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Improved Sample Complexity Estimates for Statistical level in a robust control design problem. On the other hand, it was con-
Learning Control of Uncertain Systems jectured and verified experimentally that much smaller bounds on the
number of plant samples may be sufficient (tens of thousands instead
V. Koltchinskii, C. T. Abdallah, M. Ariola, P. Dorato, and of millions) to guarantee a certain level of performance [16]. In fact,
D. Panchenko Vidyasagar in [16] uses 200 plants instead of the millions implied by his

bounds, while acknowledging that the theoretical guarantees of accu-
o o ] racy and confidence no longer hold. The question then becomes: what
Abstract—Recently, probabilistic methods and statistical learning theory ¢ 5,y guarantees are obtained by the smaller number of samples, or
have been shown to provide approximate solutions to “difficult” control iatelv. is th i h f |
problems. Unfortunately, the number of samples required in order to guar- more approp_rlate Y, 'St_ ere a smaller bound_ on the number of samples
antee stringent performance levels may be prohibitively large. This paper Of plants which can still guarantee the desired level of accuracy and
introduces bootstrap learning methods and the concept of stopping timesto confidence?
drastically reduce the bound on the number of samples required to achieve  Thig paper answers the last question affirmatively, and does so by in-
a performance level. We then apply these results to obtain more efficient al- Kina diff t ] Abootst tial | ' ith
gorithms which probabilistically guarantee stability and robustness levels VOKIng dirreren _ver3|ons ootstrap sequential learninggorithms.
when designing controllers for uncertain systems. For these algorithms, the necessary number of samples (known as the
sample complexity of learning) is a random variable whose value is not
known in advance and is to be determined in the process of learning.
This value is bounded below by the sample size at which the algorithm
starts to work, and bounded above by conservative upper bounds of
|. INTRODUCTION the sample complexity, which are of the same order as the bounds well
nown in statistical learning theory, used, for instance, by Vidyasagar
. This will also lead to the notion défficient learning timesvhich is
to show that the computational complexity of some “solved” contrép?rrLUSEdttho pref_en;[_o urt_;feSl:_Its n fa;; omplt,lrt]at(;onafllly attr_actlve mantn?jr.
problems is prohibitive [3], [4]. Many of these (linear and nonlinear, 1€ mathematical justification of the methods ot learning suggeste
n this paper relies heavily upon the methods of the empirical processes

control problems can be reduced to decidability problems or to opb This th dinth inal f\Vaonik and Ch
mization questions, both of which can then be reduced to the quest} fory- This theory started in the seminal papers of Vapnik and Chervo-

of finding a real vector satisfying a set of (polynomial) inequalitieg?enkis [17] and Dudley [18]. The exposition of more recent results on

Even though such questions may be too difficult to answer analyﬁmpirical processes can be found in [19] and [20], which also contain

cally, or may not be answered exactly given a reasonable amounf"d?umber of deep applications of empirical processes in statistics. The

computational resources, researchers have shown that we can “app _Iication§ of empirica} processes to statistical Iearning.problemls are
imately” answer these questions “most of the time,” and have “hi scussed !n great detail in [21], 7], [2.]’ a_nd [6]. '_I'he major te_c_hmcal
confidence” in the correctness of the answers. Many authors have ls used in our paper are con_cen_tratlon inequalities _for empirical and
cently advanced the notion of probabilistic methods in control analys atleq prlocelzs;es. Wef ahre using in tlhe ct:)rrentdver5|rc]) n of the .resul;s
and design. These methods build on the standard Monte Carlo appro il atlve_ y old form o these inequalities ased on t e extension 0
(with justifications based on Chernoff Bounds, Hoeffding inequality, € C'a_ss'c?" Hoeffding-type bounds tp the martingale differences. This
and other elementary probabilistic tools [5], [6]) with ideas advancgd(t,ensll(,),n 2'2 QUehto AZErlna [232 gndbltt\ﬁgs ysgd Ve?: guccessfully by
during the 1960s and 1970s [7] on the theory of empirical process\@ﬁ?ﬂs i ] 'St epr:F) ems o d'ro'dadl |tyf|n" ané; _pacltles. .
and statistical learning. In control theory, some of the original (Mont e remainder of this paper s divided as follows: Section lf contains

Carlo) ideas have already been used by Lee and Poolla [8], Ray 3 %pootstrap 'e‘"i“”‘“g methqd and its appllication.s to control problems.
Stengel [9], Tempet al. [10], [11], Barmishet al. [12], Chen and Section _III cc_)nta}lnsanymencal exam_plelllus_tratlng ourapproach and
Zhou [13], and by Khargonakar and Tikku [14], to sofedust anal- c_ontrastmg it Wlth earlier results, while Section IV contains conclu-
ysisproblems while Vidyasagar used learning theory to soblrist sions and an outline for future research.

designproblems [15], [16].

