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Improved Sample Complexity Estimates for Statistical
Learning Control of Uncertain Systems

V. Koltchinskii, C. T. Abdallah, M. Ariola, P. Dorato, and
D. Panchenko

Abstract—Recently, probabilistic methods and statistical learning theory
have been shown to provide approximate solutions to “difficult” control
problems. Unfortunately, the number of samples required in order to guar-
antee stringent performance levels may be prohibitively large. This paper
introduces bootstrap learning methods and the concept of stopping times to
drastically reduce the bound on the number of samples required to achieve
a performance level. We then apply these results to obtain more efficient al-
gorithms which probabilistically guarantee stability and robustness levels
when designing controllers for uncertain systems.

Index Terms—Decidability theory, -hard problems, Radamacher
bootstrap, robust control, sample complexity, statistical learning.

I. INTRODUCTION

It has recently become clear that many control problems are too diffi-
cult to admit analytic solutions [1], [2]. New results have also emerged
to show that the computational complexity of some “solved” control
problems is prohibitive [3], [4]. Many of these (linear and nonlinear)
control problems can be reduced to decidability problems or to opti-
mization questions, both of which can then be reduced to the question
of finding a real vector satisfying a set of (polynomial) inequalities.
Even though such questions may be too difficult to answer analyti-
cally, or may not be answered exactly given a reasonable amount of
computational resources, researchers have shown that we can “approx-
imately” answer these questions “most of the time,” and have “high
confidence” in the correctness of the answers. Many authors have re-
cently advanced the notion of probabilistic methods in control analysis
and design. These methods build on the standard Monte Carlo approach
(with justifications based on Chernoff Bounds, Hoeffding inequality,
and other elementary probabilistic tools [5], [6]) with ideas advanced
during the 1960s and 1970s [7] on the theory of empirical processes
and statistical learning. In control theory, some of the original (Monte
Carlo) ideas have already been used by Lee and Poolla [8], Ray and
Stengel [9], Tempoet al. [10], [11], Barmishet al. [12], Chen and
Zhou [13], and by Khargonakar and Tikku [14], to solverobust anal-
ysisproblems while Vidyasagar used learning theory to solverobust
designproblems [15], [16].

Unfortunately, and as acknowledged by the various authors, proba-
bilistic methods, while more efficient than gridding techniques (which
suffer from the curse of dimensionality), still require a large number
of samples in order to guarantee accurate designs. As an example,
Vidyasagar in calculates that more than two million plant samples are
needed in order to probabilistically guarantee a certain performance
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level in a robust control design problem. On the other hand, it was con-
jectured and verified experimentally that much smaller bounds on the
number of plant samples may be sufficient (tens of thousands instead
of millions) to guarantee a certain level of performance [16]. In fact,
Vidyasagar in [16] uses 200 plants instead of the millions implied by his
bounds, while acknowledging that the theoretical guarantees of accu-
racy and confidence no longer hold. The question then becomes: what
(if any) guarantees are obtained by the smaller number of samples, or
more appropriately, is there a smaller bound on the number of samples
of plants which can still guarantee the desired level of accuracy and
confidence?

This paper answers the last question affirmatively, and does so by in-
voking different versions ofbootstrap sequential learningalgorithms.
For these algorithms, the necessary number of samples (known as the
sample complexity of learning) is a random variable whose value is not
known in advance and is to be determined in the process of learning.
This value is bounded below by the sample size at which the algorithm
starts to work, and bounded above by conservative upper bounds of
the sample complexity, which are of the same order as the bounds well
known in statistical learning theory, used, for instance, by Vidyasagar
[6]. This will also lead to the notion ofefficient learning timeswhich is
then used to present our results in a computationally attractive manner.

The mathematical justification of the methods of learning suggested
in this paper relies heavily upon the methods of the empirical processes
theory. This theory started in the seminal papers of Vapnik and Chervo-
nenkis [17] and Dudley [18]. The exposition of more recent results on
empirical processes can be found in [19] and [20], which also contain
a number of deep applications of empirical processes in statistics. The
applications of empirical processes to statistical learning problems are
discussed in great detail in [21], [7], [2], and [6]. The major technical
tools used in our paper are concentration inequalities for empirical and
related processes. We are using in the current version of the results
a relatively old form of these inequalities based on the extension of
the classical Hoeffding-type bounds to the martingale differences. This
extension is due to Azuma [23] and it was used very successfully by
Yurinskii [24] in the problems of Probability in Banach Spaces.

