, and $\beta, \beta_{1}, \beta_{2} \in(0,1]$
(i) $x \in V_{j}^{\beta}(x)$.
(ii) $\quad V_{5}^{\beta}(x) \subseteq V_{1}^{\beta}(x) \subseteq V_{6}^{\beta}(x) ;$
$V_{5}^{\beta}(x) \subseteq V_{2}^{\beta}(x) \subseteq V_{6}^{\beta}(x) ;$
$V_{7}^{\beta}(x) \subseteq V_{3}^{\beta}(x) \subseteq V_{8}^{\beta}(x) ; V_{7}^{\beta}(x) \subseteq V_{4}^{\beta}(x) \subseteq V_{8}^{\beta}(x)$.
(iii) If $N_{j}(y) \subseteq N_{j}(x)$, then $y \in V_{j}^{\beta}(x)$.
(iv) If $\beta_{1}<\beta_{2}$, then $V_{j}^{\beta_{2}}(x) \subseteq V_{j}^{\beta_{1}}(x)$.
(v) If B is symmetric, then $V_{1}^{\beta}(x)=V_{2}^{\beta}(x)=V_{5}^{\beta}(x)=$ $V_{6}^{\beta}(x)$ and $V_{3}^{\beta}(x)=V_{4}^{\beta}(x)=V_{7}^{\beta}(x)=V_{8}^{\beta}(x)$.
(vi) If B is reflexive and transitive, then $V_{1}^{\beta}(x)=V_{3}^{\beta}(x), \quad V_{2}^{\beta}(x)=V_{4}^{\beta}(x), \quad V_{5}^{\beta}(x)=V_{7}^{\beta}(x)$ and $V_{6}^{\beta}(x)=V_{8}^{\beta}(x)$.
(vii) If B is equivalent, then $V_{1}^{\beta}(x)=V_{2}^{\beta}(x)=\cdots$ $=V_{8}^{\beta}(x)$.

Proof If these claims are true when $j=1,2,3,4$, they would also hold when $j=5,6,7,8$ based on Definition 14. Therefore, we only prove the cases of $j=1,2,3,4$.
(i) Since $D\left(N_{j}(x) / N_{j}(x)\right) \equiv 1$ always hold whether $N_{j}(x)$ is empty or not, for any $j=1,2,3,4$. Therefore, $x \in V_{j}^{\beta}(x)$ for any β and any j.
(ii) The proof is obvious based on Definition 14.
(iii) If $N_{j}(y) \subseteq N_{j}(x), D\left(N_{j}(x) / N_{j}(y)\right) \equiv 1$. Therefore, $y \in V_{j}^{\beta}(x)$ for any $j=1,2,3,4$. Thus, $y \in V_{j}^{\beta}(x)$ for any β and any j.

Table $1\left(U, B, N_{j}\right)$ in Example 1

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
N_{1}	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{3}, x_{4}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{4}\right\}$	\emptyset
N_{2}	$\left\{x_{1}\right\}$	$\left\{x_{1}\right\}$	$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{4}\right\}$	$\left\{x_{2}, x_{3}\right\}$
N_{3}	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{5}\right\}$
N_{4}	$\left\{x_{1}\right\}$	$\left\{x_{2}\right\}$	$\left\{x_{2}, x_{3}\right\}$	$\left\{x_{2}, x_{4}\right\}$	\emptyset
N_{5}	$\left\{x_{1}\right\}$	\emptyset	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	\emptyset
N_{6}	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{1}, x_{3}, x_{4}, x_{5}\right\}$	U	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{3}\right\}$
N_{7}	$\left\{x_{1}\right\}$	$\left\{x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	\emptyset
N_{8}	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{2}, x_{3}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{5}\right\}$

Table $2\left(U, B, E_{j}\right)$ in Example 1

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
E_{1}	$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$	\emptyset			
E_{2}	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{1}, x_{2}, x_{3}\right\}$	U	$\left\{x_{3}, x_{4}, x_{5}\right\}$	$\left\{x_{3}, x_{4}, x_{5}\right\}$
E_{3}	U	U	U	U	U
E_{4}	$\left\{x_{1}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset
E_{5}	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	\emptyset
E_{6}	$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$	U	U	\emptyset
E_{7}	$\left\{x_{1}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset
E_{8}	U	U	U	U	\emptyset

Table $3\left(U, B, P_{j}\right)$ in Example 1

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
P_{1}	$\left\{x_{1}\right\}$	$\left\{x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
P_{2}	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
P_{3}	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
P_{4}	$\left\{x_{1}\right\}$	$\left\{x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
P_{5}	$\left\{x_{1}\right\}$	$\left\{x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
P_{6}	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
P_{7}	$\left\{x_{1}\right\}$	$\left\{x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
P_{8}	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$

(iv) \quad Suppose $y \in V_{j}^{\beta_{2}}(x)$. Then, $D\left(N_{j}(x) / N_{j}(y)\right) \geqslant \beta_{2}$. Since $\beta_{1}<\beta_{2}, D\left(N_{j}(x) / N_{j}(y)\right) \geqslant \beta_{1}$. Thus, $y \in$ $V_{j}^{\beta_{1}}(x)$ which means $V_{j}^{\beta_{2}}(x) \subseteq V_{j}^{\beta_{1}}(x)$.
(v) If B is symmetric, $N_{1}(x)=N_{2}(x)$ and $N_{3}(x)=$ $N_{4}(x)$ for any $x \in U$. Therefore, $N_{5}(x)=N_{1}(x) \cap$ $N_{2}(x)=N_{1}(x) \quad$ and $\quad N_{6}(x)=N_{1}(x) \cup N_{2}(x)=$ $N_{1}(x) . \quad$ Similarly, $\quad N_{7}(x)=N_{8}(x)=N_{3}(x)=$ $N_{4}(x)$. Thus, $\quad V_{1}^{\beta}(x)=V_{2}^{\beta}(x)=V_{5}^{\beta}(x)=V_{6}^{\beta}(x)$ and $V_{3}^{\beta}(x)=V_{4}^{\beta}(x)=V_{7}^{\beta}(x)=V_{8}^{\beta}(x)$ for any β.
(vi) Since B is reflexive, then $x \in N_{1}(x)$ for any $x \in U$. Therefore, $N_{1}(x) \supseteq \bigcap_{x \in N_{1}(y)} N_{1}(y) \neq \emptyset$. That is, $N_{1}(x) \supseteq N_{3}(x)$. Let $y \in N_{1}(x)$. Then, for any $N_{1}(z)$ containing $x, y \in N_{1}(z)$, because B is transitive. Therefore, $y \in \bigcap_{x \in N_{1}(z)} N_{1}(z)=N_{3}(x)$. That means $N_{1}(x) \subseteq N_{3}(x)$. Hence $N_{1}(x)=N_{3}(x)$. Consequently, $V_{1}^{\beta}(x)=V_{3}^{\beta}(x)$. Similarly, $V_{2}^{\beta}(x)$ $=V_{4}^{\beta}(x), V_{5}^{\beta}(x)=V_{7}^{\beta}(x)$ and $V_{6}^{\beta}(x)=V_{8}^{\beta}(x)$.
(vii) According to claims (v) and (vi), we prove the claim obviously.

Proposition 3 Any V_{j}^{β}-neighborhood space satisfies the following properties: For any $x \in U$, any $j=1,2, \cdots, 8$ and $\beta \in(0,1]$
(i) $\quad P_{j}(x) \subseteq C_{j}(x) \subseteq V_{j}^{\beta}(x) ; C_{j}(x)=V_{j}^{\beta}(x)$ if and only if $\beta=1$.
(ii) If B is serial and inverse serial, then $V_{j}^{\beta}(x) \subseteq E_{j}(x)$.
(iii) If B is reflexive, then $P_{j}(x) \subseteq C_{j}(x)$ $\subseteq V_{j}^{\beta}(x) \subseteq E_{j}(x)$.
(iv) If B is equivalent, then $P_{j}(x)=C_{j}(x)=V_{j}^{\beta}(x)$ $=N_{j}(x)=E_{j}(x)$.

Table $4\left(U, B, C_{j}\right)$ in Example 1

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
C_{1}	$\left\{x_{1}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{4}, x_{5}\right\}$	$\left\{x_{5}\right\}$
C_{2}	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{1}, x_{2}\right\}$	U	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
C_{3}	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{5}\right\}$
C_{4}	$\left\{x_{1}, x_{5}\right\}$	$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{5}\right\}$
C_{5}	$\left\{x_{1}\right\}$	$\left\{x_{2}\right\}$	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
C_{6}	$\left\{x_{1}, x_{2}, x_{5}\right\}$	U	U	$\left\{x_{4}, x_{5}\right\}$	$\left\{x_{5}\right\}$
C_{7}	$\left\{x_{1}\right\}$	$\left\{x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
C_{8}	$\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$

Table $5\left(U, B, V_{j}^{0.6}\right)$ in Example 1

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
$V_{1}^{0.6}$	$\left\{x_{1}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{5}\right\}$
$V_{2}^{0.6}$	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{1}, x_{2}\right\}$	U	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
$V_{3}^{0.6}$	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{5}\right\}$
$V_{4}^{0.6}$	$\left\{x_{1}, x_{5}\right\}$	$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{5}\right\}$
$V_{5}^{0.6}$	$\left\{x_{1}\right\}$	$\left\{x_{2}\right\}$	U	U	$\left\{x_{4}\right\}$
$V_{6}^{0.6}$	$\left\{x_{1}, x_{2}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{5}\right\}$	
$V_{7}^{0.6}$	$\left\{x_{1}\right\}$	$\left\{x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{5}\right\}$
$V_{8}^{0.6}$	$\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$

Proof

(i) First, we have $P_{j}(x) \subseteq C_{j}(x)$ in Theorem 2 of (Alshami 2021). Let $y \in C_{j}(x)$ for any $j=1,2,3,4$. Then, $\quad N_{j}(y) \subseteq N_{j}(x) \quad$ implies that $D\left(N_{j}(x) / N_{j}(y)\right)=1$. Therefore, $y \in V_{j}^{\beta}(x)$. Thus, $P_{j}(x) \subseteq C_{j}(x) \subseteq V_{j}^{\beta}(x)$ for any $j=1,2, \cdots, 8$.
(ii) Since B is serial and inverse serial, $N_{j}(x) \neq \emptyset$ for any $j=1,2,3,4$ and any $x \in U$. Let $y \in V_{j}^{\beta}(x)$. Then, $\quad D\left(N_{j}(x) / N_{j}(y)\right) \geqslant \beta>0$, which shows $N_{j}(x) \cap N_{j}(y) \neq \emptyset$. Therefore, $y \in E_{j}(x)$. That means $V_{j}^{\beta}(x) \subseteq E_{j}(x)$ for $j=1,2,3,4$. Furthermore, based on Definition 14, we have $V_{j}^{\beta}(x) \subseteq$ $E_{j}(x)$ for any $j=1,2, \cdots, 8$.
(iii) If B is reflexive, B must be serial and inverse serial. The conclusion is obviously true based on the above two claims.
(iv) If B is equivalent, B must be reflexive. Therefore, $P_{j}(x) \subseteq C_{j}(x) \subseteq V_{j}^{\beta}(x) \subseteq E_{j}(x) \quad$ and $\quad P_{j}(x) \subseteq$ $C_{j}(x) \subseteq N_{j}(x) \subseteq E_{j}(x)$ for any j. When B is equivalent, the proof of $P_{j}(x)=N_{j}=E_{j}(x)$ has been given in Theorem 1 of Al-shami et al. (2021) and $P_{j}(x)=C_{j}(x)$ has been proved in Proposition 3.4 of Al-shami (2021). Hence, we have $P_{j}(x)=C_{j}(x)=V_{j}^{\beta}(x)=N_{j}(x)=E_{j}(x)$.

Remark 1 If B is equivalent, all kinds of neighborhood operators are the same, including eight P_{j}-neighborhoods, eight C_{j}-neighborhoods, eight V_{j}^{β}-neighborhoods, eight N_{j} neighborhoods, and eight E_{j}-neighborhoods for any $x \in U$.

Remark 2 In general, N_{j}-neighborhoods and V_{j}^{β}-neighborhoods have no partial ordering relation. Even if B is reflexive, their relationship is the same.

4 Rough sets in V_{j}^{β}-neighborhood spaces

4.1 Approximations based on V_{j}^{β}-neighborhoods

Definition 15 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood space $(j=1,2, \cdots, 8)$ and $X \subseteq U$. The type-1 rough set based on V_{j}^{β}-neighborhoods of X is the pair $\left\langle B_{V_{j}^{\beta}}^{(1)}(X), \overline{B_{V_{j}^{\beta}}^{(1)}}(X)\right\rangle$ composed by the following lower and upper approximations:
$B_{V_{j}^{\beta}}^{(1)}(X)=\left\{x \in U \mid V_{j}^{\beta}(x) \subseteq X\right\} ;$
$\overline{\overline{B_{V_{j}^{\beta}}^{(1)}}}(X)=\left\{x \in U \mid V_{j}^{\beta}(x) \cap X \neq \emptyset\right\}$.