Unfortunately, and as acknowledged by the various authors, proba-
bilistic methods, while more efficient than gridding techniques (which
suffer from the curse of dimensionality), still require a large number In this section, we present sequential algorithms for a general
of samples in order to guarantee accurate designs. As an exampieblem of empirical risk minimization. They are designed to over-
Vidyasagar in calculates that more than two million plant samples ateme some of the difficulties encountered with the standard learning
needed in order to probabilistically guarantee a certain performaneethods [15], [16]. These algorithms do not depend on the explicit

calculation of the VC-dimension (see for instance [6] for a definition
of VC-dimension), although its finiteness remains critical to the

Manuscript received February 23, 1999; revised April 12, 2000. Recorf@rmination of the design algorithm, in the distribution-free learning
mended by Associate Editor, S. Hara. This work was supported by NSA und&se. The sequential algorithms chosen are baseRastlemacher
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Index Terms—Decidability theory, A’P-hard problems, Radamacher
bootstrap, robust control, sample complexity, statistical learning.

It has recently become clear that many control problems are too di
cult to admit analytic solutions [1], [2]. New results have also emerg

Il. SEQUENTIAL LEARNING ALGORTIHMS
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working with. The upper bounds for the random sample complexit¥ with respect toP iff there exist constant&’; > 1, K, > 1, and
are of the same order of magnitude as the standard conservative ugper> 1 such that for alk > 0 andé € (0, 1)
bounds for the sample complexity of empirical risk minimization
algorithms. Thusin the worst casgthe sequential method of learning v(s, §) € T(Kie, 6)
would take as much time (up to a numerical constant) as the standard
methods do. We start with a brief overview of standard learning theotd for all7 € 7 (z, )
concepts. i i

Let (S, A) be a measurable space and{lat, }..>; be a sequence :}V‘I; P{v(Kae, §) > 7} < Ky
of independent identically distributed (i.i.d.) observations in this space
with common distributior?. We assume that this sequence is defined Thus, using strongly efficient stopping time; ) allows one to
on a probability spacé&?, X, P). Denote byP(S) := P(S, A) the solve the problem of empirical approximation with confiderce 4
set of all probability measures di¥, A). Suppose” C P(S)is a andaccuracys;=. With probability at least — K36, the time required
class of probability distributions such thRt € 7. One of the central by this algorithm is less than the time neededdny sequential algo-
problems of statistical learning theonytiee risk minimization problem rithm of empirical approximation with accuraey K> and confidence
Given a classF of A-measurable functions from S into [0, 1] (e.g., 1 — 6.
decision rules in a pattern recognition problem or performance indicesDefinition 3: We call a family of stopping timegv (¢, 6): ¢ >

in control problems), the risk functional is defined as 0, § € (0, 1)} weakly (statistically) efficient for the clasg with re-
) spect toP iff there exist constant&’y > 1, K > 1,andK5; > 1
RP(f) — P(f) = / fdP := Ef(X)v fer. such that for alk > 0 andé € (() 1)
’ s