The remainder of this paper is divided as follows: Section II contains
the bootstrap learning method and its applications to control problems.
Section III contains a numerical example illustrating our approach and
contrasting it with earlier results, while Section IV contains conclu-
sions and an outline for future research.

II. SEQUENTIAL LEARNING ALGORTIHMS

In this section, we present sequential algorithms for a general
problem of empirical risk minimization. They are designed to over-
come some of the difficulties encountered with the standard learning
methods [15], [16]. These algorithms do not depend on the explicit
calculation of the VC-dimension (see for instance [6] for a definition
of VC-dimension), although its finiteness remains critical to the
termination of the design algorithm, in the distribution-free learning
case. The sequential algorithms chosen are based onRademacher
bootstrapalthough other bootstrap techniques, developed in statistics
(for instance, standard Efron bootstrap or various versions of weighted
bootstrap), can also be adopted for our purposes. An important feature
of our approach is the randomness of the sample size for which a given
accuracy of learning is achieved with a guaranteed probability. Thus,
the sample complexity of our method of learning is rather a random
variable. Its value is not known in advance and is to be determined in
the process of learning. The lower bound for this random variable is the
value of the sample size which the sequential learning algorithm starts

0018–9286/00$10.00 © 2000 IEEE
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working with. The upper bounds for the random sample complexity
are of the same order of magnitude as the standard conservative upper
bounds for the sample complexity of empirical risk minimization
algorithms. Thus,in the worst case, the sequential method of learning
would take as much time (up to a numerical constant) as the standard
methods do. We start with a brief overview of standard learning theory
concepts.

Let (S; A) be a measurable space and letfXngn�1 be a sequence
of independent identically distributed (i.i.d.) observations in this space
with common distributionP . We assume that this sequence is defined
on a probability space(
; �; ): Denote byP(S) := P(S; A) the
set of all probability measures on(S; A). SupposeP � P(S) is a
class of probability distributions such thatP 2 P . One of the central
problems of statistical learning theory isthe risk minimization problem.
Given a classF of A-measurable functionsf from S into [0, 1] (e.g.,
decision rules in a pattern recognition problem or performance indices
in control problems), the risk functional is defined as

RP (f) := P (f) :=
S

fdP := f(X); f 2 F :

The goal is to find a functionfP that minimizesRP onF . A method of
empirical risk minimizationis widely used in learning theory. Namely,
the unknown distributionP is replaced bythe empirical measurePn,
defined as

Pn(A) :=
1

n

n

k=1

IA(Xk); A 2 A

whereIA(x) = 1 for x 2 A andIA(x) = 0 for x =2 A. The risk
functionalRP is replaced by the empirical riskRP ; defined by

RP (f) := Pn(f) :=
S

fdPn :=
1

n

n

k=1

f(Xk); f 2 F :

The problem is now to minimize the empirical riskRP onF .
Definition 1: Let f�ngn�1 consist of the events that occur by time

n (in particular, the value of random variableXn is known by timen).
A random variable� , taking positive integer values, will be called a
stopping time if and only if (iff), for alln � 1, we havef� = ng 2 �n.
In other words, the decision whether� � n, or not, depends only on
the information available by timen.

Given" > 0 and� 2 (0; 1), let n("; �) denote the initial sample
size of our learning algorithms. We assume thatn is a nonincreasing
function in both" and�. Denote byT ("; �) := TF;P("; �) the set of
all stopping times� such that� � n("; �) and

sup
P2P

fkP� � PkF � "g � �: (1)

If now � 2 T ("; �) and f̂ := fP is a function that minimizes the
empirical risk based on the sample(X1; . . . ; X�) then a bound similar
to (1) immediately implies that

sup
P2P

RP (fP ) � inf
f2F

RP (f) + 2" � �:

The questions, though, are how to construct a stopping time from
the setT ("; �), based only on the available data (without using the
knowledge ofP ) and which of the stopping times from this set is best
used in the learning algorithms. The following definition will be useful
in this connection.