Proposition 4 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood $\operatorname{space}(j=1,2, \cdots, 8)$ and $X, Y \subseteq U$. The type-1 lower and upper approximations based on V_{j}^{β}-neighborhoods satisfy:
(i) $\quad B_{V_{j}^{(1)}}^{(1)}(X)=\left(\overline{B_{V_{j}^{\beta}}^{(1)}}\left(X^{C}\right)\right)^{C} ; \overline{B_{V_{j}^{\beta}}^{(1)}}(X)=\left(B_{V_{j}^{\beta}}^{(1)}\left(X^{C}\right)\right)^{C}$;
(ii) $\quad \overline{B_{V_{j}^{\beta}}^{(1)}}(U)=U ; \quad B_{V_{j}^{\beta}}^{(1)}(\emptyset)=\emptyset ; \quad \overline{\overline{B_{V_{j}^{(1)}}^{(1)}}}(U)=U$;

$$
\overline{\overline{B_{V_{j}^{\beta}}^{(1)}}}(\emptyset)=\emptyset
$$

(iii) $\quad \underline{B_{V_{j}^{\beta}}^{(1)}}(X) \subseteq X \subseteq \overline{B_{V_{j}^{\beta}}^{(1)}}(X)$;
(iv) $\quad X \subseteq Y \Rightarrow \underline{B_{V_{j}^{\beta}}^{(1)}}(X) \subseteq B_{V_{j}^{\beta}}^{(1)}(Y), \overline{B_{V_{j}^{\beta}}^{(1)}}(X) \subseteq \overline{B_{V_{j}^{\beta}}^{(1)}}(Y)$;
(v) $\quad B_{V_{j}^{\beta}}^{(1)}(X \cap Y)=B_{V_{j}^{\beta}}^{(1)}(X) \cap B_{V_{j}^{\beta}}^{(1)}(Y)$; $\overline{\overline{B_{V_{j}^{\beta}}^{(1)}}}(X \cup Y)=\overline{\overline{B_{V_{j}^{\beta}}^{(1)}}}(X) \cup \overline{\overline{B_{V_{j}^{\beta}}^{(1)}}}(Y) ;$
(vi) $\quad B_{V_{i}^{\beta}}^{(1)}(X \cup Y) \supseteq B_{V_{i}^{\beta}}^{(1)}(X) \cup B_{V_{i}^{\beta}}^{(1)}(Y)$;
$\overline{\overline{B_{V_{j}^{\beta}}^{(1)}}}(X \cap Y) \subseteq \overline{\overline{B_{V_{j}^{\beta}}^{(1)}}}(X) \cap \overline{\overline{B_{V_{j}^{\beta}}^{(1)}}}(Y)$.
(vii) $\quad B_{V_{j}^{\beta}}^{(1)}\left(B_{V_{j}^{\beta}}^{(1)}(X)\right) \subseteq B_{V_{j}^{\beta}}^{(1)}(X) ; \overline{B_{V_{j}^{\beta}}^{(1)}}(X) \subseteq \overline{B_{V_{j}^{\beta}}^{(1)}}\left(\overline{B_{V_{j}^{\beta}}^{(1)}}(X)\right)$.

Proof (i) $y \in B_{V_{j}^{\beta}}^{(1)}(X) \Longleftrightarrow V_{j}^{\beta}(y) \subseteq X \Longleftrightarrow V_{j}^{\beta}(y) \cap X^{C}=$ $\emptyset \quad \Longleftrightarrow y \notin \overline{B_{V_{j}^{(1)}}^{(1)}}\left(X^{C}\right) \Longleftrightarrow y \in\left(\overline{B_{V_{j}^{\beta}}^{(1)}}\left(X^{C}\right)\right)^{C} . \quad$ Similarly, $\overline{B_{V_{j}^{\beta}}^{(1)}}(X)=\underline{\left(B_{V_{j}^{\beta}}^{(1)}\left(X^{C}\right)\right)^{C} .}$
(ii) Since $\overline{V_{j}^{\beta}}(x) \subseteq U$ for any $x \in U$, then $U \subseteq B_{V_{j}^{\beta}}^{(1)}(U)$. Let $y \in \underline{B_{j}^{(1)}}(U)$. Then, $\quad V_{j}^{\beta}(y) \subseteq U$. Since $y \in \overline{V_{j}^{\beta}}(y)$, $y \in U$. Therefore, $B_{\underline{V_{j}^{\beta}}}^{(1)}(U) \subseteq U$. Hence, $B_{V_{j}^{\beta}}^{(1)}(U)=U$.

Since $x \in V_{j}^{\beta}(x)$ for any $x \in U$. Then, $\quad V_{j}^{\beta}(x) \neq \emptyset$. Therefore, $B_{V_{i}^{\beta}}^{(1)}(\emptyset)=\emptyset$. The following two claims are proved similarly.
(iii) Let $y \in \underset{B_{j}^{(1)}}{V_{j}^{\beta}}(X)$. Then, $V_{j}^{\beta}(y) \subseteq X$. Since $y \in V_{j}^{\beta}(y)$, $y \subseteq X$. Therefore, $B_{V_{j}^{\beta}}^{(1)}(X) \subseteq X$.

Let $z \in X$. Since $z \in V_{j}^{\beta}(z), V_{j}^{\beta}(z) \cap X \neq \emptyset$. That means $z \in \overline{B_{V_{j}^{\beta}}^{(1)}}(X)$. Therefore, $X \subseteq \overline{B_{V_{j}^{\beta}}^{(1)}}(X)$.
(iv) Since $X \subseteq Y$, then $B_{V_{i}^{\beta}}^{(1)}(X)=\left\{x \in U \mid V_{j}^{\beta}(x) \subseteq X\right\} \subseteq$ $\left\{x \in U \mid V_{j}^{\beta}(x) \subseteq Y\right\}=\overline{B_{V_{j}^{\beta}}^{(1)}}(Y)$. At the same time, $\overline{B_{V_{j}^{\beta}}^{(1)}}(X) \subseteq \overline{B_{V_{j}^{\beta}}^{(1)}}(Y)$.
(v) $\quad y \in B_{V_{i}^{\beta}}^{(1)}(X \cap Y) \Longleftrightarrow V_{j}^{\beta}(y) \subseteq X \cap Y \Longleftrightarrow V_{j}^{\beta}(y) \subseteq$ $X \quad$ and $\quad V_{j}^{\beta}(y) \subseteq Y \Longleftrightarrow y \in B_{V_{j}^{\beta}}^{(1)}(X) \quad$ and $\quad y \in B_{V_{j}^{\beta}}^{(1)}(Y)$ $\Longleftrightarrow y \in \underline{B_{V_{j}^{\beta}}^{(1)}}(X) \cap \underline{B_{V_{j}^{\beta}}^{(1)}}(Y)$. Hence,,$~ \underline{B_{V_{j}^{\beta}}^{(1)}}(X \cap Y)=\overline{B_{V_{j}^{\beta}}^{(1)}}(X)$ $\cap B_{V_{j}^{(1)}}^{(Y)}(Y)$. Similarly, $\overline{B_{V_{j}^{(1)}}}(X \cup Y)=\overline{\overline{B_{V_{j}^{(1)}}}}(X) \cup \overline{B_{V_{j}^{(1)}}^{(}} \overline{(Y)}$.
(vi) Let $y \in B_{V_{j}^{\beta}}^{(1)}(X) \cup B_{V_{j}^{\beta}}^{(1)}(Y)$. Then, $\quad V_{j}^{\beta}(y) \subseteq X$ or $V_{j}^{\beta}(y) \subseteq Y$. So $\quad V_{j}^{\beta}(y) \subseteq X \cup Y$. That means $y \in B_{V_{j}^{\beta}}^{(1)}(X \cup Y)$. Hence, $B_{V_{j}^{\beta}}^{(1)}(X) \cup B_{V_{j}^{\beta}}^{(1)}(Y) \subseteq B_{V_{j}^{\beta}}^{(1)}(X \cup Y)$. Similarly, $\overline{B_{V_{j}^{(1)}}^{(X)}}(X \cap Y) \subseteq \overline{\overline{B_{V_{j}^{(1)}}}}(X) \cap \overline{\overline{B_{V_{j}^{(1)}}}}(Y)$.
(vii) The claim is obviously true based on claim (iii).

However, type-1 approximations in V_{j}^{β}-neighborhood spaces still do not satisfy s ome properties. Example 2 illustrates them.

Example 2 For $\left(U, B, V_{j}^{0.6}\right)$ in Example 1, the type-1 lower and upper approximations based on $V_{j}^{0.6}$-neighborhoods are given in Table 6.

From the example, we find several properties of some binary approximations may evaporate for V_{j}^{β}-neighborhood approximations.

For instance, for $X=\left\{x_{3}\right\}, \overline{B_{V_{1}^{0.6}}^{(1)}}(X)=\left\{x_{2}, x_{3}\right\}$ and $\overline{B_{V_{1}^{0.6}}^{(1)}}\left(\left\{x_{2}, x_{3}\right\}\right)=\left\{x_{2}, x_{3}, x_{4}\right\}$, so $\left.\overline{B_{V_{1}^{0.6}}^{(1)}}(X) \neq \overline{B_{V_{1}^{(1.6}}^{(1)}} \overline{B_{V_{1}^{0.6}}^{(1)}}(X)\right)$; another case is that for $Y=\left\{x_{2}, x_{3}, x_{5}\right\}, B_{V_{8}^{0.6}}^{(1)}(Y)=\left\{x_{3}, x_{5}\right\}$ and $\underline{B_{V_{8}^{0.6}}^{(1)}}\left(\left\{x_{3}, x_{5}\right\}\right)=\left\{x_{5}\right\}$, so $\underline{B_{V_{8}^{0.6}}^{(1)}}\left(\underline{B_{V_{8}^{0.6}}^{(1)}(Y)}\right) \neq B_{V_{8}^{(1)}}^{(1)}(Y)$; besides, for $Z=\left\{x_{2}, x_{5}\right\}, \quad B_{V_{4}^{0.6}}^{(1)}(Z)=\left\{x_{2}, x_{5}\right\} \quad$ and $\overline{B_{V_{4}^{0.6}}^{(1)}}\left(\left\{x_{2}, x_{5}\right\}\right)=U, \quad$ so $\quad \overline{B_{V_{4}^{0.6}}^{(1)}}\left(B_{V_{4}^{0.6}}^{(1)}(Z)\right) \nsubseteq Z ; \quad$ and \quad for $T=\left\{x_{2}, x_{3}\right\}, \quad \overline{B_{V_{5}^{0.6}}^{(1)}}(T)=\left\{x_{2}, x_{3}\right\} \quad$ and $\quad B_{V_{5}^{0.6}}^{(1)}\left(\left\{x_{2}, x_{3}\right\}\right)=$ $\left\{x_{2}\right\}$, so $T \nsubseteq B_{V_{5}^{0.6}}^{(1)}\left(\overline{B_{V_{5}^{0.6}}^{(1)}}(T)\right)$.

Proposition 5 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood space $(j=1,2, \cdots, 8)$ and $X \subseteq U$. The eight type-1 rough sets based on V_{j}^{β}-neighborhoods satisfy the following properties:
(i) $\begin{aligned} & \quad \frac{B_{V_{6}^{\beta}}^{(1)}(X) \subseteq B_{V_{1}^{\beta}}^{(1)}(X) \subseteq B_{V_{5}^{\beta}}^{(1)}(X) \subseteq X}{} \begin{aligned} & \subseteq \overline{B_{V_{5}^{\beta}}^{(1)}}(X) \subseteq \overline{B_{V_{1}^{\beta}}^{(1)}}(X) \subseteq \overline{B_{V_{6}^{\beta}}^{(1)}}(X) ;\end{aligned} .\end{aligned}$
(ii) $\quad \underline{B_{V_{6}^{\beta}}^{(1)}}(X) \subseteq \underline{B_{V_{2}^{\beta}}^{(1)}}(X) \subseteq \underline{B_{V_{5}^{\beta}}^{(1)}}(X) \subseteq$

$$
X \subseteq \overline{B_{V_{5}^{\beta}}^{(1)}}(X) \subseteq \overline{B_{V_{2}^{\beta}}^{(1)}}(X) \subseteq \overline{B_{V_{6}^{\beta}}^{(1)}}(X)
$$

$$
\begin{align*}
& B_{V_{8}^{\beta}}^{(1)}(X) \subseteq B_{V_{3}^{\beta}}^{(1)}(X) \subseteq B_{V_{7}^{(1)}}^{(1)}(X) \subseteq X \subseteq \overline{B_{V_{7}^{\beta}}^{(1)}}(X) \tag{iii}\\
& \subseteq \overline{B_{V_{3}^{\beta}}^{(1)}}(X) \subseteq \overline{B_{V_{8}^{\beta}}^{(1)}}(X) ; \quad \text { (iv) } \quad B_{V_{8}^{\beta}}^{(1)}(X) \subseteq B_{V_{V}^{(1)}}^{(1)}(X) \subseteq \\
& B_{V_{7}^{(1)}}^{(1)}(X) \subseteq X \subseteq \overline{B_{V_{7}^{\beta}}^{(1)}}(X) \subseteq \overline{B_{V_{4}^{(1)}}^{(1)}}(X) \subseteq \overline{B_{V_{8}^{(1)}}^{(1)}}(X)
\end{align*}
$$

Proof The claims follow from Proposition 2 and Definition 15.

