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ABSTRACT The salp swarm algorithm (SSA) is a swarm intelligence optimization algorithm that simulates

the chain movement behavior of salp populations in the sea. Aiming at the shortcomings of the SSA, such as

low precision, low optimization dimension and slow convergence speed, an improved salp swarm algorithm

based on Levy flight and sine cosine operator (LSC-SSA) was proposed. The Levy flight mechanism uses

the route of short walks combined with long jumps to search the solution space, which can effectively

improve the global exploration capability of the algorithm. Improved sine cosine operator use sine search

for global exploration and cosine search for local exploitation. At the same time, an adaptively switching

between the two function search methods can achieve a smooth transition between global exploration

and local exploitation. In the simulation experiment, salp swarm algorithm (SSA), whale optimization

algorithm (WOA), particle swarm algorithm (PSO), sine cosine algorithm (SCA), firefly algorithm (FA) and

LSC-SSA were adopted for solving function optimization problems. Then, the feasibility of the improved

algorithm for solving high-dimensional large-scale optimization problems and the effectiveness of the

improvement strategy are evaluated. Finally, LSC-SSA was applied to train muti-layer perceptron neural

network. Simulation results show that the introduction of Levy flight and improved sine cosine operator in

LSC-SSA significantly improves optimization accuracy and convergence speed compared with other swarm

optimization algorithms. In addition, the improved algorithm can effectively solve high-dimensional large-

scale optimization problems. In the application of trainingmuti-layer perceptronNN, the improved algorithm

can avoid falling into the local optimal value and obtain the ideal classification accuracy.

INDEX TERMS Salp swarm algorithm, levy flight mechanism, sine cosine algorithm, function optimization,

muti-layer perceptron.

I. INTRODUCTION

The meta-heuristic algorithm has attracted researchers’

attention due to its advantages such as simplicity, few

parameters, derivation-free mechanism, and avoidance of

local optimization. In addition to a large number of theoreti-

cal studies, meta-heuristic optimization algorithms have also

been applied to engineering fields in different disciplines.

Firstly, simplicity means that meta-heuristic algorithms are

inspired by simple principles in nature and mathemati-

cal models are built by simulating evolutionary concepts,

biological intelligence behaviors, and physical phenomena.

Researchers create new meta-heuristic algorithms through
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different inspirations, and can also integrate other meta-

heuristic algorithms based on meta-heuristics (PSO-GA [1],

GA-DE [2], KH-CS [3], ACO-DE [4]) or adding search

operators to propose an improved meta-heuristic algorithm

[5]–[8]. Secondly, the meta-heuristic algorithm controls

fewer parameters. In general, the original intention of setting

parameters is to have a beneficial impact on the algorithm.

However, the searching space for practical problems is com-

plex. Too many parameters may increase complexity and

calculation scale, which will adversely affect the algorithm.

Fewer parameters can avoid the above problems and make

the algorithm flexibly applied to optimization problems in

different fields. Thirdly, derivation-free mechanism exists in

most meta-heuristic algorithms. The information contained

in the actual problem may derive more information. The
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gradient-based optimization method needs to calculate the

gradient information of the searching space, but the meta-

heuristic algorithm generates the next solution from a random

solution. The meta-heuristic algorithm treats the optimization

problem as a black box, and only needs to consider the input

and output to solve the optimization problem, without calcu-

lating the derivative of the searching space. Therefore, meta-

heuristic algorithms are more suitable for practical prob-

lems with complex information. Finally, the meta-heuristic

algorithms have the characteristic of avoiding falling into

local optimum. The searching space for practical problems

has a large number of local optimal values, which makes

the optimization process difficult. The traditional optimiza-

tion method is easy to fall into the local optimum and

ignore the global optimum. The random optimization of the

meta-heuristic algorithms make the searching agents widely

distributed in the searching space, which will reduce the

probability of falling into the local optimum.

Generally, meta-heuristic algorithms can be divided into

two categories: individual-based algorithms and population-

based algorithms. Individual-based algorithms initialize a

candidate solution and improves the candidate solution

during the optimization process. For example, Simulated

Annealing (SA) [9]–[11], Tabu Search (TS) [12], Iterative

Local Search (ILS) [13] are individual-based algorithms.

However, the population-based algorithms obtain a set of

candidate solutions by initializing the searching agent popu-

lation, and optimizes this set of candidate solutions in subse-

quent iterations. Compared with individual-based algorithms,

population-based algorithms have global explorability that

can avoid falling into a local optimum. At the same time,

the information exchange mechanism between populations is

conducive to optimizing candidate solutions.

There are several main branches of population-based

algorithms: evolution-based algorithms, physical

phenomenon-based algorithms, and swarm intelligent (SI)-

based algorithms. The evolution-based algorithms use the

idea of natural evolution. The initial population retains the

best individuals and eliminates the poor ones through com-

bination, crossover, and mutation so as to ensure that the

newly generated population is always better than the previous

generation. Evolution-based algorithms include Evolutionary

Strategy (ES) [14], Differential Evolutionary Strategy (DE)

[15], [16], Biography-based Optimization Algorithm (BBO)

[17], Probability-Based Incremental Learning (PBIL) [18],

etc. For example, Genetic Algorithm (GA) [19] takes Dar-

winian evolution as the inspiration and inherits better indi-

viduals to the next generation of individuals, so that the

initial population is continuously optimized in iteration.

Physical phenomenon-based algorithms use gravitational,

inertial, gravity, electromagnetic, etc. in physical phenomena

to perform information exchange and mobile search between

populations in solution space. Physical phenomenon-based

algorithms mainly include Water Cycle Algorithm (WCA)

[20], Henry gas solubility optimization (HGSO) [21], Elec-

trostatic Discharge Algorithm (ESDA) [22]. For example,

the Black Hole Algorithm (BH) [23] takes black hole and

universal gravity as inspiration. Through hundreds of years

of evolution, biological populations can effectively organize

hunting, sailing, defending, and foraging behaviors. Birds

sailing in a V-shape can evenly distribute resistance among

populations to save energy. Bees search for food and use

pheromone to mark the path, guiding other individuals to find

the shortest path from the hive to the food. Swarm Intelligent

(SI)-based algorithms are inspired by the intelligent behavior

of biological swarms, including Marine Predators Algo-

rithm (MPA) [24], Seagull Optimization Algorithm (SOA)

[25], Spotted Hyena Optimizer (SHO) [26], and NakedMole-

Rat algorithm (NMR) [27], Equilibrium Optimizer (EO)

[28], Parasitism Predation Algorithm (PPA) [29], Manta

ray foraging optimization (MRFO) [30], Social Ski-Driver

optimization algorithm (SSD) [31], etc. For example, Ant

colony algorithm (ACO) [32] takes ant colony as inspiration.

Ant colonies can use information exchange mechanisms to

find the shortest path to food sources in different environ-

ments. SI-based algorithms are usually equipped with fewer

parameters and operators, which will reduce the complex-

ity and computational scale of the algorithm. More impor-

tantly, SI-based algorithms usually retain information in the

searching space for communication among individuals in

the swarm. Therefore, SI-based algorithms are superior the

evolution-based algorithms and physical phenomenon-based

algorithms.

In general, SI-based algorithms are inspired by the intelli-

gent social behavior of biological swarms. The Salp Swarm

Algorithm (SSA) [33] was proposed by Seyedali Mirjalili.

SSA solves optimization problem by establishing mathemat-

ical model that simulates the salp swarm. SSA is equipped

with fewer parameters and operators, and the structure is

simple and easy to implement. However, the shortcomings

of SSA are also obvious. When the leader falls into the

local optimum, it will mislead other search agents (follow-

ers) to stagnate in the local optimum. At the same time,

the leader’s location update model reduces the search effi-

ciency of food. In addition, the mathematical model of SSA

lacks the transition between exploitation and exploration.

Finally, the improved methods of SSA are mostly for solving

low-dimensional optimization problems. The performance of

SSA in solving high-dimensional optimization is unknown.