v(z, 6) € T(K,=, 6)
The goal is to find a functiorir that minimizeskRr onF. A method of
empirical risk minimizatioris widely used in learning theory. Namely, and
the unknown distributio is replaced bythe empirical measur&, , sup P{v(Kae, 6) > N(z:6)}} < Ksé.
defined as
" Using weakly efficient stopping time(¢; §) also allows one to solve
P.(A) := 1 Z I (X3). Aec A the problem of empirical approximation with accuray= and con-
n = fidencel — 4. With probability at least — K36, the time required by
this algorithm, is less than the sample complexity of empirical approx-
wherel (z) = 1forz € A andla(x) = 0forx ¢ A. The risk imation with accuracy/ K> and confidencé — é. Note that, under the
functional Rp is replaced by the empirical risRp,,, defined by assumptionV(e; §) > 7(e; §), we haveN (e, 6) € 7T (¢, §). Hence,
any strongly efficient family of stopping times is also weakly efficient.
The converse to this statement is not true [25]. We show below how to
construct efficient stopping times for empirical risk minimization prob-
lems. The construction is based on a version of bootstrag.&t, >1
The problem is now to minimize the empirical rigk>, on F. bea Rademacher sequengee., a sequence of i.i.d. random variables
Definition 1: Let{¥, }.>: consist of the events that occur by timetaking valuest-1 and—1 with probability 1/2 each). We assume, in ad-
n (in particular, the value of random variablg, is known by timer).  dition, that this sequence is independent of the observafiding > -
A random variabler, taking positive integer values, will be called aSuppose that (with- | denoting the floor of the argument)
stopping time if and only if (iff), foralk. > 1, we have{r = n} € ¥,,.
In other words, the decision whether< =, or not, depends only on a(e, 6) > {iﬁ log <;2>J +1.
the information available by time. & 8(L—e==*/1)
r

Given= > 0 andé € (0, 1), letn(e, §) denote the initial sample Let
size of our learning algorithms. We assume tiadas a nonincreasing
wheres..(f) := f(x).Note that for all: > 0 and for all6 € (0, 1),
v(z, §), is a stopping time and it can be computed by Monte Carlo

function in boths andé. Denote by7 (e, 6) := 77, » (¢, 6) the set of v(e, 8) == vr(e, §)
simulation of the sequence-;};>:. The finiteness with probability

all stopping times- such that- > 7(s; 6) and =
one of the stopping time(z; §) (and other stopping times, defined
below) can be shown to follow from the Glivenko—Cantelli property

sup P{RP(fP._) > fllelff Re(f)+ 26} <o for the classF (also referred to as UCEM property [6]). Define

Re,(f) = Pu(f)i= [ apo= 3 Y f(X0. feF.
k=1

n

r 71 e .
n E rjéxj

j=1

= ming n > n(e, 6):
sup PP, = Pllz > =} <&, o) { 2% 0)
PeP

Ifnow = € 7 (s, 6) andf := fp. is a function that minimizes the
empirical risk based on the samglE;, ..., X, ) then abound similar
to (1) immediately implies that

The questions, though, are how to construct a stopping time from v(e, 8) i=vr (s, )
the set7 (=, &), based only on the available data (without using the
= min< n: <e,

F

—1
n E ribx,

7j=1

knowledge ofP) and which of the stopping times from this set is best
used in the learning algorithms. The following definition will be useful
in this connection.

Definition 2: A parametric family of stopping timeg (¢, 6): ¢ > n=ng =206, §)., k=0, 1, } .
0,46 € (0, 1)} is called strongly (statistically) efficient for the class
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Theorem 1: Suppose that +

(e, §) > Liz 10g<%>J + 1. -

Then, for all= > 0, 6 € (0, 1) we have the following.
1) v(s; 6) € T(Kqg; 6) with Ky = 5.
2) Moreover, suppose that

N(e, 6) > n(=, 6) > \‘é log(%)J + 1.
) Comparison with Earlier Algorithms:In order to solve the problem
Then{vx(z, 6): = > 0,6 € (0, 1/2)} is a weakly efficient family of of designing robust controllers, in [15] two other algorithms were pro-
stopping times for any class of measurable functions frointo [0, posed. The first of them is based on the Hoeffding’s inequality, whereas

HW (s) G(s, X)

C(s,Y)

Fig. 1. The closed-loop system.

1] with respect to the s&2(.5) of all probability distributions orf'. the second one is obtained from VC theory. In all the cases, since the
Proof: See the Appendix. minimization is carried out in a Monte Carlo fashion, the number of
The result in Theorem 1 can be used to find a probably approximaentrollers evaluates to
near minimum of a stochastic proceBswvith confidencel — 4, level log(2/6)
« and accuracy as defined next (see also [15]). mz log[1/(1— a)]

Definition 4: Supposethak: Y — Ris a stochastic process, tfiat
is a given probability measure gn, and thatx € (0,1),6 € (0, 1),
and= > 0 are given. A number? is a probably approximate near

as in our Algorithm 1 (see also Section Ill). On the other hand, using
the Hoeffding's inequality the number of plants that are needed is

minimum ofR with confidence — §, level« and accuracy, if n > 21 log 4;”
P{ inf R(Y)—e<R< inf R(Y)+ 6} S5 whereas based on VC theoryevaluates to
re ooTew B n > max{ 16 log 4 % log 326}
with some measurable s8tC Y such that)(S) < a. 85 =2 2