Definition 16 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood space $(j=1,2, \cdots, 8)$ and $X \subseteq U$. The type-2 rough set based on V_{j}^{β}-neighborhoods of X is the pair $\left\langle B_{V_{j}^{\beta}}^{(2)}(X), \overline{B_{V_{j}^{\beta}}^{(2)}}(X)\right\rangle$ composed by the following lower and upper approximations:

Table 6 Type-1 rough approximations based on $V_{j}^{0.6}{ }_{-}$ neighborhoods in Example 2

X	$B_{V_{1}^{0.6}}^{(1)}(X)$	$\overline{B_{V_{1}^{0.6}}^{(1)}}(X)$	$\overline{B_{V_{2}^{0.6}}^{(1)}(X)}$	$\overline{B_{V_{2}^{0.6}}^{(1)}}(X)$	$B_{V_{3}^{0.6}}^{(1)}(X)$	$\overline{B_{V_{3}^{0.6}}^{(1)}}(X)$
$\left\{x_{3}\right\}$	\emptyset	$\left\{x_{2}, x_{3}\right\}$	\emptyset	$\left\{x_{3}\right\}$	$\left\{x_{3}\right\}$	U
$\left\{x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{4}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{4}\right\}$
$\left\{x_{2}, x_{3}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{3}\right\}$	U
$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{5}\right\}$	U	$\left\{x_{5}\right\}$	$\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$	\emptyset	$\left\{x_{1}, x_{2}, x_{5}\right\}$
$\left\{x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	U
$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{5}\right\}$	U	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	U
$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	U
$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	U	$\left\{x_{5}\right\}$	$\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	U
$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{4}, x_{5}\right\}$	U	$\left\{x_{4}, x_{5}\right\}$	U	\emptyset	$\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\}$
X	$B_{V_{4}^{0.6}}^{(1)}(X)$	$\overline{B_{V_{4}^{0.6}}^{(1)}(X)}$	$B_{V_{5}^{0.6}}^{(1)}(X)$	$\overline{B_{V_{5}^{0.6}}^{(1)}(X)}$	$B_{V_{6}^{0.6}}^{(1)}(X)$	$\overline{B_{V_{6}^{0.6}}^{(1)}(X)}$
X	$\left\{x_{3}\right\}$	\emptyset	$\left\{x_{3}\right\}$	\emptyset	$\left\{x_{2}, x_{3}\right\}$	
$\left\{x_{3}\right\}$	\emptyset	$\left\{x_{4}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}\right\}$
$\left\{x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}\right\}$	$\left\{x_{2}, x_{3}\right\}$	\emptyset	$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
$\left\{x_{2}, x_{3}\right\}$	\emptyset	U	$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{5}\right\}$	U
$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{2}, x_{5}\right\}$	U	$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	\emptyset
$\left\{x_{3}, x_{4}\right\}$	\emptyset	U	$\left\{x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{5}\right\}$	U
$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{5}\right\}$	U	U	$\left\{x_{2}, x_{3}, x_{4}\right\}$		
$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	U	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{5}\right\}$	U
$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$	U	$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	$\left\{x_{4}, x_{5}\right\}$	U
X						

X	$B_{v_{7}^{0,6}}^{(1)}(X)$	$\overline{B_{V_{7}^{6}}^{(1)}}(X)$	$\overline{B_{V_{8}^{0.6}}^{(1)}(X)}$	$\overline{B_{V_{8}^{0.6}}^{(1)}}(X)$
$\left\{x_{3}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{3}\right\}$	\emptyset	U
$\left\{x_{4}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{4}\right\}$	\emptyset	$\left\{x_{4}\right\}$
$\left\{x_{2}, x_{3}\right\}$	$\left\{x_{2}, x_{3}\right\}$	$\left\{x_{2}, x_{3}\right\}$	\emptyset	U
$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{2}, x_{5}\right\}$	\emptyset	U
$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	\emptyset	U
$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{5}\right\}$	U
$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset	U
$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	U
$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$	\emptyset	U

$\left.\underline{B_{V_{j}^{\beta}}^{(2)}}(X)=\bigcup\left\{V_{j}^{\beta}(x) \mid V_{j}^{\beta}(x) \subseteq X\right\} ; \overline{B_{V_{j}^{\beta}}^{(2)}}(X)=\underline{\left(B_{V_{j}^{\beta}}^{(2)}\right.}\left(X^{C}\right)\right)^{C}$.

Proposition 6 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood space $(j=1,2, \cdots, 8)$ and $X, Y \subseteq U$. The type-2 lower and upper approximations based on V_{j}^{β}-neighborhoods satisfy

$$
\text { (i) } \left.\quad \underline{B_{V_{j}^{\beta}}^{(2)}}(X)=\left(\overline{B_{V_{j}^{\beta}}^{(2)}}\left(X^{C}\right)\right)^{C} ; \overline{B_{V_{j}^{\beta}}^{(2)}}(X)=\underline{\left(B_{V_{j}^{\beta}}^{(2)}\right.}\left(X^{C}\right)\right)^{C} \text {; }
$$

(ii) $\begin{array}{ll}B_{V_{j}^{\beta}}^{(2)}(U) & =U ; \quad \\ \overline{\overline{B_{V_{j}^{\beta}}^{(2)}}}(\emptyset) & =\emptyset ;\end{array}$
(iii) $\quad \underline{B_{V_{j}^{\beta}}^{(2)}}(X) \subseteq X \subseteq \overline{B_{V_{j}^{\beta}}^{(2)}}(X)$;
(iv) $\quad X \subseteq Y \Rightarrow \underline{B_{V_{j}^{\beta}}^{(2)}}(X) \subseteq \underline{B_{V_{j}^{\beta}}^{(2)}}(Y), \overline{B_{V_{j}^{\beta}}^{(2)}}(X) \subseteq \overline{B_{V_{j}^{\beta}}^{(2)}}(Y)$;
(v) $\quad B_{V_{j}^{\beta}}^{(2)}(X \cap Y) \subseteq B_{V_{j}^{\beta}}^{(2)}(X) \cap B_{V_{j}^{\beta}}^{(2)}(Y) ;$
$\overline{\overline{B_{V_{j}^{\beta}}^{(2)}}}(X \cup Y) \supseteq \overline{\overline{B_{V_{j}^{\beta}}^{(2)}}}(X) \cup \overline{\overline{B_{V_{j}^{\beta}}^{(2)}}}(Y) ;$
(vi) $\quad B_{V_{j}^{\beta}}^{(2)}(X \cup Y) \supseteq B_{V_{i}^{\beta}}^{(2)}(X) \cup B_{V_{i}^{\beta}}^{(2)}(Y) ;$
$\overline{\overline{B_{V_{j}^{\beta}}^{(2)}}}(X \cap Y) \subseteq \overline{\overline{B_{V_{j}^{\beta}}^{(2)}}}(X) \cap \overline{\overline{B_{V_{j}^{\beta}}^{(2)}}}(Y)$.
(vii)

$$
\left.\overline{B_{V_{j}^{\beta}}^{(2)}}(X)=\underline{B_{V_{j}^{\beta}}^{(2)}}\left(B_{V_{j}^{\beta}}^{(2)}(X)\right) ; \overline{B_{V_{j}^{\beta}}^{(2)}} \overline{B_{V_{j}^{\beta}}^{(2)}}(X)\right)=\overline{B_{V_{j}^{\beta}}^{(2)}}(X) .
$$

Proof The proofs of (i)-(iv) and (vi) are similar to Proposition 4.
(v) Let $x \in B_{V_{i}^{\beta}}^{(2)}(X \cap Y)$. Then, there exists $V_{j}^{\beta}(y)$, such that $x \in V_{j}^{\beta}(y) \subseteq X \cap Y$. So $V_{j}^{\beta}(y) \subseteq X$ and $V_{j}^{\beta}(y) \subseteq Y$, which induces that $x \in B_{V_{j}^{\beta}}^{(2)}(X)$ and $x \in \underline{B_{j}^{(2)}}(Y)$. Hence, $B_{V_{j}^{\beta}}^{(2)}(X \cap Y) \subseteq \underline{B_{V_{j}^{\beta}}^{(2)}}(X) \cap \underline{\overline{B_{V_{j}^{\beta}}^{(2)}}}(Y)$.

Similarly, let $x \in B_{V_{i}^{\beta}}^{(2)}\left((X \cup Y)^{C}\right)$. Then, there exists $V_{j}^{\beta}(y)$, such that $x \in V_{j}^{\beta}(y) \subseteq(X \cup Y)^{C}=X^{C} \cap Y^{C}$. Therefore, $\quad V_{j}^{\beta}(y) \subseteq X^{C} \quad$ and $\quad V_{j}^{\beta}(y) \subseteq Y^{C}$. Therefore, $x \in B_{V_{i}^{\beta}}^{(2)}\left(X^{C}\right) \cap B_{V_{i}^{\beta}}^{(2)}\left(Y^{C}\right)$. Therefore,
$B_{V_{i}^{\beta}}^{(2)}\left((X \cup Y)^{C}\right) \subseteq B_{V_{i}^{\beta}}^{(2)}\left(X^{C}\right) \cap B_{V_{i}^{\beta}}^{(2)}\left(Y^{C}\right) . \quad$ That means $\left.\overline{\left(B_{V_{j}^{\beta}}^{(2)}\right.}\left((X \cup Y)^{C}\right)\right)^{C} \supseteq\left(B_{V_{j}^{\beta}}^{(2)}\left(X^{C}\right) \cap B_{V_{j}^{\beta}}^{(2)}\left(Y^{C}\right)\right)^{C}=$ $\overline{\left(B_{V_{i}^{\beta}}^{(2)}\right.}\left(X^{C}\right)^{C} \cup\left(B_{V_{i}^{\beta}}^{(2)}\left(Y^{C}\right)\right)^{C}$.

Hence, $\overline{\overline{B_{V_{j}^{\beta}}^{(2)}}}(X \cup Y) \supseteq \overline{\overline{B_{V_{j}^{\beta}}^{(2)}}}(X) \cup \overline{B_{V_{j}^{\beta}}^{(2)}}(Y)$.
(vii) Based on (iii) and (iv), we have $B_{V_{i}^{\beta}}^{(2)}(X) \supseteq B_{V_{i}^{\beta}}^{(2)}\left(B_{V_{i}^{\beta}}^{(2)}(X)\right)$. Now, we prove $\left.\overline{B_{V_{j}^{\beta}}^{(2)}}(X) \subseteq \overline{B_{V_{j}^{\beta}}^{(2)}} \overline{B_{V_{j}^{\beta}}^{(2)}}(X)\right)$. Let $x \in \overline{B_{V_{j}^{\beta}}^{(2)}}(X)$. Then, there exists $V_{j}^{\beta} \overline{(y)}$, such that $x \in V_{j}^{\beta}(y) \subseteq X$. And for any $z \in V_{j}^{\beta}(y), z \in B_{V_{j}^{\beta}}^{(2)}(X)$. Therefore, $V_{j}^{\beta}(y) \subseteq B_{V_{i}^{\beta}}^{(2)}(X)$. That means $\left.x \in B_{V_{j}^{\beta}}^{(2)} \overline{\left(B_{V_{j}^{\beta}}^{(2)}\right.}(X)\right)$. Hence, $B_{V_{j}^{\beta}}^{(2)}(X) \subseteq \overline{B_{V_{j}^{\beta}}^{(2)}}\left(B_{V_{j}^{\beta}}^{(2)}(X)\right)$.

Similarly, $\left.\overline{\overline{B_{V_{j}^{\beta}}^{(2)}} \overline{B_{V_{j}^{\beta}}^{(2)}}}(X)\right)=\overline{B_{V_{j}^{(2)}}} \overline{ } \overline{X)}$.
Example 3 For $\left(U, B, V_{j}^{0.6}\right)$ in Example 1, the type-2 lower and upper approximations based on $V_{j}^{0.6}$-neighborhoods are given in Table 7.

For $X=\left\{x_{3}\right\}$ and $Y=\left\{x_{4}\right\}, X \cup Y=\left\{x_{3}, x_{4}\right\}$. From Table 7, $\quad \overline{B_{V_{1}^{0.6}}^{(2)}}(X)=\left\{x_{3}\right\}, \quad \overline{B_{V_{1}^{0.6}}^{(2)}}(Y)=\left\{x_{4}\right\} \quad$ and $\overline{B_{V_{1}^{0.6}}^{(2)}}(X \cup Y)=\left\{x_{2}, x_{3}, x_{4}\right\} . \quad$ Therefore, $\quad \overline{B_{V_{1}^{0.6}}^{(2)}}(X \cup Y) \nsubseteq$ $\overline{B_{V_{1}^{0.6}}^{(2)}}(X) \cup \overline{B_{V_{1}^{0.6}}^{(2)}}(Y)$. And for $Z=\left\{x_{2}, x_{3}, x_{5}\right\} \quad$ and
$T=\left\{x_{2}, x_{4}, x_{5}\right\}, \quad Z \cap T=\left\{x_{2}, x_{5}\right\} . \quad$ From Table 7, $\underline{B_{V_{1}^{0.6}}^{(2)}(Z)}=\left\{x_{2}, x_{3}, x_{5}\right\}, \quad \underline{B_{V_{1}^{0.6}}^{(2)}}(T)=\left\{x_{2}, x_{4}, x_{5}\right\}, \quad$ and $\overline{B_{V_{1}^{0.6}}^{(2)}}(Z \cap T)=\left\{x_{5}\right\} . \quad$ Therefore, $\overline{B_{V_{1}^{0.6}}^{(2)}}(Z \cap T) \nsupseteq \underline{B_{V_{1}^{0.6}}^{(2)}}(Z) \cap \underline{B_{V_{1}^{0.6}}^{(2)}}(T)$.