This paper uses two improvement strategies to make up

for the shortcomings of SSA, and the improved SSA based

on Levy flight and sine cosine operator (LSC-SSA) was

proposed. First, Levy flight with step size control factor is

used to increase the traversal and exploration capabilities

of search agents. Second, improved sine cosine operator is

used to improve the search efficiency of leader. At the same

time, improved sine cosine operator is used to improve the

balance between exploitation and exploration. Levy flight

is a function that simulates animal foraging routes, which

was proposed by French mathematician Paul Pierre Lévy.

Researchers found that most animals’ foraging routes fol-

lowed Levy flight. The long-term short-step local search
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in the Levy flight mechanism can improve the diversity

and traversal of the algorithm. The short-term long-step

global jump can make the search agents jump out of the

local optimum and improve the global exploration capability.

As a global search operator, Levy flight is applied to many

improved algorithms [34]–[36]. Xin-She Yang and Suash

Deb proposed the Cuckoo Search Algorithm (CS) in 2009

[37]. Levy flight was introduced to update the bird’s nest

position, which effectively improved the global exploration

capability of algorithm. In addition, as a novel branch of

heuristic algorithm, there are little related literature on math-

ematical rules based algorithms. The Basic Optimization

Algorithm (BOA) [38] uses basic mathematical operators

and shrinking lengths to guide search agents closer to the

optimal value. The Sine Cosine Algorithm (CSA) [39] builds

mathematical model by adaptively and equally using sine and

cosine search methods. As the name implies, mathematical

rules based algorithms are inspired by mathematical rules.

This type of algorithm can well balance exploitation and

exploration capabilities.

The innovation of this paper is to introduce the Levy

flight mechanism with step size control factor into the salp

swarm algorithm, which improves the traversal and global

exploration ability of the algorithm. In addition, the improved

sine cosine operator and introduced into the salp swarm algo-

rithm. The improved sine cosine operator use sine search for

global exploration and cosine search for local exploitation.

The improved sine cosine operator uses a more effective

convergence factor. At the same time, the logarithmic spiral

search route also introduced into the sine cosine operator.

At the same time, according to the no free lunch theorem

(NFL) [40], the effectiveness of the algorithm in a set of

optimization problems may not be extended to other opti-

mization problems. In other words, there is no one algo-

rithm that can solve all optimization problems. Because the

improved algorithm may be superior to other algorithms on

some optimization problems, the innovation and motivation

of this paper are strongly supported. The paper is orga-

nized as follows. Section III introduces the SSA. Section IV

introduces the Levy flight mechanism, sine cosine algorithm

and the proposed LSC-SSA in details. Section V selects the

Salp Swarm Algorithm (SSA), Particle Swarm Optimization

(PSO) [41], Whale Optimization Algorithm (WOA) [42],

Sine Cosine Algorithm (CSA), Firefly Algorithm (FA) [43]

and LSC-SSA to carry out the function optimization compar-

ison experiments. The experimental results show that LSC-

SSA has the advantages of high optimization accuracy and

fast convergence speed. The feasibility of the improved algo-

rithm for solving high-dimensional function optimization and

the effectiveness of the improvement strategy are verified.

Section VI applies LSC-SSA to train muti-layer perceptron

neural network. Section VII is the conclusion of this paper.

II. RELATED WORK OF SSA

The SSA algorithm relies on the concept of swarm intelli-

gence and has a simple structure, which has attracted the

attention of many scholars. With the deepening of research,

many improved methods and practical applications of SSA

have been proposed [44]–[47]. Neggaz, N et al used the sine

and cosine algorithm and the disrupt operator to improve SSA

and proposed ISSAFD [48]. This mechanism can improve the

exploration phase and avoid local stagnation. Experimental

results show that ISSAFD has good performance in terms

of accuracy and number of features. However, the perfor-

mance of convergence speed and optimization accuracy is

not shown. At the same time, the SCA algorithm has the

drawback of slow convergence. SCA should be modified to

introduce SSA. Tubishat, M et al proposed an improved Salp

Swarm algorithm (ISSA) [49] to solve the feature selection

problem and select the best subset of features in the packaging

mode. Experiments show that ISSA is superior to other algo-

rithms in accuracy, convergence and feature reduction. How-

ever, the improved algorithm needs to be further improved

in terms of optimization accuracy. Panda, N et al used spa-

tial transformation search (STS) to improve the performance

of SSA and proposed STS-SSA [50]. Experimental results

show that STS-SSA can effectively solve the optimization

problem. Abd Elaziz, M et al proposed a multi-objective big

data optimization method based on hybrid SSA algorithm

and DE algorithm [51]. The experimental results of the test

problems in the 2015 big data optimization competition show

that the proposed method is superior to other methods on all

test problems. However, the performance of the improved

algorithm in function optimization has not been verified.

Faris, H et al. Proposed two methods for feature selection

using SSA as a search strategy [52]. The experimental results

of 22 UCI data sets show that the proposed method is obvi-

ously superior to other methods. El-Fergany, AA used SSA

to optimize the optimal values of unknown parameters of the

polymer exchange membrane fuel cell model [53]. Simula-

tion results show that the proposed SSO-based method can

effectively solve the optimal solution of the model. Yang, B

et al. Expanded the salp population into multiple independent

salp chains and proposed the modular salp swarm algorithm

(MSSA) [54]. Simulation results show that MSSA is superior

to the other eight algorithms.

III. SALP SWARM ALGORITHM

A. MATHEMATICAL MODEL OF SALP SWARM ALGORITHM

Establishing amathematical model that mimics the intelligent

behavior of swarm is the basic step for SI-based algorithms

to solve an optimization problem. Mathematical models with

fish swarm, bird swarm, and ant swarm have been widely

used in optimization problems. In order to model the salps

chain formed by end-to-end individuals, the individuals in

the salps swarm are divided into two categories: leader and

followers. The leader is the foremost individual of the salps

chain to determine the movement direction and foraging

route of the population, and guide the salps chain toward

the food. The remaining individuals are followers. They fol-

low the leader in turn to form a chain structure. However,
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FIGURE 1. Chain movement of salp swarm in searching space.

the mathematical model only simulates the generation of

the salps chain, and cannot directly solve the optimization

problem. The mathematical model needs to be adjusted to

adapt to the optimization problem. Determining the global

optimal value is the goal of the optimization problem, so the

global optimal value is used as the food that the salps chain

needs to find. The position of the global optimal value in

the optimization problem is unknown. Therefore, taking the

optimal value in the current iteration as the global optimal

value (food), the salps chain model can be moved closer to

the target value. According to the position of the food update

the leader, the entire salps chain can be brought closer to the

food. This process is represented by the following equation:

X1
j =

{

Fj − c1
[(

ubj − lbj
)

c2 + lbj
]

if c3 < 0.5

Fj + c1
[(

ubj − lbj
)

c2 + lbj
]

if c3 ≥ 0.5
(1)

where, X1
j indicates the position of the leader (the frontmost

individual of the salps chain) in the j-th dimension; Fj indi-

cates the position of the food in the j-th dimension; ubj is

the lower bound of the j-th dimension; lbj is the upper bound

of the j-th dimension; Upper and lower bounds are used to

limit leader from exceeding the searching space. Parameter c2
is a random number between [0.1], which is used to control

the leader’s moving step. Parameter c3 is a random number

between [0.1], which is used to equally select whether the

leader’s moving direction is closer or farther from the food

location. Parameter c1 shown in Eq. (2) is an adjustment

factor that is used to balance global exploration and local

exploitation.

C1 = 2e−(4t/T )2 (2)

where, t is the current number of iterations, and T is the total

number of iterations.

It can be seen from Eq (2) that the adjustment factor c1 will

adaptively decrease with the iterative process. At the begin-

ning of the iteration, the decreasing trend of the adjustment

factor c1 is slow, which drives the leader to conduct a large-

scale global exploration. In the later iterations, the decreasing

trend of the adjustment factor c1 is obvious, and the leader can

carry out the detailed exploitation. In order to make followers

follow the leader to form a chain structure, Newton’s law of

motion is used to update the position of followers, which is

described as:

X ij =
1

2
a·t2 + v0 · t (3)

where, X ij indicates the position of the i-th follower in the j-

th dimension when i ≥ 2; t represents time; v0 represents the

initial speed, and the acceleration of the follower’s movement

a = vfinal/v0; The speed of the follower is v = (x − x0)/t .