An interpretation of Definition 4 is that we are not searching for th@hered is an upper bound of the VC-dimension. We have already dis-
minimum over all of the sey’ but only over its subseY \ S, where cussed at the beginning of Section Il the advantages of our method over
§ has a small measure (at mest Unless the actual infimun®” is  the methods which are based on the VC theory (see also the example in
attained in the exceptional s8f & is within < from the actual infimum  Section I1f). On the other hand, it is possible to show that, even though
with confidence — 6. Although using Monte Carlo-type minimization, ;;, andn arecoupledin the bounds based on the Hoeffding’s inequal-
itis unlikely to obtain a better estimate Bf thanR (since the chances ities, unless one chooses artremelysmall o, Hoeffding’s bounds
of getting into the sef are small), nothing can be said in practice aboutsult to be more computationally efficient. Moreover in the multidi-
the size of the differenc& — R". mensional situation, the simple Monte Carlo scheme of minimization

Based on Theorem 1, a probably approximate near minimuif ofcan be very misleading and the empirical minimum can be much larger
with confidencel — ¢, level« and accuracy, can be found with the than the true minimum with probability practically equal to one [25].

following algorithm. In these cases, one has to choasxtremely small such that the com-
Algorithm 1: Given: putational efficiency of the algorithm based on the Hoeffding’s bounds
» setsX’ and); disappears. In such situations, more efficient methods of minimization
* probability measure® on X and@ on}’; [26] should be used and their justification would heavily rely on statis-
« a measurable functiofi: X x Y — [0, 1]; tical learning theory. Therefore in these cases the Hoeffding’s bounds

* an accuracy parametere (0, 1), a level parametex € (0, 1), could not be used anymore.
and a confidence parametei (0, 1).
Let Rp(:) = Ep[f(X, )] andRp, () = (1/n)37_, f(X;, ). IIl. A PPLICATIONS TOCONTROL DESIGN

Then we have the following. In this example we consider the control problem presented by

1) Choose integers: andxn Vidyasagar in [16] and solved via randomized algorithms. This will
; allow us to illustrate our method and to compare it to the ones proposed
log(2/6) 100 8 : ; .
m 2 m "= log 35 + 1L in [16]. The example concerns the design of an inner-loop controller
) i ’ for the longitudinal axis of an aircraft. The problem is to minimize
2) Generaten independent samples according to distributi®n the weighted sensitivity function over a certain set of uncertain plants,

andn independent samples according to distributfon given some constraints on the nominal plant.
3) Evaluate the stopping variable The closed-loop system is shown in Fig. 1. The plaft, X) isin
Lo the form
V= max | Z rif(X;, Yi) #=Azx + Bu
= y=Cx
wherer; are Rademacherandom variables, i.e., independentwhere
identically distributed random variables (also independent of the
plant sample) taking valuesl and— 1 with probability 1/2 each. A= { Zo 1= Z‘I} B= { Zse } - {1 0} .
If v > =/5, addn more independent samples generate according Mo M Mse 01
to distributionP, setn := 2n and repeat Step 3. The parameters of the matrices have Gaussian distribution with means

4) LetR = mini<;<m Rp,. Then with confidence at least— 6, and standard deviations as in Table I. In the following, weXet=
R is a minimum ofRp to a levelx and accuracy. (Za Z, Mo M, Zs. Ms.]”
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TABLE | and the corresponding value of the cost functiot (85pt) = 0.7149,

PARAMETERS FOR THEAIRCRAFT MODEL which compares favorably with the results of [16], where 2619047
Parameter | Mean | Standard Deviation plants were needed for the samex, ands.

Lo —0.9381 0.0736

Z, 0.0424 0.0035 V. CONCLUSIONS

M. 1.6630 0.1385 In this paper we have drastically reduced the number of plant sam-

M, —0.8120 0.0676 ples needed in order to obtain performance guarantees in robust control

Zse —0.3765 0.0314 synthesis problems. This reduction is achieved by introducing sequen-

M. —10.8791 3.4695 tial bootstrapping algorithms and exploiting the fact that the sample

complexity is itself a random variable. This has allowed us to present
The transfer functiorfT 1 (s) models the different hardware Com_Algonthm 1 as an efficient design methodology for fixed-order robust

ponents, such as the sensors, the actuators, the structural filters, eft®Ho! design problems [27]. Recall for example that the static output
is given by feedback (SOF) was shown in [1] to be NP-hard when the gains of the

s o feedback matrix were bounded, but that Algorithm 1, is well suited to

0.000697s~ — 0.0397s + 1, address the SOF problem exactly under those conditions.