Proposition 7 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood space $(j=1,2, \cdots, 8)$ and $X \subseteq U$. The eight type- 2 rough sets based on V_{j}^{β}-neighborhoods satisfy the following properties:
(i) $\quad \underline{B_{V_{6}^{\beta}}^{(2)}}(X) \subseteq \underline{B_{V_{1}^{\beta}}^{(2)}}(X) \subseteq \underline{B_{V_{5}^{\beta}}^{(2)}}(X) \subseteq X \subseteq \overline{B_{V_{5}^{\beta}}^{(2)}}(X)$

$$
\subseteq \overline{B_{V_{1}^{\beta}}^{(2)}}(X) \subseteq \overline{B_{V_{6}^{\beta}}^{(2)}}(X)
$$

(ii) $\begin{aligned} & B_{V_{6}^{\beta}}^{(2)}(X) \subseteq B_{V_{2}^{\beta}}^{(2)}(X) \subseteq B_{V_{5}^{\beta}}^{(2)}(X) \subseteq X \\ & \\ & \subseteq \overline{B_{V_{5}^{\beta}}^{(2)}}(X) \subseteq \overline{B_{V_{2}^{\beta}}^{(2)}}(X) \subseteq \overline{B_{V_{6}^{\beta}}^{(2)}}(X) ;\end{aligned}$
(iii) $\quad B_{V_{8}^{\beta}}^{(2)}(X) \subseteq B_{V_{3}^{\beta}}^{(2)}(X) \subseteq B_{V_{7}^{\beta}}^{(2)}(X) \subseteq$

$$
\overline{X \subseteq} \overline{B_{V_{7}^{\beta}}^{(2)}}(X) \subseteq \overline{B_{V_{3}^{\beta}}^{(2)}}(X) \subseteq \overline{B_{V_{8}^{\beta}}^{(2)}}(X)
$$

(iv) $\quad B_{V_{8}^{\beta}}^{(2)}(X) \subseteq B_{V^{\beta}}^{(2)}(X) \subseteq B_{V^{\beta}}^{(2)}(X) \subseteq X$

$$
\subseteq \overline{B_{V_{7}^{\beta}}^{(2)}}(X) \subseteq \overline{B_{V_{4}^{\beta}}^{(2)}}(X) \subseteq \overline{B_{V_{8}^{\beta}}^{(2)}}(X)
$$

Proof The claims follow from Proposition 2 and Definition 16 easily.

Definition 17 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood space $(j=1,2, \cdots, 8)$ and $X \subseteq U$. The type- 3 rough set based on V_{j}^{β}-neighborhoods of X is the pair $\left\langle B_{V_{j}^{\beta}}^{(3)}(X), \overline{B_{V_{j}^{\beta}}^{(3)}}(X)\right\rangle$ composed by the following lower and upper approximations:

$$
\begin{aligned}
& B_{V_{j}^{\beta}}^{(3)}(X)=\left(\overline{B_{V_{j}^{\beta}}^{(3)}}\left(X^{C}\right)\right)^{C} ; \overline{B_{V_{j}^{\beta}}^{(3)}}(X) \\
& =\bigcup\left\{V_{j}^{\beta}(x) \mid V_{j}^{\beta}(x) \cap X \neq \emptyset\right\} .
\end{aligned}
$$

Proposition 8 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood space $(j=1,2, \cdots, 8)$ and $X, Y \subseteq U$. The type- 3 lower and upper approximations based on V_{j}^{β}-neighborhoods satisfy the following:

$$
\text { (i) } \begin{aligned}
B_{V_{j}^{\beta}}^{(3)} & (X)
\end{aligned}=\left(\overline{B_{V_{j}^{\beta}}^{(3)}}\left(X^{C}\right)\right)^{C} ; ~=\overline{\overline{B_{V_{j}^{\beta}}^{(3)}}}(X)=\left(B_{V_{j}^{(3)}}^{(3)}\left(X^{C}\right)\right)^{C} ;
$$

Table 7 Type-2 rough approximations based on $V_{j}^{0.6}-$ neighborhoods in Example 3

X	${ }_{\underline{V_{1 .}^{0,6}}}^{(2)}(X)$	$\overline{B_{V_{1} .6}^{(2)}}(X)$	${ }_{\underline{V_{2}^{6,6}}}^{(2)}(X)$	$\overline{B_{V_{2}, 6}^{(2)}}(X)$	$B_{V_{3}^{0.6}}^{(2)}(X)$	$\overline{B_{V_{3} .6}^{(2)}}(X)$
$\left\{x_{3}\right\}$	\emptyset	$\left\{x_{3}\right\}$	\emptyset	$\left\{x_{3}\right\}$	$\left\{x_{3}\right\}$	U
$\left\{x_{4}\right\}$	\emptyset	$\left\{x_{4}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{4}\right\}$
$\left\{x_{2}, x_{3}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{1}, x_{2}, x_{3}\right\}$	$\left\{x_{3}\right\}$	U
$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{5}\right\}$	U	$\left\{x_{5}\right\}$	$\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$	\emptyset	$\left\{x_{1}, x_{2}, x_{5}\right\}$
$\left\{x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	U
$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{5}\right\}$	U	$\left\{x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	U
$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	U
$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	U	$\left\{x_{5}\right\}$	$\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	U
$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$	U	$\left\{x_{4}, x_{5}\right\}$	U	\emptyset	$\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\}$
X	$\underbrace{B_{V_{4}^{0.6}}^{(2)}(X)}$	$\overline{B_{V_{4} .6}^{(2)}} \overline{ }(X)$	${ }_{\underline{V_{5}^{0.6}}}^{(2)}(X)$	$\overline{B_{V_{5}^{0.6}}^{(2)}}(X)$	$\xrightarrow{B_{V_{6}^{0.6}}^{(2)}(X)}$	$\overline{B_{V_{6} .6}^{(2)}}(X)$
$\left\{x_{3}\right\}$	\emptyset	$\left\{x_{3}\right\}$	\emptyset	$\left\{x_{3}\right\}$	\emptyset	$\left\{x_{3}\right\}$
$\left\{x_{4}\right\}$	\emptyset	$\left\{x_{4}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{4}\right\}$	\emptyset	$\left\{x_{3}, x_{4}\right\}$
$\left\{x_{2}, x_{3}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}\right\}$	$\left\{x_{2}, x_{3}\right\}$	\emptyset	$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{2}, x_{5}\right\}$	U	$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{5}\right\}$	U
$\left\{x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{3}, x_{4}\right\}$
$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{5}\right\}$	U	$\left\{x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{5}\right\}$	U
$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	U	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{5}\right\}$	U
$\underline{\left\{x_{2}, x_{4}, x_{5}\right\}}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$	U	$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$	U

X	$B_{v_{7}^{0.6}}^{(2)}(X)$	$\overline{B_{V_{7}^{0.6}}^{(2)}}(X)$	$\overline{B_{v_{8}^{0.6}}^{(2)}(X)}$	$\overline{B_{V_{8}^{0.6}}^{(2)}}(X)$
$\left\{x_{3}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{3}\right\}$	\emptyset	U
$\left\{x_{4}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{4}\right\}$	\emptyset	$\left\{x_{4}\right\}$
$\left\{x_{2}, x_{3}\right\}$	$\left\{x_{2}, x_{3}\right\}$	$\left\{x_{2}, x_{3}\right\}$	\emptyset	U
$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{2}, x_{5}\right\}$	\emptyset	U
$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	\emptyset	U
$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	U
$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset	U
$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	U
$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$	\emptyset	U

(ii) $\quad \begin{aligned} & B_{V_{j}^{\beta}}^{(3)}(U)=U ;\end{aligned} \quad \underline{\underline{B_{V_{j}^{\beta}}^{(3)}}(\emptyset)=\emptyset ; \quad \overline{B_{V_{j}^{\beta}}^{(3)}}(U)=U ; ~}$ $\overline{B_{V_{i}^{\beta}}^{(3)}}(\emptyset)=\emptyset ;$
(iii) $\quad B_{V_{j}^{\beta}}^{(3)}(X) \subseteq X \subseteq \overline{B_{V_{j}^{\beta}}^{(3)}}(X)$;
(iv) $\quad X \subseteq Y \Rightarrow B_{V_{i}^{\beta}}^{(3)}(X) \subseteq B_{V_{i}^{\beta}}^{(3)}(Y)$, $\overline{B_{V_{j}^{\beta}}^{(3)}}(X) \subseteq \overline{\overline{B_{V_{j}^{\beta}}^{(3)}}}(Y) ;$
(v) $\quad B_{V_{i}^{\beta}}^{(3)}(X \cap Y)=B_{V_{i}^{\beta}}^{(3)}(X) \cap B_{V_{i}^{\beta}}^{(3)}(Y) ;$ it $\overline{B_{V_{j}^{\beta}}^{(3)}}(X \cup$

$$
\overline{Y)}=\overline{B_{V_{j}^{(3)}}^{(3)}}(X) \cup \overline{\overline{B_{V_{j}^{\beta}}^{(3)}}}(Y)
$$

\qquad
(vi) $\quad B_{V_{j}^{\beta}}^{(3)}(X \cup Y) \supseteq B_{V_{j}^{\beta}}^{(3)}(X) \cup B_{V_{i}^{\beta}}^{(3)}(Y) ;$ $\overline{\overline{B_{V_{j}^{\beta}}^{(3)}}}(X \cap Y) \subseteq \overline{\overline{B_{V_{j}^{\beta}}^{(3)}}}(X) \cap \overline{\overline{B_{V_{j}^{\beta}}^{(3)}}}(Y) ;$
(vii) $\quad B_{V_{j}^{\beta}}^{(3)}\left(B_{V_{j}^{\beta}}^{(3)}(X)\right) \subseteq B_{V_{j}^{\beta}}^{(3)}(X)$;
$\overline{\overline{B_{V_{j}^{(3)}}^{(3)}}} \overline{(X)} \subseteq \overline{B_{V_{j}^{\beta}}^{(3)}} \overline{\left(\overline{B_{V_{j}^{\beta}}^{(3)}}\right.}(X)$;
(viii) $\left.\quad X \subseteq \underline{B_{V_{j}^{\beta}}^{(3)}}\left(\overline{B_{V_{j}^{\beta}}^{(3)}}(X)\right) ; \overline{B_{V_{j}^{\beta}}^{(3)}} \underline{B_{V_{j}^{\beta}}^{(3)}}(X)\right) \subseteq X$.

Proof Similar to Proposition 4 and 6.

Proof Simiar to Proposition

Example 4 For $\left(U, B, V_{j}^{0.6}\right)$ in Example 1，the type－3 lower and upper approximations based on $V_{j}^{0.6}$－neighborhoods are given in Table 8.

For $\quad Y=\left\{x_{4}\right\}, \quad$ Table 8 shows $\overline{B_{V_{3}^{0.6}}^{(3)}}(Y)=\left\{x_{3}, x_{4}\right\}$ ， $\overline{B_{V_{3}^{0.6}}^{(3)}}\left(\left\{x_{3}, x_{4}\right\}\right)=U$ ．Therefore，$\overline{B_{V_{3}^{0.6}}^{(3)}}\left(\overline{B_{V_{3}^{0.6}}^{(3)}}(Y)\right) \supseteq \overline{B_{V_{3}^{0.6}}^{(3)}}(Y)$ ．
And for $Z=\left\{x_{2}, x_{3}, x_{5}\right\}, B_{V_{4}^{0.6}}^{(3)}(Z)=\left\{x_{3}\right\}, B_{V_{4}^{0.6}}^{(3)}\left(\left\{x_{3}\right\}\right)=\emptyset$ ． Therefore，$B_{\underline{V_{4}^{0.6}}}^{(3)}\left(B_{V_{4}^{0.6}}^{(3)}(Z)\right) \subseteq B_{B_{4}^{0.6}}^{(3)}(Z)$ ．

Proposition 9 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}－neighborhood space $(j=1,2, \cdots, 8)$ and $X \subseteq U$ ．The eight type－ 3 rough sets based on V_{j}^{β}－neighborhoods satisfy the following properties：
（i）$\quad B_{V_{6}^{\beta}}^{(3)}(X) \subseteq B_{V_{1}^{\beta}}^{(3)}(X) \subseteq B_{V_{5}^{\beta}}^{(3)}(X) \subseteq X \subseteq$ $\overline{\overline{B_{V_{5}^{\beta}}^{(3)}}}(X) \subseteq \overline{\overline{B_{V_{1}^{\beta}}^{(3)}}}(X) \subseteq \overline{\overline{B_{V_{6}^{(3)}}^{(3)}}}(X) ;$
（ii）$\quad \underline{B_{V_{6}^{\beta}}^{(3)}(X)} \subseteq \underline{B_{V_{2}^{\beta}}^{(3)}}(X) \subseteq \underline{B_{V_{5}^{\beta}}^{(3)}}(X) \subseteq X \subseteq \overline{B_{V_{5}^{\beta}}^{(3)}}(X)$ $\bar{\subseteq} \overline{B_{V_{2}^{(3)}}^{(3)}}(X) \subseteq \overline{B_{V_{6}^{\beta}}^{(3)}}(X) ;$

Table 8 Type－ 3 rough approximations based on $V_{j}^{0.6}{ }_{-}$ neighborhoods in Example 4