The time variable of the optimization problem is represented

by the number of iterations, so the iteration interval represents

the time interval, t = 1. The follower’s initial speed v0 = 0.

Eq (3) can be updated as:

X ij =
1

2

(

X ij + X i−1
j

)

(4)

In the process of following the leader to update the position,

the followers may reach a position better than the current best

solution (food). At this time, the food is replaced to the better

position, and the updated leader guides the followers to move

in the direction of food. The chain movement of salp swarm

in searching space is shown in Fig. 1.

The advantages of SSA are as follows: 1) It can be seen

from the mathematical model of SSA that it has a simple
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structure and is equipped with few parameters and operators,

so it is easy to implement. 2) In the process of optimization,

SSA only uses the optimal solution in the current iteration

as food. Even the deterioration of the fitness of the entire

population will not affect the quality of the food. 3) Leaders

can explore and get closer based on the location of the food.

The followers only need to move in a chain according to the

position of the leader, which reflects the simplicity of the

algorithm.

When considering the advantages, it is also necessary to

discuss the shortcomings of SSA. The shortcomings of SSA

are as follows: 1) Followers only need to follow the leader,

which embodies simplicity. However, when the leader falls

into the local optimum, it will mislead the entire population

into the local optimum.. 2) The leader updates the location

based on the food. However, updating the position of the

leader requires calculating boundaries, which reduces the

direct interaction between the leader and the food. 3) The

mathematical model of SSA lacks the transition between

exploitation and exploration, which leads to a low precision

of the algorithm.

B. PROCEDURE OF SALP SWARM ALGORITHM

The procedure of standard SSA is described as follows.

Step 1: Initialize the algorithm parameters: Number of

iterations T , number of ascidian populations N , test function

dimension D.

Step 2: Initialize the salp population according to the upper

and lower bounds, t = 1.

Step 3: Calculate the fitness value of each search individ-

ual, and treat the individual with the best fitness value in the

current population as food Fj.

Step 4: Update c1 according to Eq. (2) and generate random

numbers c2 and c3.

Step 5: If i = 1, update the leader’s position according to

Eq.(1). If i ≥ 1, update the follower’s position according to

Eq. (4). t = t + 1.

Step 6: Determine whether the algorithm has reached the

maximum number of iterations or found the optimal value.

If the algorithm’s end condition is met, the optimal value is

returned and exited; otherwise, go to Step 3.

The flowchart of salp swarm algorithm is shown in Fig. 2.

IV. IMPROVED SALP SWARM ALGORITHM BASED ON

LEVY FLIGHT AND SINE COSINE OPERATOR

Levy flight is a function that simulates animal foraging

routes, which was proposed by French mathematician Paul

Pierre Lévy. Researchers found that most animals’ foraging

routes followed Levy flight. The long-term short-step local

search in the Levy flight mechanism can improve the diver-

sity and traversal of the algorithm. The short-term long-step

global jump can make the search agents jump out of the

local optimum and improve the global exploration capabil-

ity. In addition, as a novel branch of heuristic algorithm,

there is very little related literature on mathematical rules

based algorithms. The Sine Cosine Algorithm (CSA) builds

FIGURE 2. The flowchart of SSA.

mathematical model by adaptively and equally using sine

and cosine search methods. SCA algorithm can well balance

exploitation and exploration capabilities.

A. LEVY FLIGHT

Levy flight is a probability distribution proposed by the

French mathematician Paul Pierre Lévy (1886-1971) in the

1930s [55], which is used to simulate bird foraging routes.

So far, some scholars have shown that the foraging trajecto-

ries of many birds and insects in nature (such as albatross,

bees and fruit flies) conform to the Levy distribution. Even

more novel is that some marine animals (tuna, swordfish,

some sharks, etc.) also follow the mathematical strategy of

Levy distribution when foraging. These studies formed the

Levy flight foraging hypothesis: Levy flight can improve the

efficiency and accuracy of biological foraging, and it is more

naturally adaptable.

As a global searching operator, Levy flight mechanism

searches for space using short-distance walking combined

with long-distance jumping routes. Among them, long-

term short-distance walking can enable the search agent to
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FIGURE 3. 500-step trajectory of Levy flight.

carefully search the area near it, which improves the diver-

sity and local exploitation ability of the population. The

directional variability of the occasional long-distance jump

guarantees a large probability search of the entire region by

the population, and the abrupt change has a great advantage

for exploring problems in a large space. The combination of

short-distance and long-distance methods achieves sufficient

optimization of the solution domain, which greatly improves

the global search ability of the algorithm. The 500-step

motion trajectory of the Levy flight within the search range is

shown in Fig. 3, which fully verified the characteristics of the

short distance of Levy flight combined with the occasional

long distance jump, and fully explored the solution domain.

The probability density function of Levy flight obeys the

Levy distribution, which can be described as follows.

Levy (s) =
1

π

∫ ∞

0

exp
(

−β|k|λ
)

cos (ks) dk (5)

where, 0 < λ ≤ 2 to control the peak sharpness of the

Levy distribution graph; β > 0 to control the span of the

distribution graph. When λ = 2, the Levy distribution is

transformed into a Gaussian distribution; when λ = 1,

the Levy distribution is transformed into a Cauchy distribu-

tion. There is no clear analysis of the integral formula, and

it is more difficult to generate a random number that obeys

the distribution. However, when s ≫ s0 > 0, that is to say

s → ∞, Eq. (5) can be updated as:

Levy (s) ≈
1

π
· λβ · Ŵ (λ) sin

(

πλ

2

)

(6)

The approximate distribution exhibits power-law behav-

ior, and the variance exhibits an exponential relationship

with time, that is to say σ 2 (t) ∼ t3−β . So Levy flight

is better than Brown sport. Since then, many scholars have

proposed many implementation methods for generating ran-

dom numbers obeying the Levy distribution according to

this approximate formula, which includes a method proposed

by Mantegna in 1994 to solve random numbers using the

normal distribution, sometimes called the Mantegna method

[56]. The Mantegna method for generating random step sizes

obeying the Levy distribution is described as follows:

S =
u

|v|1/β
(7)

where, u and v obey the following Gaussian distribution.

u ∼
(

0, σ 2
u

)

, v ∼
(

0, σ 2
v

)

(8)

σu =

[

Ŵ (1 + β) · sin (πβ/2)

Ŵ [(1 + β)/2]β · 2β−1/2

]1/β

(9)

σv = 1 (10)

where, β = 1.5; Ŵ is a Gamma function, which is calculated

by:

Ŵ (z) =

∫ ∞

0

tz−1e−tdt (11)

When z = n, Ŵ (n) = (n− 1)!. A large number of

studies have shown that Levy flight mode can maximize the

efficiency of search targets under uncertain conditions [44].

When solving the function optimization problems, the equa-

tion for updating the population position by the Levy flight

mechanism can be described as:

Xi (t + 1) = Xi (t) + S ⊗ Xi (t) (12)

where, Xi (t + 1) indicates the position of the population

after the Levy flight operation; Xi (t) is the position of the

current population; s is a random step that obeys the Levy

distribution shown in Eq. (7); ⊗ indicates the dot product

between elements.

B. SINE COSINE ALGORITHM

Sine Cosine Algorithm (SCA) is a novel mathematical rules

based algorithm. As the name implies, this algorithm uses

the sine function combined with the cosine function in the

mathematical rules to solve the optimization problem. SCA

has fast convergence speed, simple structure, and can well

balance the global exploration ability and local exploitation

ability. In general, a population-based algorithm initializes

a set of random solutions. After evaluation of the objective

function of the optimization problem, this set of random solu-

tions will be improved. If the distribution of the agents in the

searching space are too concentrated, it will fall into the local

optimal value and ignore the global optimal value, which

will reduce the global explorability of the algorithm. On the

contrary, if the distribution of the agents are too scattered,

the local optimal value will be ignored, which will reduce

the local exploitation of the algorithm. Therefore, balancing

global exploration and local exploitation is an important part

of optimization algorithms. In order to achieve this function,
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FIGURE 4. The model combining sine search and cosine search.

the sine cosine algorithm uses the sine search method for

exploration and the cosine search method for exploitation.