0.000867s* + 0.0591s + 1 . It should be noted that the methodology presented in this paper can
We will denote byGq(s) the nominal plant and by+(s. X), be used in many other application areas: one only needs to have an ef-

[respectively,Go(s)] the series connectiof(s, X )H W (s) [respec- ficient analysis tool in order to convert it to an efficient design method-

HW(s) =

tively, Go(s) HW (s)]. ology. This is due to the fact that the design problem is converted to
We choose the controller to have the following structure: a sequence of analysis or verification problems after sampling more
C(s, V) = [—Ix’ K (14 sm1) ] plants and controllers than the minimum number required by Algo-

’ ‘ T (14 s) rithm 1. It should also be noted that the computational complexity or

where the four parameters., K, 71, and have uniform distribu- the undecidability of the problems studied are not eliminated but only
tions in the ranges avoided by relaxing the design requirements from absolute (hard) to

K.€[0,2, EK,€[0,1 m €[0.01,0.1], = €]0.01,0.1). Probabilistic (soft) ones. _ _
The randomized algorithms approach may be applied to design

We thus lett” = [K. K, m 7] . Ourobjective is to find the fixed-structure controllers for nonlinear systems and to building
controller which solves the following problem: software systems for practical control design problems. Our future
) i AN ) 0.75CG, research is concentrating at the theoretical level in obtaining better
min||W (I—i—GC) H subject to 11 1.25CCo optimization algorithms and at the application level in designing
o ' oo software modules for linear and nonlinear control design.
where the weighting functiol’(s) is given by
2.8%6.28 x31.4 0 APPENDIX
) (s+6.28) (s +31.4) o
W(s) = . - The proof of Theorem 1 needs some preliminary lemmas.
2.8 %6.28 % 3.14
0 Lemma 1: Foralle > 0

(s+6.28) (s + 31.4) ‘
In order to adopt a randomized algorithm solution, in [16], this  P{||P, — P||x > E||P, — P||x + =} < exp{—c"n/2}
problem has been reformulated in the following way. Let us definegyg

cost function
P{E||P, — Pllx > |P. — Pllr + 2} < exp{—<?n/2}.

U (Y) = max{yn(Y), v2(Y)} Lemma 2: For allz > 0
here - -
W PLE|n! Z?‘j&,\'j > n”! ZTJ’!SX + ¢
0.75C' Gy 1 Jj=1 F Jj=1 W
n(Y)y=¢" 14 1.25CGo || < exp{—e’n/4}
0, otherwise and
and P{ e Z?“jé}(j >E|n~' Z’T‘J’(S)(j + <
2 (Y) = Ep(C(X,Y)) =t F = F
< exp{—e’n/4}.
with N .
o ) Lemma 3: The following inequality holds:
1, if (G(X), C(Y)) is unstable N
o R —1 LE|nt ri(bx, — P)
(X, v)=4 |w (I-i—G(X)C(Y)) lloo 2 ; P .

, otherwise.

n

A . -1
14 (|W (I+G(X)C(Y)) lloo S
In our example, and fo¥ = 0.01, « = 0.1, and= = 0.1, m evalu- = T -
ated to 51 controllers and evaluated to 66 848 plants and the procer o proofs of Lemmas 1, 2 follow from the well known and widely

dure outined in Algorithm _l stoppe_d after one iteration, ke 1. used concentration inequalities for martingale difference sequences
The parameters of thafatistically optimalcontroller are (see, e.g., Ledoux and Talagrand [28, Lemma 1.5]). See also [21, Ths.
K, =17826, K,=0.7621, 7 =0.0511, 7 =0.0117 9.1, 9.2]. The proof of Lemma 3 can be found, for instance, in [20].

<E|P. - Pll; < 2€
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Lemma 4: SupposeZ,, Z- are independent stochastic processes ine get
(>=(F). Thenforallt > 0,¢c >0 .
) s P{IS., ||+ > 2:N)

1= 2ol 2 <1 =8)7"P{|Pv - P|lr >} < 8(1-6)"".