X	$\underline{B_{V_{1}^{0.6}}^{(3)}(X)}$	$\overline{B_{V_{1}^{0.6}}^{(3)}}(X)$	$\underline{B}_{V_{2}^{0.6}}^{(3)}(X)$	$\overline{B_{V_{2}^{0.6}}^{(3)}}(X) \quad B$	$\underline{B}_{V_{3}^{0.6}}^{(3)}(X)$	$\overline{B_{V_{3}^{0.6}}^{(3)}}(X)$
$\left\{x_{3}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	\emptyset	$U \quad\{$	$\left\{x_{3}\right\}$	U
$\left\{x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	\emptyset	U 仡	\emptyset	$\left\{x_{3}, x_{4}\right\}$
$\left\{x_{2}, x_{3}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	\emptyset	$U \quad \emptyset$	\emptyset	U
$\left\{x_{2}, x_{5}\right\}$	\emptyset	U	\emptyset	U 仡	\emptyset	$\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$
$\left\{x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	\emptyset	$U \quad\{$	$\left\{x_{4}\right\}$	U
$\left\{x_{3}, x_{5}\right\}$	\emptyset	U	\emptyset	$U \quad\{$	$\left\{x_{5}\right\}$	U
$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	\emptyset	$U \quad\{$	$\left\{x_{4}\right\}$	U
$\left\{x_{2}, x_{3}, x_{5}\right\}$	\emptyset	U	\emptyset	$U \quad\{$	$\left\{x_{5}\right\}$	U
$\underline{\left\{x_{2}, x_{4}, x_{5}\right\}}$	\emptyset	U	\emptyset	U 仡	\emptyset	U
X	${ }^{B_{V_{4}^{0.6}}^{(3)}(X)}$	$\overline{B_{V_{4}^{0.6}}^{(3)}}(X)$	${ }^{B_{V_{5}^{0.6}}^{(3)}}(X)$	$\overline{B_{V_{5}^{0.6}}^{(3)}}(X)$		$\overline{B_{V_{6} 0.6}^{(3)}}(X)$
$\left\{x_{3}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{5}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{5}\right\}$	\emptyset	U
$\left\{x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{4}, x_{5}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{4}\right\}$	\emptyset	U
$\left\{x_{2}, x_{3}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{5}\right\}$	\emptyset	U
$\left\{x_{2}, x_{5}\right\}$	\emptyset	U	\emptyset	$\left\{x_{2}, x_{3}, x_{5}\right\}$	\emptyset	U
$\left\{x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	\} Ø	U
$\left\{x_{3}, x_{5}\right\}$	\emptyset	U	\emptyset	$\left\{x_{2}, x_{3}, x_{5}\right\}$	\emptyset	U
$\left\{x_{2}, x_{3}, x_{4}\right\}$	\emptyset	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	\} \emptyset	U
$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{3}\right\}$	U	$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	\emptyset	U
$\underline{\left\{x_{2}, x_{4}, x_{5}\right\}}$	$\left\{x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}, x_{5}\right\}$	\} \emptyset	U
X	$\underline{B_{V_{7}^{0.6}}^{(3)}(X)}$	$\overline{B_{V_{7}^{0.6}}^{(3)}}(X)$		$\overline{B_{V_{8}^{0.6}}^{(3)}}$		
$\left\{x_{3}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{3}\right\}$	\emptyset	U		
$\left\{x_{4}\right\}$	$\left\{x_{4}\right\}$	$\left\{x_{4}\right\}$	\emptyset	$\left\{x_{2}, x^{\prime}\right.$	$\left.x_{3}, x_{4}, x_{5}\right\}$	
$\left\{x_{2}, x_{3}\right\}$	$\left\{x_{2}, x_{3}\right\}$	$\left\{x_{2}, x_{3}\right\}$	\emptyset	U		
$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{2}, x_{5}\right\}$	$\left\{x_{2}, x_{5}\right\}$	\emptyset	U		
$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	$\left\{x_{3}, x_{4}\right\}$	\emptyset	U		
$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	$\left\{x_{3}, x_{5}\right\}$	\emptyset	U		
$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	$\left\{x_{2}, x_{3}, x_{4}\right\}$	）\emptyset	U		
$\left\{x_{2}, x_{3}, x_{5}\right\}$	$\left\{x_{2}, x_{3}, x_{5}\right\}$	\｛ $\quad\left\{x_{2}, x_{3}, x_{5}\right\}$		U		
$\underline{\left\{x_{2}, x_{4}, x_{5}\right\}}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$	，$\left.x_{2}, x_{4}, x_{5}\right\}$	¢ \emptyset	U		

(iii) $\quad \underline{B_{V_{8}^{\beta}}^{(3)}(X) \subseteq \underline{B_{V_{3}^{\beta}}^{(3)}}(X) \subseteq \underline{B_{V_{7}^{\beta}}^{(3)}}(X) \subseteq X \subseteq \overline{B_{V_{7}^{\beta}}^{(3)}}(X), ~}$
$\subseteq \overline{B_{V_{3}^{\beta}}^{(3)}}(X) \subseteq \overline{B_{V_{8}^{(3)}}^{(3)}}(X) ;$
(iv)

$$
\begin{aligned}
& B_{V_{8}^{\beta}}^{(3)}(X) \subseteq B_{V_{4}^{\beta}}^{(3)}(X) \subseteq B_{V_{7}^{\beta}}^{(3)}(X) \subseteq X \\
& \subseteq \overline{B_{V_{7}^{\beta}}^{(3)}}(X) \subseteq \overline{B_{V_{4}^{\beta}}^{(3)}}(X) \subseteq \overline{B_{V_{8}^{\beta}}^{(3)}}(X)
\end{aligned}
$$

Proof The conclusions follow from Proposition 2 and Definition 17.

Proposition 10 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood space $(j=1,2, \cdots, 8)$ and $X \subseteq U$. Then, for any $j=1, \cdots, 8$

$$
\begin{aligned}
& B_{V_{j}^{\beta}}^{(3)}(X) \subseteq B_{V_{j}^{\beta}}^{(1)}(X) \subseteq B_{V_{j}^{\beta}}^{(2)}(X) \subseteq X \subseteq \overline{B_{V_{j}^{\beta}}^{(2)}}(X) \\
& \quad \subseteq \overline{B_{V_{j}^{\beta}}^{(1)}}(X) \subseteq \overline{B_{V_{j}^{\beta}}^{(3)}} \overline{(X)}
\end{aligned}
$$

Proof Since V_{j}^{β}-neighborhood operator is reflexive, the claim is obvious by Theorem 7 in Yao (1998).

5 Topology structure of V_{j}^{β}-neighborhood space

Kelley (1995) proposed that if \mathscr{S} is any non-void family of sets, the family of all finite intersections of members of \mathscr{S} is the base for a topology for the set $U=\bigcup\{S \mid S \in \mathscr{S}\}$. Based on it, we present the following topology structure analysis of V_{j}^{β}-neighborhood space.

Proposition 11 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood space $(j=1,2, \cdots, 8)$. Define $\mathscr{U}_{j}(x)=\left\{X \subseteq U \mid V_{j}^{\beta}(x) \subseteq\right.$ $X\}$ and $\mathscr{T}_{j}=\left\{\mathscr{U}_{j}(x) \mid x \in U\right\}$. Then,
(i) \mathscr{T}_{j} is a topology of U, and $\left\{V_{j}^{\beta}(x)\right\}$ is a base of $\mathscr{U}_{j}(x)$;
(ii) $\quad \mathscr{T}_{6} \subseteq \mathscr{T}_{1} \subseteq \mathscr{T}_{5} ; \quad \mathscr{T}_{6} \subseteq \mathscr{T}_{2} \subseteq \mathscr{T}_{5} ; \quad \mathscr{T}_{8}$ $\subseteq \mathscr{T}_{3} \subseteq \mathscr{T}_{7} ; \mathscr{T}_{8} \subseteq \mathscr{T}_{4} \subseteq \mathscr{T}_{7}$.

Proof (i) For any $j=1,2, \cdots, 8$, obviously, \mathscr{T}_{j} satisfies (i), (ii) and (iii) in Definition 11. Therefore, \mathscr{T}_{j} is a topology.

Furthermore, based on the definition of $\mathscr{U}_{j}(x)$ and Definition 12, we have $\left\{V_{j}^{\beta}(x)\right\}$ is a base of $\mathscr{U}_{j}(x)$.
(ii) It can be proved by the claim (ii) of Proposition 2.

Pawlak's rough set is built on topology theory. Let R be an equivalence relation on U and $X \subseteq U$. Then,
$(U, D I S(R))$ is a topology space, where $\operatorname{DIS}(R)$ is the family of all open and closed sets, and U / R is a base for the topology $\operatorname{DIS}(R)$. And the R-lower and the R-upper approximation of X is the interior and closure of X in $(U, D I S(R))$, respectively. However, from Propositions $4 \sim 6$, we can find in neighborhood space $\left(U, B, V_{j}^{\beta}\right)$ the three pairs of approximation operators in V_{j}^{β}-neighborhood spaces cannot totally satisfy Kuratowski axiom (Theorem 1). In the following, we discuss the conditions under which $B_{V_{j}^{\beta}}^{(k)}$ and $\overline{B_{V_{j}^{\beta}}^{(k)}}(k=1,2,3$ and $j=1,2, \cdots, 8)$ are interior and closure operators, respectively.

Proposition 12 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood space $(j=1,2, \cdots, 8)$. If V_{j}^{β}-neighborhood is transitive, then $\overline{B_{V_{j}^{\beta}}^{(1)}}$ and $\overline{B_{V_{j}^{\beta}}^{(1)}}$ are interior and closure operators, respectively in $\left(U, \mathscr{T}_{j}\right)$.

Proof Based on (vii) of Proposition 4, we only prove that $B_{V_{j}^{\beta}}^{(1)}(X) \subseteq B_{V_{j}^{\beta}}^{(1)}\left(B_{V_{j}^{\beta}}^{(1)}(X)\right)$ and $\overline{B_{V_{j}^{\beta}}^{(1)}}\left(\overline{B_{V_{j}^{\beta}}^{(1)}}(X)\right) \subseteq \overline{B_{V_{j}^{\beta}}^{(1)}}(X)$, for any $X \subseteq U$.

For any $x \in B_{V_{j}^{\beta}}^{(1)}(X), V_{j}^{\beta}(x) \subseteq X$. If V_{j}^{β}-neighborhood is transitive, for any $y \in V_{j}^{\beta}(x)$, we have $V_{j}^{\beta}(y) \subseteq V_{j}^{\beta}(x) \subseteq X$. Therefore, $y \in B_{V_{j}^{\beta}}^{(1)}(X)$. Then, $V_{j}^{\beta}(y) \subseteq B_{V_{j}^{\beta}}^{(1)}(X)$. Therefore, $y \in \underline{B_{V_{j}^{\beta}}^{(1)}}\left(B_{V_{j}^{\beta}}^{(1)}(X)\right)$. Hence, $B^{(1)}(X) \subseteq B_{V_{j}^{\beta}}^{(1)}\left(B_{V_{j}^{\beta}}^{(1)}(X)\right)$.

On the other hand, if $\left.x \in \overline{B_{V_{j}^{(1)}}^{(1)}} \overline{B_{V_{j}^{\beta}}^{(1)}}(X)\right)$, then $V_{j}^{\beta}(x) \cap \overline{B_{V_{j}^{\beta}}^{(1)}}(X) \neq \emptyset$. Let $y \in V_{j}^{\beta}(x) \cap \overline{B_{V_{j}^{\beta}}^{(1)}}(X)$. Since $V_{j}^{\beta}-$ neighborhood is transitive, $\quad V_{j}^{\beta}(y) \subseteq V_{j}^{\beta}(x) \quad$ and $V_{j}^{\beta}(y) \cap X \neq \emptyset . \quad$ Therefore, $\quad V_{j}^{\beta}(x) \cap X \neq \emptyset . \quad$ Then, $x \in \overline{B_{V_{j}^{\beta}}^{(1)}}(X)$. Hence, $\left.\overline{B_{V_{j}^{\beta}}^{(1)}} \overline{B_{V_{j}^{\beta}}^{(1)}}(X)\right) \subseteq \overline{B_{V_{j}^{\beta}}^{(1)}}(X)$.

Therefore,

$$
B_{V_{j}^{\beta}}^{(1)}(X)=B_{V_{j}^{\beta}}^{(1)}\left(B_{V_{j}^{\beta}}^{(1)}(X)\right)
$$

and $\left.\overline{B_{V_{j}^{\beta}}^{(1)}} \overline{B_{V_{j}^{(1)}}^{(1)}}(X)\right)=\overline{B_{V_{j}^{(1)}}^{(1)}}(X)$.

Therefore, $B_{V_{j}^{\beta}}^{(1)}$ and $\overline{B_{V_{j}^{\beta}}^{(1)}}$ satisfy Theorem 1 according to Proposition 4, which are interior and closure operators, respectively.

Proposition 13 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood space $(j=1,2, \cdots, 8)$. If V_{j}^{β}-neighborhood is transitive, then $\overline{B_{V_{j}^{\beta}}^{(2)}}$ and $\overline{B_{V_{j}^{\beta}}^{(2)}}$ are interior and closure operators, respectively, in $\left(U, \mathscr{T}_{j}\right)$.

Proof Based on Proposition 6, we only prove $B_{V_{j}^{\beta}}^{(2)}(X) \cap$ $B_{\underline{V_{j}^{\beta}}}^{(2)}(Y) \subseteq \underline{B_{V_{j}^{\beta}}^{(2)}}(X \cap Y) \quad$ and $\quad \overline{B_{V_{j}^{\beta}}^{(2)}}(X \cup Y) \subseteq \overline{B_{V_{j}^{(2)}}^{(2)}}(X)$ $\cup \overline{B_{V_{j}^{\beta}}^{(2)}}(Y)$, for any $X \subseteq U$.

For any $x \in B_{V_{j}^{\beta}}^{(2)}(X) \cap B_{V_{j}^{\beta}}^{(2)}(Y)$, there exist $y, z \in U$, such that $x \in V_{j}^{\beta}(y) \subseteq X$ and $\overline{x \in} V_{j}^{\beta}(z) \subseteq Y$. Since V_{j}^{β}-neighborhood is transitive, $V_{j}^{\beta}(x) \subseteq V_{j}^{\beta}(y)$ and $V_{j}^{\beta}(x) \subseteq V_{j}^{\beta}(z)$. Therefore, $\quad x \in V_{j}^{\beta}(x) \subseteq X \cap Y$. That means $B_{V_{j}^{\beta}}^{(2)}(X) \cap B_{V_{j}^{\beta}}^{(2)}(Y) \subseteq B_{V_{j}^{\beta}}^{(2)}(X \cap Y)$. Combined with Claim $\overline{\text { (iv) in Proposition 6, we have }}$ $B_{V_{j}^{\beta}}^{(2)}(X) \cap B_{V_{j}^{\beta}}^{(2)}(Y)=B_{V_{j}^{\beta}}^{(2)}(X \cap Y) . \quad$ Similarly, $\quad \overline{B_{V_{j}^{\beta}}^{(2)}}(X) \cup$ $\overline{\overline{B_{V_{j}^{\beta}}^{(2)}}}(Y)=\overline{\overline{B_{V_{j}^{\beta}}^{(2)}}}(X \cup Y)$.