The equation of sine search and cosine search are described

as follows:

X t+1
i =

{

X ti +r1 · sin (r2) ·
∣

∣r3p
t
i − X ti

∣

∣ if r4 < 0.5

X ti +r1 · cos (r2) ·
∣

∣r3p
t
i − X ti

∣

∣ if r4 ≥ 0.5
(13)

where, X ti indicates the position of the individual in the i-th

dimension in the t-th iteration and pti indicates the position of

the current optimal individual in the i-th dimension.

It can be seen from Eq. (13) that there are four main

parameters in the sine cosine algorithm: r1, r2, r3 and r4. r2
is a random number between [0,2π] to control the moving

distance of the search agent. r3 is a random number to provide

weight to the search agent to enhance (r3 > 1) or weaken

(r3 < 1) the effect of the individual’s moving distance. r4
is a random number between [0,1] to control the equal use

of two search methods. r1 can adaptively guide the moving

direction of the search agent (the location to be searched next

time), which is calculated by:

r1 = a− t
a

T
(14)

where, t indicates the current number of iterations; T indi-

cates the maximum number of iterations; a is a constant that

limits the size of r1, generally a = 2.

As an adaptive guide factor, r1 can guide the search agent’s

movement direction (next search position). When r1 < 1, r1
guides the search agent to the area near the optimal value.

when r1 ≥ 1, r1 guides the search agent to spread beyond

the optimal value. The effect of adaptive guidance factor r1
on Eq. (13) is shown in Fig. 4. Fig. 4 illustrates that Eq. (13)

defines the area of the search agent and optimal value in the

searching space, and the movement direction of the search

agent can be changed by the adaptive guidance factor r1.

Normally, the range of values for the sine and cosine

functions is [−1,1]. By expanding the range of the sine and

cosine functions to [−2, 2], Eq. (13) can be extended to

higher dimensions to accommodate the complex searching

space of the optimization problem. At this time, parameter

r2 (controlling the moving distance of the search agent) can

ensure that the agent switches between the two search ranges

([−1,1] and [−2,2]). This mechanism effectively ensures the

coordination of exploration and exploitation in the searching

space.

The pseudo code of the Sine Cosine Algorithm (SCA) is

described as follows.

Initialize the search agents population X ti (i = 1, 2, 3 . . . n)

Calculate the fitness of each search agent, t = 1

pti = the best search agent so far

While(t < maxmum numer of iterations)

Update r1, r2, r3 and r4
IF (r4 < 0.5)

Update the position of the search agents by the sine

search of Eq.(13)

else if (r4 ≥ 0.5)

Update the position of the search agents by the

cosine search of Eq.(13)

end if

END IF

Check if any search agent goes beyond the search space

and amend it

Calculate the fitness of each search agent

Update pti if there is a better solution

t = t + 1

End while

Return pti
Seen from the pseudo-code and mathematical model of

sine cosine algorithm, it is known that the algorithm is opti-

mized based on the search method generated by the sine

function and cosine function, and the structure is simple. As a

population-based algorithm, SCA continuously improves the

initialized random solution to avoid falling into local optimal

values. SCA adaptively adjusts the search area of the agents

using the sine search method and cosine search method, and

saves the current best solution as the target value (global opti-

mal value). This mechanism can balance global exploration

and local exploitation without losing the target value, and

develop towards the best area of the searching space.

C. IMPROVED SALP SWARM ALGORITHM BASED ON

LEVY FLIGHT AND SINE COSINE OPERATOR

In the process of solving optimization problems, how to make

the algorithm avoid getting stuck in the local optimal value is

a challenge. Avoiding local optimization requires the agent

to search in the solution space as widely as possible. As a

search operator with strong global performance, the Levy

flight mechanism can improve the global exploration capa-

bility of the salp swarm algorithm. It uses short-distance

walking combined with long-distance jumping routes to con-

duct a full search of the solution space. Among them, long-

term short-distance walking can enable the population to

carefully search the area nearest to it, which improves the

diversity and local exploitation capacity of the population.

The directional variability of the occasional long-distance

jump ensures a large probability search of the entire area by
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the population and improves the global exploration capability

of the algorithm. This paper uses improved Levy operator

to update the position of salp swarm. The improved Levy

operator adds a step size control factor to the Levy flight,

which can control (weaken or enhance) the walking step size

to suit the searching space of different optimization problems.

When the step size control factor is small, the agent can

be searched carefully in a small range so as to enhance

the exploitation ability of the algorithm without affecting

the exploration ability, which is suitable for optimization

problems with small searching space. When the step size

control factor is large, the agent can search extensively in a

wide range so as to increase the probability of the algorithm

jumping out of the local optimal value, which is suitable

for high-dimensional large-scale optimization problems. The

equation of improved Levy operator to update the position of

salp swarm is described as follows.

X ij = X ij + a · S ⊗ X ij (15)

where, X ij indicates the position of the i-th follower in the j-th

dimension when i ≥ 2; s is the random step size following the

Levy distribution generated by the Mantegna method shown

in Eq. (7); ⊗ indicates the dot product between elements; a is

the step size control factor.When the step size control factor is

small, the search agent can carefully search in a small range.

In this paper, a = 0.01.

At the same time, this paper also introduces an improved

sine cosine operator to update the position of leader. In the

salp swarm algorithm, the leader guides the followers so that

the population can move according to the position of the

food. In other words, just updating the leader’s position can

realize the chain movement of the entire salp swarm. The

leader position update method shown in Eq. (1) is similar to

the population update method shown in Eq (13) of the sine

cosine algorithm. The same point is that both of them select

the search method equally, and update the positions of the

remaining individuals according to the position of the current

optimal value. But the difference is that the selection of the

former searching method is determined only by probability,

while the latter can adaptively switch in the search method

according to the information returned by the searching space.

Compared with the salp swarm algorithm, the population

update method of the sine cosine algorithm can better reflect

the balance between exploration and exploitation. Therefore,

this paper proposes an improved sine cosine operator to

update the position of the leader. Firstly, the parameter r1 of

the sine cosine algorithm is replaced with the parameter c1 of

the salp swarm algorithm. Essentially, parameters r1 and c1
have the same effect. As global convergence factors, param-

eters r1 and c1 adaptively decrease with the iterative process,

which makes the searching agent gradually converge from

global to local. This mechanism guarantees the global con-

vergence of the algorithm. However, the convergence effects

of the two global convergence factors are different. The con-

vergence effect of parameters r1 and c1 in 1000 iterations is

shown in Fig. 5. It can be seen that the convergence effect of

FIGURE 5. Comparison of convergence effects.

c1 is significantly better than r1, so use c1 instead of parameter

r1. Second, the exponential function e
x is introduced so that

the leader can form a logarithmic spiral path close to the target

value. Finally, the random parameter r3 has limited usefulness

to the algorithm. At the same time, too many parameters will

increase the randomness of the algorithm, so the parameter r3
is removed from the sine cosine operator.

The equations for updating the position of the leader by the

improved sine cosine operator are described as follows.

X1
j = X1

j + c1 · sin (r2) ·
∣

∣

∣
Fj − X1

j

∣

∣

∣
· e1 (16)

X1
j = X1

j + c1 · cos (r2) ·
∣

∣

∣
Fj − X1

j

∣

∣

∣
· e1 (17)

The position updating method shown in Eq. (16) can use

sine function for global exploration. Eq (17) can use cosine

function for local exploitation. Parameter c1 enables the

search agent to adaptively switch between the two search

modes for optimization, and to smoothly transition between

exploration and exploitation. As a global convergence factor,

parameter c1 also makes the algorithm converge as the itera-

tion increases. Parameter c1 makes the sine and cosine search

methods gradually converge in iteration, which is shown

in Fig. 6.

After adding global convergence factor c1 and parameter

r4, the two search methods can be used in combination. The

equation is described as follows:

X1
j =







X1
j + c1 · sin (r2) ·

∣

∣

∣
Fj − X1

j

∣

∣

∣
· e1 if r4 < 0.5

X1
j + c1 · cos (r2) ·

∣

∣

∣
Fj − X1

j

∣

∣

∣
· e1 if r4 ≥ 0.5

(18)

where, c1 have the same effect as in Eq. (2), and r2 and r4
have the same effect as in Eq. (13).