MNZilr >t+ct < :
P{IZillx > t+c} < inf P{[Z:(f)[ < c)

Hence, we get
Proof of Theorem 1:We setr := 7(¢; §), we then have here
P{r(24s;6) > np} < 86(1—6) ' +6< 36

P m {|P, = P|lx <E||P, — P||+ ¢} for 6 < 1/4, which implies weak efficiency with; = 5, Ky = 24,
ne{2km k=0,1,...} andi’ = 3.
>1-> exp{—c'n2"/4} ACKNOWLEDGMENT
k=0

C. T. Abdallah would like to thank G. L. Heileman and P. Goldberg

_ [_ 25 _ : . . .
2 1=2expi—cn/d} > 1-6/2 for their fruitful discussions.

where we have used the fact that for ang> 1 we have
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In this paper, we propose a global nonlinear observer that guarantees
the estimation error to converge to zero asymptotically. Our scheme
is based on the input output linearization technique and utilizes the

Abstract—in this paper, we present a state observer for a class of non- State transformation into the normal form [7]. In contrast to [4], we do
linear systems based on the input output linearization. While the previous not require the hypothesis of full relative degree. Our main assumption
result presented state observers for nonlinear systems of full relative degree, is concerned with the existence of nonlinear observer for internal dy-
we proposed a procedure for the design of nonlinear state observers which . . .
do not require the hypothesis of full relative degree. Assuming that there namics. Thus, the proposed technique can be regarded as a dual of stabi-
exists a global state observer for internal dynamics and that some functions lization problem via input—output linearization, since the latter is solv-
are globally Lipschitz, we can design a globally convergent state observer. gp|e if the zero dynamics of nonlinear system have a globally asymptot-

It is also shown that if the zero dynamics are locally exponentially stable, ically stable equilibrium at the origin [3]. Moreover, as far as the local

then there exists a local state observer. An example is given to illustrate the ; ’ o
proposed design of nonlinear state observers. observation problem is concerned, the proposed condition is reduced to

Index Terms—Coordinate change, nonlinear system, normal form, state that the ;e_ro dynamics have a locally exponentially stable equilibrium
observer. at the origin.

Our paper is organized as follows. Section |l states the problem for-
mulation and motivation which comes from comparison between some
result of the linear case and the previous work on nonlinear observer.

The problem of observing the states of a nonlinear system has b&astion Il provides sufficient conditions for the existence of the pro-
considered in the literature. Some sufficient conditions for the existergesed observer and the main theorem is given in Section IV. An illus-
of an observer have been established, and computational algorittirative example is given in Section V and finally some conclusions are
for construction of the observers have been presented. The first cgiven in Section VI.
tributions to the nonlinear observer design were made by, for instanceBefore we begin, some notations used in the paper are to be specified.
[10] and [2]. Krener and Isidori [10] proposed the Lie-algebraic condi- . A Hurwitz matrixwill be a matrix with all eigenvalues such
tions under which nonlinear observers with linearizable error dynamics thatRe()) < 0.
can be designed. Bestle and Zeitz [2] introduced a nonlinear observer, i
canonical formin w_hi_ch system nonlinearities depend only on_the input For any integer, 0, denote the: x r zero matrix.
and output of the original system. To broaden the class of nonlinear sys- . . .

- . * || - || stands for the Euclidean norm of a vector in some Euclidean
tems for which a state observer exists, Keller [8] presented an observer space
design based on a transformation into a generalized observer canonical . )
form (GOCF) that depends on the fiisttime derivatives of the input : ”‘_EH% Is defined b.y”JE”‘” - sup{ [l ¢ > 01}' .
variables. Since afore-mentioned approaches require quite restrictive” Fln.ally,- the Jacobian matrices ¢{«1, «2) € C" with respect
conditions on coordinate transformation, the problem of deriving ap-  (© it first and second argument &t:. x2) are denoted by
proximate observers has been also studied in the literature [1], [11], P1f(x1, @2), D2f(21, x2), respectively.
[16].

Input Output Linearization Approach to State Observer
Design for Nonlinear System

Nam H. Jo and Jin H. Seo

|. INTRODUCTION

» For any integer, I,- denote the: x r identity matrix.

Il. PROBLEM FORMULATION AND MOTIVATION

In this paper, we will consider the following single-input single-
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put (SISO) nonlinear systems:
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