Then, we have $B_{V_{j}^{\beta}}^{(2)}$ and $\overline{B_{V_{j}^{\beta}}^{(2)}}$ also satisfy Theorem 1 based on Proposition 6, which are interior and closure operators, respectively.
Proposition 14 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood space $(j=1,2, \cdots, 8)$. If V_{j}^{β}-neighborhood is Euclidean, then $\underline{B_{V_{j}^{\beta}}^{(3)}}$ and $\overline{B_{V_{j}^{\beta}}^{(3)}}$ are interior and closure operators, respectively.
Proof Based on Proposition 8, we only prove that $\underline{B_{V_{j}^{\beta}}^{(3)}}(X) \subseteq \underline{B_{V_{j}^{\beta}}^{(3)}} \underline{B_{V_{j}^{\beta}}^{(3)}}(X)$) and $\left.\overline{B_{V_{j}^{\beta}}^{(3)}} \overline{B_{V_{j}^{\beta}}^{(3)}}(X)\right) \subseteq \overline{B_{V_{j}^{\beta}}^{(3)}}(X)$, for $\overline{\text { any }} X \subseteq U$.

For any $\left.x \in \overline{B_{V_{j}^{\beta}}^{(3)}} \overline{B_{V_{j}^{\beta}}^{(3)}}(X)\right)$, there exist $y \in U$, such that $x \in V_{j}^{\beta}(y)$ and $V_{j}^{\beta}(y) \cap \overline{B_{V_{j}^{\beta}}^{(3)}}(X) \neq \emptyset$. Since V_{j}^{β}-neighborhood is Euclidean, $V_{j}^{\beta}(y) \subseteq V_{j}^{\beta}(x)$, so $V_{j}^{\beta}(x) \cap \overline{B_{V_{j}^{\beta}}^{(3)}}(X) \neq \emptyset$. Let $z \in V_{j}^{\beta}(x) \cap \overline{B_{V_{j}^{\beta}}^{(3)}}(X)$. Then, $z \in V_{j}^{\beta}(x)$ and $z \in \overline{B_{V_{j}^{(3)}}^{(3)}}(X)$. Therefore, $V_{j}^{\beta}(x) \subseteq V_{j}^{\beta}(z)$ and there is $t \in U$, such that $z \in$ $V_{j}^{\beta}(t) \quad$ and $\quad V_{j}^{\beta}(t) \cap X \neq \emptyset$. Since $\quad V_{j}^{\beta}(t) \subseteq V_{j}^{\beta}(z)$, $V_{j}^{\beta}(z) \cap X \neq \emptyset$. Since, for any $s \in V_{j}^{\beta}(z)$, we have $V_{j}^{\beta}(z) \cap X \neq \emptyset$. So $\quad V_{j}^{\beta}(z) \subseteq \overline{B_{V_{j}^{\beta}}^{(3)}}(X)$. And \quad since $x \in V_{j}^{\beta}(x) \subseteq V_{j}^{\beta}(z), \quad x \in \overline{B_{V_{j}^{\beta}}^{(3)}}(X) . \quad$ That means $\left.\overline{B_{V_{j}^{\beta}}^{(3)}} \overline{B_{V_{j}^{\beta}}^{(3)}}(X)\right) \subseteq \overline{B_{V_{j}^{\beta}}^{(3)}}(X)$.

Furthermore, based on (i) of Proposition 8, we have $\left.\underline{B_{V_{j}^{\beta}}^{(3)}}(X) \subseteq \underline{B_{V_{j}^{\beta}}^{(3)}} \underline{B_{V_{j}^{\beta}}^{(3)}}(X)\right)$.

Therefore, $B_{V_{j}^{\beta}}^{(3)}$ and $\overline{B_{V_{j}^{\beta}}^{(3)}}$ also satisfy Theorem 1 based on Proposition 8, which are interior and closure operators, respectively.

Proposition $15 \operatorname{Let}\left(U, B, V_{j}^{\beta}\right)(j=1,2, \cdots, 8)$ be a V_{j}^{β} neighborhood space and $X \subseteq U$. If V_{j}^{β}-neighborhood is transitive, then $\left\langle B_{V_{j}^{\beta}}^{(1)}(X), \overline{B_{V_{j}^{\beta}}^{(1)}}(X)\right\rangle$ and $\left\langle B_{V_{j}^{\beta}}^{(2)}(X), \overline{B_{V_{j}^{\beta}}^{(2)}}(X)\right\rangle$ are equivalent; furthermore, if V_{j}^{β}-neighborhood is both transitive and symmetric, then the three pairs of lower and upper approximation operators are equivalent.
Proof (i) First, when V_{j}^{β}-neighborhood is transitive, we prove $\underline{B_{V_{j}^{\beta}}^{(1)}}(X)=\underline{B_{V_{j}^{\beta}}^{(2)}}(X)$ and $\overline{B_{V_{j}^{\beta}}^{(1)}}(X)=\overline{B_{V_{j}^{\beta}}^{(2)}}(X)$. Based on Proposition 10, we only prove $\underline{B_{V_{j}^{\beta}}^{(2)}}(X) \subseteq \underline{B_{V_{j}^{\beta}}^{(1)}}(X)$ and $\overline{B_{V_{j}^{\beta}}^{(1)}}(X) \subseteq \overline{B_{V_{j}^{\beta}}^{(2)}}(X)$.

For any $x \in \underline{B_{j}^{(2)}}(X)$, there exists $y \in U$, such that $x \in V_{j}^{\beta}(y) \subseteq X . \quad$ Since $\quad V_{j}^{\beta} \quad$ is transitive, $V_{j}^{\beta}(x) \subseteq V_{j}^{\beta}(y) \subseteq X$. Therefore, $x \in \underline{B_{V_{j}^{\beta}}^{(1)}}(X)$. That means $\underline{B_{V_{j}^{\beta}}^{(2)}}(X) \subseteq \underline{B_{V_{j}^{\beta}}^{(1)}}(X)$.

For \quad any $\quad x \in \overline{B_{V_{j}^{\beta}}^{(1)}}(X), \quad V_{j}^{\beta}(x) \cap X \neq \emptyset . \quad$ Assume $x \notin \overline{B_{V_{j}^{\beta}}^{(2)}}(X)$. Then, $x \in B_{V_{j}^{\beta}}^{(2)}\left(X^{C}\right)$. Therefore, there exists $y \in U$, such that $x \in V_{j}^{\beta(y)} \subseteq X^{C}$. Since V_{j}^{β} is transitive, $V_{j}^{\beta}(x) \subseteq V_{j}^{\beta}(y) \subseteq X^{C}, \quad$ which is contradiction with $V_{j}^{\beta}(x) \cap X \neq \emptyset$. Therefore, $x \in \overline{B_{V_{j}^{(2)}}^{(2)}}(X)$. That means $\overline{B_{V_{j}^{\beta}}^{(1)}}(X) \subseteq \overline{B_{V_{j}^{\beta}}^{(2)}}(X)$.

Hence, $\underline{B_{V_{j}^{\beta}}^{(1)}}(X)=\underline{B_{V_{j}^{\beta}}^{(2)}}(X)$ and $\overline{B_{V_{j}^{\beta}}^{(1)}}(X)=\overline{B_{V_{j}^{\beta}}^{(2)}}(X)$.
(ii) Since V_{j}^{β}-neighborhood is reflexive when it is symmetric and transitive, $\left(U, B, V_{j}^{\beta}\right)$ is an approximation space with the equivalent relation. Similar to the discussion of Corollary 11 in Yao (1998), the three pairs of lower and upper approximation operators are equivalent.

6 Attribute reduction of rough sets in $V_{j}^{\boldsymbol{\beta}}$ neighborhood spaces

The section aims to show the applicability and flexibility of the proposed rough set models based on variable containment neighborhoods. In classical rough set theory, the

Table $9 N_{1}, C_{1}, V_{1}^{0.8}, V_{1}^{0.75}$, and E_{1}-neighborhoods in Example 5

X	N_{1}	C_{1}	$V_{1}^{0.8}$	$V_{1}^{0.75}$	E_{1}
$\left\{x_{1}\right\}$	$\left\{x_{1}, x_{3}, x_{7}, x_{9}, x_{11}\right\}$	$\left\{x_{1}\right\}$	$\left\{x_{1}\right\}$	$\left\{x_{1}, x_{3}, x_{7}\right\}$	$\left\{x_{1}, x_{3}, x_{7}, x_{8}, x_{9}, x_{11}, x_{12}\right\}$
$\left\{x_{2}\right\}$	$\left\{x_{2}, x_{4}, x_{5}, x_{6}, x_{10}\right\}$	$\left\{x_{2}, x_{10}\right\}$	$\left\{x_{2}, x_{4}, x_{6}, x_{10}\right\}$	$\left\{x_{2}, x_{4}, x_{6}, x_{10}\right\}$	$\left\{x_{2}, x_{4}, x_{5}, x_{6}, x_{8}, x_{10}, x_{12}\right\}$
$\left\{x_{3}\right\}$	$\left\{x_{1}, x_{3}, x_{7}, x_{8}\right\}$	$\left\{x_{3}, x_{7}\right\}$	$\left\{x_{3}, x_{7}\right\}$	$\left\{x_{3}, x_{7}, x_{8}\right\}$	$\left\{x_{1}, x_{3}, x_{7}, x_{8}, x_{9}, x_{11}\right\}$
$\left\{x_{4}\right\}$	$\left\{x_{2}, x_{4}, x_{6}, x_{10}, x_{12}\right\}$	$\left\{x_{4}, x_{6}\right\}$	$\left\{x_{2}, x_{4}, x_{6}, x_{10}\right\}$	$\left\{x_{2}, x_{4}, x_{6}, x_{10}\right\}$	$U-\left\{x_{1}, x_{3}, x_{7}, x_{8}\right\}$
$\left\{x_{5}\right\}$	$\left\{x_{2}, x_{5}, x_{8}, x_{10}, x_{12}\right\}$	$\left\{x_{5}\right\}$	$\left\{x_{5}\right\}$	$\left\{x_{5}\right\}$	$U-\left\{x_{1}, x_{9}\right\}$
$\left\{x_{6}\right\}$	$\left\{x_{2}, x_{4}, x_{6}, x_{10}, x_{12}\right\}$	$\left\{x_{4}, x_{6}\right\}$	$\left\{x_{2}, x_{4}, x_{6}, x_{10}\right\}$	$\left\{x_{2}, x_{4}, x_{6}, x_{10}\right\}$	$U-\left\{x_{1}, x_{3}, x_{7}, x_{8}\right\}$
$\left\{x_{7}\right\}$	$\left\{x_{1}, x_{3}, x_{7}, x_{8}\right\}$	$\left\{x_{3}, x_{7}\right\}$	$\left\{x_{3}, x_{7}\right\}$	$\left\{x_{3}, x_{7}, x_{8}\right\}$	$\left\{x_{1}, x_{3}, x_{5}, x_{7}, x_{8}, x_{9}, x_{11}\right\}$
$\left\{x_{8}\right\}$	$\left\{x_{3}, x_{5}, x_{7}, x_{8}\right\}$	$\left\{x_{8}\right\}$	$\left\{x_{8}\right\}$	$\left\{x_{3}, x_{7}, x_{8}\right\}$	$U-\left\{x_{4}, x_{6}, x_{9}, x_{11}\right\}$
$\left\{x_{9}\right\}$	$\left\{x_{1}, x_{9}, x_{11}, x_{12}\right\}$	$\left\{x_{9}, x_{11}\right\}$	$\left\{x_{9}, x_{11}\right\}$	$\left\{x_{9}, x_{11}\right\}$	$U-\left\{x_{2}, x_{8}, x_{10}\right\}$
$\left\{x_{10}\right\}$	$\left\{x_{2}, x_{4}, x_{5}, x_{6}, x_{10}\right\}$	$\left\{x_{2}, x_{10}\right\}$	$\left\{x_{2}, x_{4}, x_{6}, x_{10}\right\}$	$\left\{x_{2}, x_{4}, x_{6}, x_{10}\right\}$	$\left\{x_{2}, x_{4}, x_{5}, x_{6}, x_{8}, x_{10}, x_{12}\right\}$
$\left\{x_{11}\right\}$	$\left\{x_{1}, x_{9}, x_{11}, x_{12}\right\}$	$\left\{x_{9}, x_{11}\right\}$	$\left\{x_{9}, x_{11}\right\}$	$\left\{x_{9}, x_{11}\right\}$	$U-\left\{x_{2}, x_{8}, x_{10}\right\}$
$\left\{x_{12}\right\}$	$\left\{x_{4}, x_{5}, x_{6}, x_{9}, x_{11}, x_{12}\right\}$	$\left\{x_{12}\right\}$	$\left\{x_{12}\right\}$	$\left\{x_{12}\right\}$	$U-\left\{x_{3}, x_{7}\right\}$

Table 10 Comparison of accuracy measures in $N_{1}, C_{1}, V_{1}^{0.8}, V_{1}^{0.75}$, and E_{1}-neighborhood approximation spaces in Example 5

Neighborhood	$V=\left\{x_{2}, x_{4}, x_{5}, x_{6}, x_{8}, x_{10}, x_{12}\right\}$			$W=\left\{x_{1}, x_{3}, x_{7}, x_{8}, x_{9}\right\}$		
	\underline{B}	\bar{B}	ρ	\underline{B}	\bar{B}	ρ
N_{1}	$\left\{x_{2}, x_{4}, x_{6}, x_{10}\right\}$	$U-\left\{x_{1}\right\}$	4	$\left\{x_{3}, x_{7}\right\}$	$U-\left\{x_{2}, x_{4}, x_{6}, x_{10}\right\}$	$\underline{1}$
			11			$\overline{4}$
C_{1}	V	V	1	$\left\{x_{1}, x_{3}, x_{7}, x_{8}\right\}$	$\left\{x_{1}, x_{3}, x_{7}, x_{8}, x_{9}, x_{11}\right\}$	$\frac{2}{3}$
$V_{1}^{0.8}$	V	V	1	$\left\{x_{1}, x_{3}, x_{7}, x_{8}\right\}$	$\left\{x_{1}, x_{3}, x_{7}, x_{8}, x_{9}, x_{11}\right\}$	3 2
$V_{1}^{0.75}$	$\left\{x_{2}, x_{4}, x_{5}, x_{6}, x_{10}, x_{12}\right\}$	$U-\left\{x_{1}, x_{3}, x_{9}, x_{11}\right\}$	$\frac{3}{4}$	$\left\{x_{1}, x_{3}, x_{7}, x_{8}\right\}$	$\left\{x_{1}, x_{3}, x_{7}, x_{8}, x_{9}, x_{11}\right\}$	3 2 $\frac{2}{3}$
E_{1}	$\left\{x_{2}, x_{10}\right\}$	U	$\frac{1}{6}$	\emptyset	U	0

boundary regions lead to the inaccuracy of a set. The larger the boundary regions, the weaker the accuracy of the approximation. This paper uses the accuracy measure and dependence measure to depict the applications of the novel rough set models. Considering the relationship between the above three novel rough set models, we only take type-1 rough sets based on V_{j}^{β}-neighborhoods as the research objects hereinafter.