When the range of the sine and cosine functions are

expanded to [−2, 2], the search space can be expanded.

This mechanism guarantees that search agent can search
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FIGURE 6. The model of sine and cosine to reduce range.

FIGURE 7. The effect of the sine and cosine functions of the range [−2, 2] on the model.

inside or outside the target value to adapt to high-dimensional

optimization problems. The two search methods can also

search different regions based on the returned value, which

will reduce the possibility of falling into the local optimal

value. When the returned value is in the range of (1, 2] and

[−2,−1), the search agent will search outside the target value,

which reflects the global exploration.When the return value is

in the range of [−1,1], the search agent will search inside the

target value space, which reflects the local exploitation. The

model of the two search methods after expanding the scope

is shown in Fig. 7. It shows that after expanding the range of

the sine and cosine functions, the search agent can perform

different search methods based on the returned value.

In addition, the improved algorithm also introduces the

idea of ‘‘elite search’’. After the search agent performs the

sine cosine operator or the Levy flight operation, the position

of the search agent will change, and the updated position

may be worse than the position before the update. Therefore,

the updated position of the agent is compared to the position

of the last iteration. If the fitness value of the agent after

executing the operator is better than the fitness value of the

agent without executing the operator, the agent will remain in

the current position. Otherwise, the search agent will return

to the location where the operator was not executed. The

idea based on elitist search ensures that the search agent will

develop towards a promising area in each iteration.

In order to verify the mathematical model of the improved

algorithm, 30 search agents of LSC-SSA were put into the

search space of sphere function for simulation experiments.

The search range of the optimization function is [−100, 100],

the dimension is 30, and the optimal value is 0. The distribu-

tion of 50 and 100 iterations of the search agent in the solution
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FIGURE 8. Location map of agents in searching space.

FIGURE 9. Distribution map of fitness values for agents.

space is shown in Fig. 8. The red dots indicate leader and the

black dots indicate followers. It can be seen from Fig. 8 that

as the iteration increases, the leader can guide the followers to

move closer to the global optimal value in a chainmotion. The

experimental results show that the mathematical model of the

improved algorithm is effective. In order to further verify the

global convergence ability of the improved algorithm, SSA

and LSC-SSA were selected to optimize the sphere function.

The historical fitness of 40 search agents at 500 iterations is

shown in Fig. 9.

The black dots indicate the fitness value of the search

agent of the SSA, and the red dots indicate the fitness value

of the search agent of the LSC-SSA. It can be seen from

Fig. 9 that the search agent of SSA gradually converges

around 200 iterations, while the LSC-SSA agent fitness value

quickly completes global convergence within 50 iterations.

Simulation experiments show that after the search agent exe-

cutes the sine cosine operator and the Levy flight operation,

the salps chain can effectively move in the searching space.

At the same time, the search agent can explore and use the

area near the target value, which makes the algorithm easy to

jump out of the local optimal value and increase the global

convergence.

The flow chart of LSC-SSA is shown in Fig. 10.

The procedure of the LSC-SSA algorithm are described as

follows.

Step 1: Initialize algorithm parameters: Number of iter-

ations T , number of ascidian populations N , test function

dimensions D.

Step 2: Initialize the salp population according to the upper

and lower bounds, t = 1.

Step 3: Calculate the fitness value of each search individ-

ual, and treat the individual with the best fitness value in the

current population as food Fj.
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FIGURE 10. The flowchart of the LSC-SSA.

Step 4: Update c1 according to Eq. (2) and generate random

numbers r2 and r4.

Step 5: If i = 1, update the leader’s position according to

Eq. (19); If i ≥ 1, update the follower’s position according to

Eq. (4).

Step 6: Update the position of salp swarm according to

Eq. (15). t = t + 1

Step 7: Determine whether the algorithm has reached the

maximum number of iterations or found the optimal value.

If the algorithm’s end condition is met, the optimal value is

returned and exited; otherwise, go to Step 3.

The pseudo code of LSC-SSA is described as follows.

Initialize the search agents population X ti (i = 1, 2, 3 . . . n)

Calculate the fitness of each search agent, t = 1

pti = the best search agent so far

while(t < maxmum numer of iterations)

Update c1, r2 and r4
IF(i = 1)

if2(r4 < 0.5)

Update the position of the leader by the Eq.(16)

else if2(r4 ≥ 0.5)

Update the position of the leader by the Eq.(17)

end if2

ELSE IF(i ≥ 2)

Update the position of the followers by the

Eq.(4)

END IF

Update the position of the search agents by the

Eq.(15)

The search agent performs ‘‘elitist search’’ operations

Check if any search agent goes beyond the search space

and amend it

Calculate the fitness of each search agent

Update pti if there is a better solution

t = t + 1

End while

Return pti

D. TIME COMPLEXITY ANALYSIS

Time complexity is the calculation workload required to exe-

cute the algorithm, and it is an important indicator to evaluate

the time consumption of the algorithm. The time complexity

is usually expressed by theO symbol, excluding the low-order

term and the first term coefficient of this function. In meta-

heuristic algorithms, time complexity is related to the number

and structure of the operating units of the algorithm. For

the basic salp swarm algorithm, the time complexity mainly

depends on the number of initial populations, the number of

iterations, and the location update mechanism. The time com-

plexity of the improved algorithm LSC-SSA proposed in this

paper mainly depends on the number of initial populations,

the number of iterations, and the location update mechanism

that introduces an improved strategy. In order to evaluate

the impact of the improved strategy on the time cost of the

algorithm, the time complexity of the salp swarm algorithm

and LSC-SSA were analyzed. The time complexity of each

operation unit in the salp swarm algorithm is described as

follows.

1) Initialize N populations to be distributed in the D-

dimensional search space, which needs to be run N ·D
times.

2) Calculate the fitness value of each search agent and

select the best agent as food, which needs to be run

[N · (N − 1)]/2 times.

3) Parameters c1, c2 and c3 are updated once and need to

be run 3 times.

4) The leader performs the position update operation in

the D-dimensional search space, which needs to be run

1 · D times.

5) The followers perform position update operations in

the D-dimensional search space, which needs to be run

(N − 1) · D times.

6) Select the optimal from the current population and

output it, which needs to be run N · D times.

Each of the above operation units goes through T iterations,

so the total time complexity of salp swarm is O (SSA) = T ·
[

ND+
(

N 2 − N
)

/2+3 + D+ (N − 1)D
]

.
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TABLE 1. The specific parameter settings of the algorithm.

The time complexity of each operating unit of the improved

algorithm LSC-SSA is described as follows.

1) Initialize N populations to be distributed in the D-

dimensional search space, which needs to be run N ·D
times.

2) Calculate the fitness value of each search agent and

select the best agent as food, which needs to be run

[N · (N − 1)]/2 times.

3) Parameters c1, r2 and r4 are updated once and need to

be run 3 times.

4) The Leader updates position in D-dimensional search

space through sine cosine operator, which needs to be

run 1 · D times.

5) The followers perform position update operations in

the D-dimensional search space, which needs to be run

(N − 1) · D times.

6) The Levy flight mechanism updates the population

position, which needs to be run N · D times.

7) Use the idea of ‘‘elite search’’ to test the position

quality of the population, which needs to be run N · D
times.

8) Select the optimal from the current population and

output it, which needs to be run N · D times.

Each of the above operation units goes through T

iterations, so the total time complexity of LSC-SSA is

O (LSC−SSA)=T ·
[

ND+
(

N 2−N
)

/2+3 + D+ (N−1)D
]

.

Compared with the salp swarm algorithm, LSC-SSA does not

increase the time cost. The time complexity analysis shows

that the introduction of the improved strategy does not destroy

the simplicity of the algorithm structure, nor does it increase

the computational cost of the algorithm.

V. SIMULATION EXPERIMENTS AND RESULT ANALYSIS

A. FUNCTION OPTIMIZATION

Optimization is to find the optimal value among all pos-

sible values in a given searching range and output it in a

minimized or maximized form. Without loss of generality,

function optimization is considered as a constrained single-

objective optimization problem. Therefore, function opti-

mization has only one target value that needs to be outputted

in a minimized form. The equation for the function optimiza-

tion problem can be defined as:

Minimize : F (Ex) = {f1 (Ex)} (19)

Subject to : gi (Ex) > 0, i = 1, 2, . . . ,m (20)

hi (Ex) = 0, i = 1, 2, . . . , p (21)

lbi ≤ xi ≤ ubi, i = 1, 2, . . . , d (22)

where, d is the number of variables; p is the number of equal-

ity constraints; m is the number of inequality constraints;

lbi indicates the lower bound of the i-th variable, and ubi
indicates the upper bound of the i-th variable.

In order to verify the optimization performance of the

improved algorithm, this paper selected different algorithms

for comparative experiments. The algorithm selected in the

experiment and its parameter settings are shown in Table 1.

B. BENCHMARK FUNCTION

The simulation experiments adopted 34 test functions to eval-

uate the optimized performance of the improved algorithm

LSC-SSA. These test functions can be divided into three

categories: unimodal functions, multimodal functions, and

combined functions. Among them, the function F1-F22 is

the test function of CEC2005. As a classic test set, they can

comprehensively evaluate the performance of the algorithm.

In addition, functions F22-F34 are CEC2017 test functions.

As the latest test functions, they can improve the quality

of experiments. Functions F1 − F7 are unimodal functions.

They only have a global optimal value. These functions are

used to evaluate the local exploitation ability and convergence

speed of the algorithm. Functions F8 − F13 are multimodal

functions. Multimodal functions can produce multiple local

optimal values in a continuous searching space. Therefore,

the algorithm is prone to fall into a local optimum when

solving multimodal functions, and the optimization process

is challenging. At the same time, the number of local optimal

values will increase as the problem size increases, which has

important reference value for evaluating the global explo-

ration capability of the algorithm. Functions F14 − F22 are
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TABLE 2. Benchmark functions and related information.
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TABLE 2. (Continued.) Benchmark functions and related information.

combined functions. The combination functions are gener-

ated by the benchmark function through rotation, shift, and

offset. The dimension of the combination functions are small,

so the optimization is not difficult. However, the global opti-

mal value cannot be easily found after operations such as shift

and offset. The combination functions are used to verify the
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TABLE 3. Comparison of simulation performance.
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TABLE 3. (Continued.) Comparison of simulation performance.
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TABLE 3. (Continued.) Comparison of simulation performance.

optimization accuracy of the algorithm. The specific informa-

tion of the test functions are listed in Table 2.

C. COMPARISON EXPERIMENTS AND ANALYSIS WITH

OTHER ALGORITHMS

In order to verify the optimization effect of algorithm,

the basic salp swarm algorithm (SSA), particle swarm opti-

mization (PSO) algorithm, whale optimization algorithm

(WOA), sine cosine algorithm (SCA), firefly algorithm (FA)

and the improved algorithm proposed in this paper (LSC-

SSA) were selected for carrying out the optimization com-

parison experiments. The algorithms set uniform parameters,

and each test function runs independently 60 times. The

test function convergence curves are shown in Fig. 11. The

perfromance results are listed in Table 3.

The simulation results in Fig. 11 show that, except for

a few functions, the optimization effect of LSC-SSA on

most functions has obvious advantages. For functions F1-

F5, F7-F11, F13-F15 and F23-F28, the optimization accuracy

and convergence speed of LSC-SSA are significantly better

than other algorithms. LSC-SSA has an advantage in 68%

of functions, and has the best optimization performance in

this experiment. For the unimodal functions F1-F7, LSC-

SSA is only inferior to FA on function F6, and the optimal

performance of other functions is the best. It shows that the

improved algorithm has strong local exploitation ability and

can quickly converge to the target value. For multi-modal

functions F8-F13 with a large number of local optimal values,

LSC-SSA has obvious advantages and can achieve higher

optimization accuracy in a shorter number of iterations. LSC-

SSA is inferior to PSO and FA only on function F12. This

shows that LSC-SSA has a strong global exploration capa-

bility, the search agent can avoid falling into a local optimal

value and develop to a promising area in the search space.

For compound function F14-F22, LSC-SSA’s optimization

advantage on F13-F15 is the best. Among them, the prob-

lem dimensions of F16-F19 are small, so the performance

difference between algorithms is not obvious. For functions

F20-F22, the improved algorithm is only better than SSA and

SCA, but the optimization accuracy is not inferior to other

algorithms. For functions F23-28, the improved algorithm has

obvious advantages. The simulation results of three types of

test functions show the advantages of the proposed in global

convergence and optimization accuracy.

Three criteria listed in Table 3 are the optimal value,

average value, and variance, which are used to evaluate the

optimization accuracy, average accuracy, and stability of the

algorithm. As can be seen from the optimization accuracy

in the table, the optimization accuracy of the proposed is

significantly better than other algorithms. The improved algo-

rithm found the theoretical optimal value on 17 functions

(F1-F4, F8, F9, F11, F13, F17, F20, F22-F28), accounting

for 61%, which is the algorithm with the highest precision

in this experiment. In the remaining functions, the optimiza-

tion accuracy of LSC-SSA is not much different from the

theoretical optimal value. In average accuracy and stability,

LSC-SSA can also maintain obvious advantages. It shows

that the proposed LSC-SSA is not easy to be affected by

randomness, has good robustness, and can stably maintain

the optimization accuracy. It is worth mentioning that the
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FIGURE 11. Simulation experiment results.
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FIGURE 11. (Continued.) Simulation experiment results.
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FIGURE 11. (Continued.) Simulation experiment results.

optimized performance of WOA is second only to LSC-

SSA. Strong performance will bring more development to

the algorithm. It can be expected that the whale optimization

algorithm will be improved and applied to more optimization

problems. It is worth mentioning that this paper uses the

p value of wilcoxon rank sum test to test the performance

difference between the two algorithms. When the p-value is

less than 0.05, there is a significant performance difference

between the two algorithms. When the p-value is greater

than 0.05, there is no significant difference between the two

algorithms. If the p-value result is NAN, there is no difference

between the two algorithms. The test results in Table 4 show

that the p value of the improved algorithm on most functions

is less than 0.05, which shows that LSC-SSA has obvious

advantages over other algorithms.

The optimization process of the meta-heuristic algorithm

are global exploration and local exploitation. In the global

exploration stage, search agents are distributed as widely as

possible in the searching space and a set of random solutions

are obtained. In the local exploitation phase, the algorithm

will continuously improve this set of random solutions to

make them develop towards global optimal values. Simula-

tion experiments verify that LSC-SSA is more competitive

than other algorithms in solving function optimization prob-

lems, indicating that the improved strategy proposed in this

paper effectively improves the performance of the algorithm.

First of all, the Levy flight mechanism enables the search

agent to avoid falling into a local optimal value and improves

the global exploration capability of the algorithm. Secondly,

the introduction of improved sine cosine operator allows

the algorithm to adaptively adjust the search area based on

the return value of the solution space, effectively balancing

exploration and exploitation. The improved strategy improves

the optimization accuracy, global convergence and stability of

the algorithm. The effectiveness analysis of the improvement

strategy is explained in details in Section E.

D. EFFECTIVENESS ANALYSIS OF SOLVING HIGH

DIMENSION FUNCTION OPTIMIZATION PROBLEM

High-dimensional, large-scale, and high-noise features are

common in practical optimization problems, which make the

searching space complex and difficult to optimize. In order

to verify the possibility of the improved algorithm to solve

practical problems and expand the theoretical research of the

algorithm, this paper applies LSC-SSA to simulation exper-

iments of high-dimensional function optimization problems.

FunctionsF14−F22 are fixed-dimensional functions, and they

are not allowed to change the number of variables in the solu-

tion space. Therefore, for functions F1−F13, the experiments

increase the test function’s dimensions D = 30 to D = 100,

D = 200, and D = 300 to evaluate the effectiveness of the

improved algorithm for solving high-dimensional large-scale

optimization problems. The experimental results are listed

in Table 5. In addition, Table 6 shows the p-value results of

wilcoxon rank sum test.

In general, the calculation size and complexity of the

test functions will increase as the dimensions increase.