In the following experiment, all algorithms are run on a personal computer with Windows 10 and Core(TM)i710510 C CPU 1.8 GHz , and 16 GB RAM. The software being used is Matlab R2019a.

6.1 Accuracy measures

Accuracy measure is one of the important indicators to characterize the inaccuracy and incompleteness of rough sets. Allam et al. (2005), Al-shami (2021) and Al-shami et al. (2021) defined the N_{j}-accuracy measure, E_{j}-accuracy
measure, and C_{j}-accuracy measure, which are $\rho_{N_{j}}(X)=\frac{\left|X \cap \overline{B_{N_{j}}}(X)\right|}{\left|X \cup \overline{\bar{B}_{N_{j}}}(X)\right|}, \rho_{E_{j}}(X)=\frac{\left|X \cap B_{E_{E_{j}}}(X)\right|}{\left|X \cup \overline{\overline{B_{E_{j}}}}(X)\right|}$ and $\rho_{C_{j}}(X)=\frac{\left|B_{C_{j}}(X)\right|}{\left|\overline{B_{C_{j}}}(X)\right|}$, respectively. Combining the characteristics of V_{j}^{β}-neigh-borhood-based rough sets, we give the following definition.

Definition 18 Let $\left(U, B, V_{j}^{\beta}\right)$ be a V_{j}^{β}-neighborhood space and X be a nonempty subset of U
$\rho_{V_{j}^{\beta}}(X)=\frac{\left|B_{V_{j}^{\beta}}^{(1)}(X)\right|}{\mid \overline{\overline{B_{V_{j}^{(1)}}^{(1)}}(X) \mid}}$
is called the V_{j}^{β}-neighborhood accuracy measure of X, where $j=1,2, \cdots, 8$.

Proposition 16 Let B be a reflexive binary relation on U, $X \subseteq U$ and $0<\beta_{1}<\beta_{2} \leq 1$. Then, we have
$\rho_{E_{j}}(X) \leq \rho_{V_{j}^{\beta_{1}}}(X) \leq \rho_{V_{j}^{\beta_{2}}}(X) \leq \rho_{C_{j}}(X)$.

Proof By (iii) of Proposition 3 and Definition 8, 10 and 15, it is true that $\underline{B_{E_{j}}}(X) \subseteq \underline{B_{V_{j}^{\beta_{2}}}^{(1)}}(X) \subseteq \underline{B_{V_{j}^{\beta_{2}}}^{(1)}}(X) \subseteq \underline{B_{C_{j}}}(X) \subseteq$ $X \subseteq \overline{B_{C_{j}}}(X) \subseteq \overline{B_{V_{j}^{(1)}}^{(1)}}(X) \subseteq \overline{\overline{B_{V_{j}^{(1)}}^{\beta_{1}}}}(X) \subseteq \overline{\overline{B_{E_{j}}}}(X)$. Therefore, the conclusion holds.

The following example proves the superiority of the novel accuracy measure compared with the existing approaches in Al-shami (2021) and Al-shami et al. (2021).

Example 5 We use the data in Example 5.6 of Al-shami (2021), which gave the five symptoms of heart diseases for 12 patients and constructed the N_{1}-neighborhood, C_{1} neighborhood, and E_{1}-neighborhood of each patient. We continue to calculate the $V_{1}^{0.75}, V_{1}^{0.8}$-neighborhoods in Table 9.

For comparison,
Table 10 shows the accuracy measures of the two sets $V=\left\{x_{2}, x_{4}, x_{5}, x_{6}, x_{8}, x_{10}, x_{12}\right\}$ and $W=\left\{x_{1}, x_{3}, x_{7}, x_{8}, x_{9}\right\}$ with respect to all kinds of neighborhoods in Table 9. They satisfy $\quad \rho_{E_{1}}(V) \leq \rho_{N_{1}}(V) \leq \rho_{V_{1}^{0.75}}(V) \leq \rho_{V_{1}^{0.8}}(V) \leq \rho_{C_{1}}(V)$ and $\rho_{E_{1}}(W) \leq \rho_{N_{1}}(W) \leq \rho_{V_{1}^{0.75}}(W) \leq \rho_{V_{1}^{0.8}}(W) \leq \rho_{C_{1}}(W)$.

These demonstrate that the accuracy measure of the proposed approximations based on V_{j}^{β}-neighborhood is higher than that based on N_{j}, E_{j}-neighborhoods, although it is not necessarily inferior to that based on C_{j}-neighborhoods. However, it can adjust the accuracy measure according to actual needs.

6.2 Attribute reduction based on $V_{j}^{\boldsymbol{\beta}}$ neighborhoods

It is well known that there is a lot of incompleteness in real data, especially when the data are high-dimensional largescale data; it is particularly important to remove redundant attributes to reduce computing time and ensure the simplicity of knowledge acquisition. Therefore, this subsection proposes an attribute reduction algorithm based on attribute signification under V_{j}^{β}-neighborhood-based rough set
models for incomplete neighborhood decision systems. First, we study the approximation precision of a subset in an incomplete information system.

For an information system $(U, \boldsymbol{C} \cup \boldsymbol{D}, V, f)$, where U is a nonempty and finite universe, \boldsymbol{C} is the set of condition attributes and \boldsymbol{D} is the set of decision attributes, $V=$ $\left\{V_{a} \mid a \in \boldsymbol{C} \cup \boldsymbol{D}\right\}$ is the set of all attribute values and f_{a} : $U \rightarrow V_{a}$ is a function for any attribute a. If there exist some missing values $*$ in some attribute values, we say the system is an incomplete information system.

Considering that the types of attribute values in an information system are diverse, we must use different methods to construct the N-neighborhood of an element based on different types of attribute values.

For any $x \in U$ and any $a \in C$:
(1) If V_{a} is continuous, the N-neighborhood of x about the attribute a is defined as $N_{a}(x)=\left\{y \in U \left\lvert\, \frac{\left|f_{a}(x)-f_{a}(y)\right|}{\max \left\{V_{a}\right\}-\min \left\{V_{a}\right\}} \leq \delta\right.\right\}$; here, δ is a given small positive number. In this paper, $\delta=0.5$.
(2) If V_{a} is discrete (including Boolean and symbolic), the N-neighborhood of x about a is defined as $N_{a}(x)=\left\{y \in U \mid f_{a}(x)=f_{a}(y)\right\}$.
(3) If there are some missing values in the system, that is, $f_{a}(y)=*$, we think $y \in N_{a}(x)$.
Here, $N_{a}(x)$ can be regarded as the N_{1}-neighborhood of x in Definition 3. Since the neighborhoods are symmetric, $N_{a}(x)$ is also the N_{2}-neighborhood of x. Then, we deduce $N_{3}(x), \cdots, N_{8}(x), \quad P_{j}(x), \quad C_{j}(x), \quad V_{j}^{\beta}(x) \quad$ and $\quad E_{j}(x)$ $(j=1,2, \cdots, 8)$ based on Definition 5, 7, 9, and 14, respectively

Hence, the N_{1}-neighborhood system $N_{C, 1}(U)=$ $\left\{N_{\boldsymbol{C}, 1}(x) \mid x \in U\right\}$ in $(U, \boldsymbol{C} \cup \boldsymbol{D}, V, f)$ follows:
$N_{\boldsymbol{C}, 1}(x)=\left\{y \in U \mid \forall a \in \boldsymbol{C}, y \in N_{a}(x).\right\}$.
Then, we have $P_{\boldsymbol{C}, 1}(U), C_{\boldsymbol{C}, 1}(U), V_{\boldsymbol{C}, 1}^{\beta}(U)$ and $E_{\boldsymbol{C}, 1}(U)$.
It is worth noting that N_{1}-neighborhoods in Definition 3 may not satisfy the reflexivity based on arbitrary binary relation in general theory, while the N_{1}-neighborhoods in (1) are reflexive in the information systems.

Definition 19 Let $(U, \boldsymbol{C} \cup \boldsymbol{D}, V, f)$ be an information system. For any $X \in U / D$

Table 11 Datasets description in Example 6

Datasets	Numbers of data	Numbers of attributes	Numbers of decisions
Chronic Kidney Disease	400	24	2
Annealing	798	38	5
LSVT Voice Rehabilitation	126	310	2
Obesity	1221	16	7

(a) Chronic Kidney Disease

(c) LSVT Voice Rehabilitation

(b) Annealing

(d) Obesity
$\eta_{N_{j}}(X)=\frac{\left|B_{N_{C_{j} j}}(X)\right|}{|X|}, \eta_{P_{j}}(X)=\frac{\left|B_{P_{C_{j . j}}}(X)\right|}{|X|}$,
$\eta_{C_{j}}(X)=\frac{\left|B_{C_{C_{j}, j}}(X)\right|}{|X|}, \eta_{E_{j}}(X)=\frac{\left|B_{E_{C_{j} j}}(X)\right|}{|X|} ;$

Example 6 We select the four incomplete data with different sizes from UCI (UCI Machine Learning Repository 2023) database listed in Table 11.

(a) Chronic Kidney Disease

(c) LSVT Voice Rehabilitation

Fig. $2 \gamma_{0_{1}^{0.8}}$ of varying condition attributes in Example 6
We calculate the local dependency measures of the four data sets, including $\eta_{N_{1}}, \eta_{P_{1}}, \eta_{C_{1}}, \eta_{V_{1}^{0.8}}, \eta_{V_{1}^{0.5}}$, and $\eta_{E_{1}}$. And the total dependency measures, such as $\gamma_{N_{1}}(\boldsymbol{C}, \boldsymbol{D})$, $\gamma_{P_{1}}(\boldsymbol{C}, \boldsymbol{D}), \gamma_{C_{1}}(\boldsymbol{C}, \boldsymbol{D}), \gamma_{V_{1}^{0 . s}}(\boldsymbol{C}, \boldsymbol{D}), \gamma_{D_{1}^{0.5}}(\boldsymbol{C}, \boldsymbol{D})$ and $\gamma_{E_{1}}(\boldsymbol{C}, \boldsymbol{D})$. See detailed in Fig. 1. It shows that for any data set, any $X_{i} \in U / D$

$$
\begin{aligned}
& \eta_{P_{1}}\left(X_{i}\right) \geq \eta_{C_{1}}\left(X_{i}\right) \geq \eta_{V_{1}^{0 . s}}\left(X_{i}\right) \geq \eta_{V_{1}^{0.5}}\left(X_{i}\right) \geq \eta_{E_{1}}\left(X_{i}\right), \\
& \gamma_{P_{1}}(\boldsymbol{C}, \boldsymbol{D}) \geq \gamma_{C_{1}}(\boldsymbol{C}, \boldsymbol{D}) \geq \gamma_{V_{1}^{0 . s}}(\boldsymbol{C}, \boldsymbol{D}) \geq \gamma_{V_{1}^{0.5}}(\boldsymbol{C}, \boldsymbol{D}) \geq \gamma_{E_{1}}(\boldsymbol{C}, \boldsymbol{D}) .
\end{aligned}
$$

(b) Annealing

(d) Obesity

The results again verify that the granularity of our proposed neighborhood system is between the coarse granularity based on the C_{j}-neighborhood system and the fine granularity based on the E_{j}-neighborhood system, and we can adjust the granularity size according to requirements.

At the same time, the dependency measures based on N_{1}-neighborhoods are not comparable to that based on $V_{1}^{0.8}$ or $V_{1}^{0.5}$-neighborhoods, while $\eta_{C_{1}}\left(X_{i}\right) \geq \eta_{N_{1}}\left(X_{i}\right) \geq \eta_{E_{1}}\left(X_{i}\right)$ and $\gamma_{C_{1}}(\boldsymbol{C}, \boldsymbol{D}) \geq \gamma_{N_{1}}(\boldsymbol{C}, \boldsymbol{D}) \geq \gamma_{E_{1}}(\boldsymbol{C}, \boldsymbol{D})$.