The expansion of the searching space and the increase

of the local optimal value will reduce the probability of

the algorithm finding the global optimal value. Therefore,

the high-dimensional optimization process is full of chal-

lenges. Especially for multimodal functions F8 − F13, with

multiple local optimal values increasing as the dimensions

increase, search agent tend to fall into local optimal. Too

many local optimal values hinder the algorithm’s global

explorability, which causes a dimensional disaster for large-

scale problems. The experimental results show that LSC-SSA

can maintain its advantages in optimization accuracy, mean
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TABLE 4. P-value results of wilcoxon rank sum test.

value, and variance, and is not much different from the perfor-

mance of low-dimensional (30-dimensional) test functions.

On D = 100, D = 200 and D = 300, LSC-SSA found

the theoretical optimal value (0) of 8 test functions (F1-F4,

F8, F9, F11, F13), accounting for 61%. The optimal value of

the function F8 will shift with the dimension. The improved

algorithm can still find the theoretical optimal value of F8,

which shows that the algorithm can effectively avoid the

local optimal. For functions F7, F10, and F12, the improved

algorithm does not fall into a dimensional disaster, and can

maintain the advantages of low-dimensional functions. For

functions F5 and F6, the optimization capability of LSC-
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TABLE 5. Simulation comparison of high-dimensional optimization.

SSAwill decrease as the dimension increases. The test results

in Table 6 show that the performance of the algorithm in

high-dimensional optimization is not significantly different

TABLE 6. P-value results of wilcoxon rank sum test.

from 30-dimensional, which shows that LSC-SSA will not

fall into dimensional disaster. The experimental results verify

that LSC-SSA can effectively avoid falling into dimensional

disaster, and the optimization performance of solving high-

dimensional functions is strong. The improved algorithm can

still maintain strong optimization accuracy and robustness

when solving large-scale problems, which lays a theoreti-

cal foundation for the application of LSC-SSA to practical

problems.

E. PROBLEM EFFECTIVENESS ANALYSIS OF IMPROVED

STRATEGIES

This paper makes two improvements to the basic strategy of

the salp swarm algorithm. First, the introduction of the Levy

flight mechanism with a step size control factor increased

the population ergodicity and global explorability. Second,

the position of leader is updated by improved sine cosine

operator, so that the algorithm can adaptively transition

between global exploration and local exploitation. The func-

tion optimization experiments in Section C have verified that

the improved strategy can improve the performance of the

algorithm. In order to further evaluate the effectiveness of

the improved strategy, the improved algorithm (LSC-SSA),

the salp swarm algorithm that only introduces Levy flight

(L-SSA), the salp swarm algorithm that only introduces sine

cosine operator (SC-SSA) and salp swarm algorithm (SSA)

are selected for comparison experiments. The parameter set-

tings of the algorithm are the same as in Table 1. Select

functions F1-F22 from Table 2. Each function runs indepen-

dently 60 times. The experimental results are listed in Table 7,

and the convergence curves of some functions are shown

in Fig. 12.
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FIGURE 12. Simulation experiment results.

The convergence curves show that LSC-SSA is inferior to

L-SSA only on F12. For the function F5, there is no difference

in the optimization precision and convergence speed between

LSC-SSA and L-SSA. For function F22, the convergence

speed of LSC-SSA is inferior to SSA. On the other functions,

LSC-SSA has the best optimization effect. The optimization
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FIGURE 13. Simulation experiment results.

accuracy in Table 7 shows that the proportion of LSC-SSA

finding the theoretical optimal value is 50%, the proportion

of L-SSA finding the theoretical optimal value is 14%, and

the proportion of SSA finding the theoretical optimal value is

only 9%. LSC-SSA has the best optimization accuracy. Com-

bining the performance of average accuracy and stability,
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TABLE 7. Simulation comparison of improved strategies. TABLE 7. (Continued.)Simulation comparison of improved strategies.

it can be seen that LSC-SSA has better global convergence

and robustness than L-SSA and SSA.

In addition, Table 8 shows the p-value results of wilcoxon

rank sum test. The statistical results show that the introduc-

tion of two improved strategies has more obvious advan-

tages than the other cases, which shows that Levy flight and

improved sine cosine operator have a synergistic effect on the

improvement of algorithm performance. Experiments show

that the improved sine cosine operator introduced on the basis

of Levy flight can significantly improve the optimization

performance of the salp swarm algorithm. The effectiveness

of the diversified improvement strategies proposed in this

paper is verified.

F. COMPARISON EXPERIMENTS AND ANALYSIS WITH

OTHER IMPROVED ALGORITHMS

In order to verify the effectiveness of the improved algo-

rithm, this paper selected other improved algorithms for

comparative experiments, such as CMA-ES [57], PSOGSA
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TABLE 8. P-value results of wilcoxon rank sum test.

[58], SADE and VPSO [59]. Among them, CMA-ES is

the winner algorithm of CEC2013. SADE, PSOGSA and

VPSO are improved algorithms that have been verified

by various optimization problems (function optimization,

engineering optimization, etc.). Comparison with the four

improved algorithms can more fully demonstrate the opti-

mization capabilities of LSC-SSA. The functions F1-F28 of

Table 2 were selected for experiments. The convergence

curves of some functions are shown in Fig. 13. At the same

time, Table 9 shows the mean and variance generated by

the algorithm running 60 times independently. The mean

and variance can intuitively show the average accuracy and

robustness of the algorithm. In addition, p-value results of

wilcoxon rank sum test are shown in Table 10.

The convergence curve shows that the improved algorithm

has the best convergence speed and optimization accuracy.

It can be seen from Table 9 that the improved algorithm

has the best performance in terms of average accuracy and

robustness. In addition, the statistical results in Table 10 show

that the improved algorithm LSC-SSA has significant advan-

tages. In summary, the improved algorithm LSC-SSA is the

FIGURE 14. Structure of MLP.

best algorithm in this experiment. CMA-ES is the second

best algorithm. Compared with other improved algorithms,

it shows the competitiveness of LSC-SSA more comprehen-

sively.

VI. TRAINING MUTI-LAYER PERCEPTRON BY LSC-SSA

Neural Networks (NN) is an application tool in the field

of intelligent computing that solves classification problems

by mimicking biological neurons in the brain. Many types

of neural networks have been proposed, such as Kohonen

self-organizing neural networks [60], Recurrent neural net-

works [61], and so on. Feed-forward neural networks [62]

are also one of them. In a feed-forward neural network,

neurons are arranged in different parallel layers with only

one-way connections between them. The first layer is used

as the input layer, the last layer is used as the output layer,

and the level between the input layer and the output layer

is hidden layer. The input information can share the infor-

mation of two neurons along one direction in the neural

network. The feed-forward neural network with only one

hidden layer is called Muti-Layer Perceptron (MLP). The

structure of the MLP is shown in Fig. 14. The neural network

can use the trainer to learn from existing experience and

obtain the best connection weight and error value to ensure

that the deviation of the output layer is minimized. Muti-

Layer Perceptron are no exception. Neural network learning

trainers are divided into deterministic learning and random

learning.

Back propagation (BP) algorithm and gradient descent

algorithm belong to the trainer of deterministic learning.

Deterministic learning has the advantages of fast conver-

gence, simple and efficient. But the quality of the global

optimal solution depends on the initial solution, and it is

easy to fall into the local optimal solution. Random learn-

ing can continuously improve the initial random solution

during the learning process, which can prevent the neural

network from falling into a local optimum, but the conver-
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TABLE 9. Comparison of simulation performance.

gence is worse than deterministic learning. As a random

learning trainer, the meta-heuristic algorithm can effectively

solve the problem of local optimal stagnation. The function

optimization in Section IV is a continuous problem. There

are limited variables and target values in a limited searching

space. However, training muti-layer perceptron is a discrete

problem, and the values in the searching space are not con-

tinuous. At the same time, there are a large number of local

optimal values for discrete problems, and the trainer may

mistake the local optimal as the global optimal and reduce the
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TABLE 10. P-value results of wilcoxon rank sum test.

optimization accuracy. Therefore, meta-heuristic algorithms

are challenging to train muti-layer perceptron. In order to

further verify the optimization performance of the improved

algorithm and the effectiveness of solving discrete problems,

LSC-SSA was applied to train muti-layer perceptron neural

network.

A. LSCSSA-MLP

The goal of the meta-heuristic algorithm for training muti-

layer perceptron is to find a set of connection weights and

error values to optimize the classification accuracy. Gener-

ally, the data set samples have the characteristics of high

dimensions, muti-modality, noise pollution, andmissing data.

The expression of the meta-heuristic algorithm should be

changed to apply to muti-layer perceptron, so it is necessary

to choose a suitable encoding mechanism. According to [63],

the coding mechanism is divided into matrix coding, vector

coding and binary coding. Matrix coding can simplify the

decoding process of the algorithm and reduce the operation

cost. Therefore, matrix coding is selected as the encoding

mechanism of LCSSSA-MLP. The target variable of MLP is

the connection weights and error value, and the target variable

of the LSC-SSA algorithm is the global optimal value. Matrix

coding is used to represent the connection weights and error

values as global optimal values. The equation is described as

follows.

V = [W , θ]

=
[

W1,1,W1,2, . . .Wn,n, θ1, θ2, . . . θh
]

(23)

where, n is the number of input nodes;Wi,j indicates the con-

nection weight from the i-th node to the j-th node; θ indicates

the error value. After defining the variables of LSCSA-MLP,

the objective function needs to be defined so that LSCSA-

MLP can achieve the best classification accuracy in the train-

ing and test samples. The mean square error (MSE) based on

all training samples is a common indicator for verifyingMLP.

The equation is described as follows.

MSE =

s
∑

k=1

m
∑

i=1

(

oki − dki

)2
/s (24)

where, m is the number of input nodes; s is the number

of training samples; dki indicates the expected output value

of the k-th input node when using the i-th training sam-

ple. Therefore, the objective function of the LSC-SSA-based

muti-layer perceptron trainer can be defined as:

Minimize F (V ) = MSE (25)

Different data sets have different attribute ranges, so nor-

malizing the data is an important step for LSSCA-MLP. This

paper adopts the minimum-maximum normalization method

to map the sample x to the intervals [a, b] and [c, d]. The

equation is as follows:

X ′ =
(x − a) · (d − c)

b− a
+ c (26)

After encoding, the MSE and classification accuracy

obtained by the training samples after MLP learning are

passed to the trainer. The LSC-SSA based trainer optimizes

the connection weights and error value transmission, which

further improves the MSE and classification accuracy until it

finds the best classification accuracy. The muti-layer percep-

tron trainer based on LSC-SSA is shown in Fig. 15.

B. ADOPTED DATA SETS

The three data sets used by the LSCSSA based muti-

layer perceptron trainer are from the University of Califor-

nia Irvine Machine Learning Database. Three categorical

datasets (XOR dataset, Balloon dataset, and Breast Cancer
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FIGURE 15. Muti-Layer Perceptron trained by LSC-SSA.

TABLE 11. Data sets and MLP structure.

dataset) are selected. In order to effectively verify the perfor-

mance of the algorithm, this paper sets different difficulties on

the data set. The number of training / test samples is different,

and the number of attributes is also different. Therefore,

the muti-layer perceptron has different structure. The specific

information of the data set and its MLP structure are listed

in Table 6. It can be seen from Table 6 that the XOR dataset

has 8 training / test samples, 3 attributes and 2 categories.

In addition, the Balloon dataset and Breast Cancer dataset

have more training / test samples than XOR dataset, so they

are much more difficult than XOR dataset. The former has

16 training / test samples, 4 attributes and 2 categories, and

the optimization dimension is 55. The latter has 599 training

samples, 100 test samples, 9 attributes and 2 categories, and

the search agent needs to optimize 209 variables. It can be

seen that the classification difficulty of the three data sets is

increasing.

C. EXPERIMENTAL RESULTS AND ANALYSIS

In order to ensure the objectivity of the experimental results,

the mean square error (MSE) and classification accuracy of

LCSSSA-MLP are compared with PSO-MLP, ACO-MLP,

ES-MLP, and PBIL-MLP in the literature [64]. The experi-

TABLE 12. Comparison of experimental results.

mental results are listed in Table 11. Among them, the algo-

rithm uniformly sets the number of population to 200 and

the maximum number of iterations to 250. The experimental
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results show that, on the XOR dataset, the mean square error

and classification accuracy of LCSSSA-MLP are better than

other algorithms. ACO-MLP, ES-MLP and PBIL-MLP have

no difference in classification accuracy, and PSO-MLP has

the lowest classification accuracy. This shows that PSO algo-

rithm falls into a local optimum in XOR dataset, and LSC-

SSA can avoid falling into a local optimum. On the Balloon

dataset, the mean square error of LCSSSA-MLP is second

only to PBIL-MLP, and the classification accuracy is no

different from other algorithms. All algorithms have reached

the theoretically best accuracy. The Breast Cancer dataset has

the characteristics of large scale and high dimensions, and the

classification difficulty is obviously higher than the first two

datasets. It is worth mentioning that the mean square error

and classification accuracy of LCSSSA-MLP are signifi-

cantly better than other algorithms. ACO-MLP has the second

best optimization effect. The classification accuracy of the

other three algorithms failed to exceed 20%. This shows that

LCSSSA will not fall into a dimensional disaster and can

maintain a stable optimization capability. The experimental

results show that the improved algorithm can be effectively

used as a trainer for muti-layer perceptron, and can match

the optimal connection weights and error value. It further

illustrates that LSC-SSA has good development ability and

optimization performance, and can be applied to different

optimization problems (continuous / discrete problems).

D. DISCUSSION OF LSC-SSA ALGORITHM

In view of the shortcomings of SSA algorithm, this paper

proposes two improvement strategies. First, Levy flight with

a step control factor is used to increase the global exploration

capability of search agents. This mechanism makes up for

the defect that the leader may mislead the population into

local optimum. Second, the improved sine cosine operator

introduces the convergence factor and the logarithmic spiral

search route, which is used to increase the search efficiency

of the leader. The combination of two improved strategies

improves the balance between exploitation and exploration.

In the function optimization problem, LSC-SSA has excellent

convergence speed and optimization accuracy, and it shows

stronger competitiveness than other algorithms. As the neu-

ral network trainer, the improved algorithm can effectively

avoid local optimization. The classification accuracy of LSC-

SSA is higher than other algorithms. The experiment proved

the effectiveness of the improved algorithm from different

angles, and laid the foundation for the application of the

improved algorithm.

VII. CONCLUSION

As a swarm intelligence optimization algorithm, the salp

swram algorithm has a simple structure. The algorithm is easy

to implement because it has fewer parameters and operators.

However, the algorithm has the disadvantages of low opti-

mization precision and slow convergence speed. The LSC-

SSA proposed in this paper first introduced the Levy flight

mechanism with a step size control factor. This mechanism

uses short-distance walking and long-distance jumping routes

to search the space, which effectively improves the traver-

sal and global exploration capabilities of the algorithm. In

addition, LSC-SSA uses an improved sine cosine operator to

update the position of leader, and uses sine search for global

exploration and cosine search for local exploitation. This

mechanism ensures that the algorithm adaptively switches

and optimizes between two search methods to achieve a

smooth transition between exploration and exploitation. In

the simulation experiments, firstly, 28 benchmark test func-

tions were used for carry out comparison experiments. LSC-

SSA showed more obvious advantages. The improved algo-

rithm has higher global convergence and optimization accu-

racy than other algorithms. Secondly, the high-dimensional

function optimization experiments verify that the proposed

LSC-SSA will not be affected by the dimensional disaster,

and can still maintain the optimization accuracy and stability.

LSC-SSA can effectively solve high-dimensional and large-

scale optimization problems. At the same time, the effec-

tiveness of the Levy flight mechanism and improved sine

cosine operator have been verified. Finally, the muti-layer

perceptron trainer based on LSC-SSA found an ideal classi-

fication accuracy rate, indicating that the improved algorithm

can avoid falling into local optimal values. LSC-SSA can not

only solve continuous problems (function optimization), but

also effectively solve discrete problems (training muti-layer

perceptron). The simulation results show that the improved

algorithm has powerful optimization performance, which is

of great significance for further theoretical exploration and

practical application of the salp swram algorithm.
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