Table 12 Comparison of the numbers of attribute reductions with various neighborhood rough sets in Example 6

Data Sets	Numbers of attributes	Numbers of selected attributes					
		N_{1}	P_{1}	C_{1}	$V_{1}^{0.8}$	$V_{1}^{0.5}$	E_{1}
Chronic Kidney Disease	24	15	3	9	11	7	2
Annealing	38	9	7	9	8	10	6
LSVT Voice Rehabilitation	310	26	3	6	38	30	5
Obesity	16	12	4	14	12	12	12

Furthermore, we record the $V_{1}^{0.8}$-neighborhood total dependency measures $\gamma_{V_{1}^{0.8}}$ as a function of condition attributes in Fig. 2.

The four functions are monotonically increasing functions, so the total dependency measure can be seen as the index for attribute reduction.

Proposition 17 Let $(U, \boldsymbol{C} \cup \boldsymbol{D}, V, f)$ be an information system and $\boldsymbol{B}_{1} \subseteq \boldsymbol{B}_{2} \subseteq \boldsymbol{C}$. Then, $\gamma_{V_{j}^{\beta}}\left(\boldsymbol{B}_{1}, \boldsymbol{D}\right) \leq \gamma_{V_{j}^{\beta}}\left(\boldsymbol{B}_{2}, \boldsymbol{D}\right)$ $(j=1,2, \cdots, 8)$.

Proof Since $\quad \boldsymbol{B}_{1} \subseteq \boldsymbol{B}_{2} \quad$ and $\quad V_{\boldsymbol{B}, j}^{\beta}(x)=\{y \in U \mid \forall a$ $\left.\in \boldsymbol{B}, y \in V_{a, j}^{\beta}(x)\right\}, V_{\boldsymbol{B}_{1}, j}^{\beta}(x) \supseteq V_{\boldsymbol{B}_{2}, j}^{\beta}(x)$. Based on Definition 15, it is true $B_{V_{B_{1}, j}^{\beta}}^{(1)}(X) \subseteq B_{V_{\boldsymbol{B}_{2}, j}^{\beta}}^{(1)}(X)$ for any $X \in U / \boldsymbol{D}$. And, $\sum_{X \in U / \boldsymbol{D}}|X|=|U|$. Hence, $\gamma_{V_{j}^{\beta}}\left(\boldsymbol{B}_{1}, \boldsymbol{D}\right) \leq \gamma_{V_{j}^{\beta}}\left(\boldsymbol{B}_{2}, \boldsymbol{D}\right)$.
attributes in the system. What is more, they are all indispensable.

Definition 21 Let $(U, \boldsymbol{C} \cup \boldsymbol{D}, V, f)$ be an information system and $\boldsymbol{B} \subseteq \boldsymbol{C}$. For any $a \in \boldsymbol{C}-\boldsymbol{B}$, the outer significance measure of a with respect to \boldsymbol{D} is defined as
$\operatorname{SIG}(a, \boldsymbol{B}, \boldsymbol{D})=\gamma_{V_{j}^{\beta}}(\boldsymbol{B} \cup\{a\}, \boldsymbol{D})-\gamma_{V_{j}^{\beta}}(\boldsymbol{B}, \boldsymbol{D})$.

The outer significance measure can show the importance of every attribute by a heuristic attribute reduction algorithm. The method of attribute reduction based on $V_{j^{-}}$ neighborhoods can avoid the case of empty N_{j}-neighborhoods, while it takes a little bit more time. The concrete algorithm is listed in Algorithm 1.

```
Algorithm 1 A heuristic attribute reduction algorithm for an incomplete informa-
tion system based on \(V_{j}^{\beta}\)-neighborhoods
Require: An incomplete information system \(S=(U, \boldsymbol{C} \cup \boldsymbol{D}, V, f)\) and the
    parameter \(\beta, \delta\).
Ensure: One reduct Red and its cardinality \(l\).
    Initialize: Red \(\leftarrow \emptyset\) and \(l \leftarrow 1\);
    Calculate \(\left\{V_{j, a}^{\beta}(x) \mid x \in U\right\}\) and \(\gamma_{V_{j}^{\beta}}(\{a\}, \boldsymbol{D})\) for any condition attribute
    \(a \in C ;\)
    Select \(a_{k} \in \boldsymbol{C}\) such that \(\gamma_{V_{j}^{\beta}}\left(\left\{a_{k}\right\}, \boldsymbol{D}\right)=\max \left\{\gamma_{V_{j}^{\beta}}(\{a\}, \boldsymbol{D}) \mid a \in \boldsymbol{C}\right\}\);
    Red \(\leftarrow \operatorname{Red} \cup\left\{a_{k}\right\}\) and \(l \leftarrow l+1 ;\)
    while Red \(\subset C\) do
        Calculate \(\operatorname{SIG}(a, \operatorname{Red}, \boldsymbol{D})\) for any \(a \in \boldsymbol{C}-\) Red;
        Select \(a_{k} \in \boldsymbol{C}-\) Red such that \(\operatorname{SIG}\left(a_{k}, \operatorname{Red}, \boldsymbol{D}\right)=\)
    \(\max \{\operatorname{SIG}(a, \operatorname{Red}, \boldsymbol{D}) \mid a \in \boldsymbol{C}-\operatorname{Red}\} ;\)
        if \(\gamma_{V_{j}^{\beta}}\left(\operatorname{Red} \cup\left\{a_{k}\right\}, \boldsymbol{D}\right)=\gamma_{V_{j}^{\beta}}(\boldsymbol{C}, \boldsymbol{D})\) then
            Break;
        else
            Red \(\leftarrow \operatorname{Red} \cup\left\{a_{k}\right\}\) and \(l \leftarrow l+1 ;\)
            end if
    end while
    Output Red and \(l\)
```

Definition 20 Let $(U, \boldsymbol{C} \cup \boldsymbol{D}, V, f)$ be an information system and $\boldsymbol{B} \subseteq \boldsymbol{C}$. If $\gamma_{V_{j}^{\beta}}(\boldsymbol{B}, \boldsymbol{D})=\gamma_{V_{j}^{\beta}}(\boldsymbol{C}, \boldsymbol{D})$ and $\gamma_{V_{j}^{\beta}}\left(\boldsymbol{B}^{\prime}, \boldsymbol{D}\right) /$ $=\gamma_{V_{j}^{\beta}}(\boldsymbol{C}, \boldsymbol{D})$ for any $\boldsymbol{B}^{\prime} \subset \boldsymbol{B}$, then we say \boldsymbol{B} is a relative reduct with respect to \boldsymbol{D}.

Similar to classical rough sets, there may exist more than one above relative reducts about \boldsymbol{D}. The intersection of all the relative reducts about \boldsymbol{D} is called the relative core with respect to \boldsymbol{D}. In some cases, the core may be empty. However, the relative reducts all have the same or better discriminative ability as the set containing all the condition

If the number of the objects is n and that of condition attributes is m, the computational complexity for N_{1-} neighborhood systems is $O\left(n^{2} m\right)$. The procedure for calculating V_{1}^{β}-neighborhood systems may need $O\left(n^{2}\right)$ computation time. And the worst search for attribute reducts will bring about $\left(m^{2}+m\right) / 2$ evaluations based on the significance measures. Hence, the overall time complexity of the algorithm may be $O\left(n^{2}(m+1)+\left(m^{2}+m\right) / 2\right)$.

We apply the algorithm for the experiment analysis in Example 6. The results are shown in Table 12.

It can be found from Table 12 that, in general, the finer the granularity of the neighborhood approximation spaces, the fewer selected attributes are obtained, such as P_{1}, C_{1} neighborhoods; but if the granularity is too coarse, such as E_{1}-neighborhoods, the significance measure based on the neighborhoods may not be possible to discern the effects of different attributes, since there may be cases where the positive domain is an empty set (as shown in Fig. 1a and c).

In summary, the proposed V_{j}^{β} neighborhood rough set not only can depict the incomplete information systems perfectly but also can adjust the granularity according to the needs of practical problems.

7 Conclusions

In the real world, there is a huge amount of incomplete information that needs to be processed quickly and efficiently. Many researchers proposed various types of neighborhood systems and applied them to process imperfect knowledge. However, they may encounter empty neighborhoods or cannot handle incomplete information accurately.

This paper defines the eight types of variable precision neighborhoods based on inclusion degrees and introduces V_{j}^{β}-neighborhood-based rough set models. The properties and topology structures of the novel rough approximations are analyzed. The analysis results show that V_{j}^{β}-neighbor-hood-based rough set model extends P_{j} and C_{j}-neighbor-hood-based ones by a predefined precision threshold β. Comparing with the existing N_{j}, P_{j}, C_{j} and E_{j}-neighborhoods, the novel V_{j}^{β}-neighborhoods must be reflexive and can adjust the accuracy of approximation spaces according to the needs of the problems, which can more accurately and flexibly reflect incomplete information.

However, V_{j}^{β}-neighborhood-based rough set models still rely on a single binary relation and more risk-taking by handling continuous data sets, which may limit applications and lead to an increase in complexity. In the future, we will generalize the novel generalized rough sets to multi-granulation rough set models based on variable containment neighborhoods and extend fuzzy variable containment neighborhoods, and so on.

Author contributions Not applicable.

Funding The work is supported by National Natural Science Foundation of China (61806001).

Availability of data and materials The data used to support the findings of the work are included within the paper or originated from UCI database (http://archive.ics.uci.edu/ml/index.php).

Declarations

Conflict of interest I certify that there is no conflict of interest with any individual or organization or organization for the present work.

Ethics approval The work does not contain any studies with human participants or animals performed by the author.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons. org/licenses/by/4.0/.

References

Abd El-Monsef ME, Embaby OA, El-Bably MK (2014) Comparison between rough set approximations based on different topologies. Intern J Granular Comput Rough Sets Intell Syst 3(4):292-305
Akram M, Luqman A, Al-Kenani AN (2020) Certain models of granular computing based on rough fuzzy approximations. J Intell Fuzzy Syst 39:2797-2816
Akram M, Al-Kenani AN, Luqman A (2021) Degree based models of granular computing under fuzzy indiscernibility relations. Math Biosci Eng 18(6):8415-8443
Akram M, Nawaz HS, Kahraman C (2023) Rough Pythagorean fuzzy approximations with neighborhood systems and information granulation. Expert Syst Appl 218:119603. https://doi.org/10. 1016/j.eswa.2023.119603
Allam AA, Bakeir MY, Abo-Tabl EA (2005) New approach for basic rough set concepts. Int workshop on rough sets, fuzzy sets, data mining, and granular comput. Lecture notes in artif intell. Springer, Regina, pp 64-73
Al-shami TM (2021) An improvement of rough sets' accuracy measure using containment neighborhoods with a medical application. Inf Sci 569:110-124
Al-shami TM, Fu WQ, Abo-Tabl EA (2021) New rough approximations based on E-neighborhoods. Complexity. Article ID 6666853. https://doi.org/10.1155/2021/6666853

Atef M, Khalil AM, Li SG, Azzam A, EI Atik AA (2020) Comparision of six types of rough approximations based on j neighborhood space and j-adhension neighborhood space. J Intell Fuzzy Syst 3(2):4515-4531
Atef M, Khalil AM, Li SG, Azzam A, Liu H, Atik EI AA (2022) Comparison of twelve types of rough approximations based on j neighborhood space and j-adhesion neighborhood space. Soft Comput 26:215-236
EI Atik A, Nawar A, Atef M (2021) Rough approximation models via graphs based on neighborhood systems. Granul Comput 6:1025-1035

EI-Bably MK, Fleifel KK, Embaby OA (2022) Topological approaches to rough approximations based on closure operators. Granul Comput 7:1-14
Kelley JL (1995) General Topology. In: Gehring FW, Halmos PR (eds) Axler S. Springer-Verlag, New York, pp 37-47
Lin TY (1997) Neighborhood systems: a qualitative theory for fuzzy and rough sets. Adv Mach Intell Soft Comput 4:132-155
Lin TY (1998a) Granular computing on binary relations I: data mining and neighborhood systems. In: Rough Sets In Knowledge Discovery. Physica-Verlag, Berlin
Lin TY (1998b) Granular computing on binary relations II: rough set representations and belief function. In: Rough sets in knowledge discovery. Physica-Verlag, Berlin
Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer Acadmic Publishers, Dordrecht, pp 1-15
Qian YH, Liang XY, Wang Q, Liang JY, Liu B, Skowron A, Yao YY, Ma JM, Dang CY (2018) Local rough set: a solution to rough data analysis in big data. Int J Approx Reason 97:38-63

Trivedi K, Ramanna S (2021) Overlapping community detection in social networks with Voronoi and tolerance neighborhood-based method. Granul Comput 6:95-106
UCI Machine Learning Repository (2023) http://archive.ics.uci.edu/ ml/
Wang Q, Qian YH, Liang XY, Guo Q, Liang JY (2018) Local neighborhood rough set. Knowl Based Syst 153:53-64
Wu WZ, Zhang WX (2002) Neighborhood operator systems and approximations. Inf Sci 144:201-217
Yang XB, Zhang M, Dou HL, Yang JY (2011) Neighborhood systems-based rough sets in incomplete information system. Knowl Based Syst 24:858-867
Yao YY (1998) Relational interpretations of neighborhood operators and rough set approximation operators. Inf Sci 111:239-259
Zheng TT (2020) Morphisms in binary rough set theory. Fundamenta Informaticae 172:413-434

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Tingting Zheng
 tt-zheng@163.com
 1 School of Mathematical Sciences, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, People's Republic of China