Definition 2: A parametric family of stopping timesf�("; �): " >
0; � 2 (0; 1)g is called strongly (statistically) efficient for the class

F with respect toP iff there exist constantsK1 � 1; K2 � 1; and
K3 � 1 such that for all" > 0 and� 2 (0; 1)

�("; �) 2 T (K1"; �)

and for all� 2 T ("; �)

sup
P�P

f�(K2"; �) > �g � K3�:

Thus, using strongly efficient stopping time�("; �) allows one to
solve the problem of empirical approximation with confidence1 � �
and accuracyK1". With probability at least1�K3�, the time required
by this algorithm is less than the time needed foranysequential algo-
rithm of empirical approximation with accuracy"=K2 and confidence
1 � �.

Definition 3: We call a family of stopping timesf�("; �): " >
0; � 2 (0; 1)g weakly (statistically) efficient for the classF with re-
spect toP iff there exist constantsK1 � 1; K2 � 1; andK3 � 1
such that for all" > 0 and� 2 (0; 1)

�("; �) 2 T (K1"; �)

and

sup
P2P

f�(K2"; �) > N("; �)gg � K3�:

Using weakly efficient stopping time�("; �) also allows one to solve
the problem of empirical approximation with accuracyK1" and con-
fidence1� �. With probability at least1�K3�, the time required by
this algorithm, is less than the sample complexity of empirical approx-
imation with accuracy"=K2 and confidence1��. Note that, under the
assumptionN("; �) � n("; �), we haveN("; �) 2 T ("; �). Hence,
any strongly efficient family of stopping times is also weakly efficient.
The converse to this statement is not true [25]. We show below how to
construct efficient stopping times for empirical risk minimization prob-
lems. The construction is based on a version of bootstrap. Letfrngn�1
bea Rademacher sequence(i.e., a sequence of i.i.d. random variables
taking values+1 and�1 with probability 1/2 each). We assume, in ad-
dition, that this sequence is independent of the observationsfXngn�1.
Suppose that (withb�c denoting the floor of the argument)

n("; �) �
4

"2
log

2

�(1� e�" =4)
+ 1:

Let

�("; �) := �F("; �)

:= min n � n("; �): n�1
n

j=1

rj�X

F

� "

where�x(f) := f(x).Note that for all" > 0 and for all� 2 (0; 1),
�("; �), is a stopping time and it can be computed by Monte Carlo
simulation of the sequencefrjgj�1. The finiteness with probability
one of the stopping time�("; �) (and other stopping times, defined
below) can be shown to follow from the Glivenko–Cantelli property
for the classF (also referred to as UCEM property [6]). Define

�("; �) := �F("; �)

:= min n: n�1
n

j=1

rj�X

F

� ";

n := nk := 2kn("; �); k = 0; 1; . . . :
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Theorem 1: Suppose that

n("; �) �
4

"2
log

4

�
+ 1:

Then, for all" > 0; � 2 (0; 1) we have the following.

1) �("; �) 2 T (K1"; �) with K1 = 5.
2) Moreover, suppose that

N("; �) � n("; �) �
4

"2
log

4

�
+ 1:

Thenf�F("; �): " > 0, � 2 (0; 1=2)g is a weakly efficient family of
stopping times for any classF of measurable functions fromS into [0,
1] with respect to the setP(S) of all probability distributions onS.

Proof: See the Appendix.
The result in Theorem 1 can be used to find a probably approximate

near minimum of a stochastic processR with confidence1 � �, level
� and accuracy" as defined next (see also [15]).

Definition 4: Suppose thatR: Y ! is a stochastic process, thatQ
is a given probability measure onY , and that� 2 (0; 1), � 2 (0; 1),
and" > 0 are given. A number̂R is a probably approximate near
minimum ofR with confidence1� �, level� and accuracy", if

inf
Y 2Y

R(Y )� " � R̂ � inf
Y 2YnS

R(Y ) + " � 1� �

with some measurable setS � Y such thatQ(S) � �.
An interpretation of Definition 4 is that we are not searching for the

minimum over all of the setY but only over its subsetY n S , where
S has a small measure (at most�). Unless the actual infimumR� is
attained in the exceptional setS , R̂ is within" from the actual infimum
with confidence1��. Although using Monte Carlo-type minimization,
it is unlikely to obtain a better estimate ofR� thanR̂ (since the chances
of getting into the setS are small), nothing can be said in practice about
the size of the differencêR � R�.

Based on Theorem 1, a probably approximate near minimum off
with confidence1 � �, level� and accuracy", can be found with the
following algorithm.

Algorithm 1: Given:

• setsX andY ;
• probability measuresP onX andQ onY ;
• a measurable functionf : X � Y ! [0; 1];
• an accuracy parameter" 2 (0; 1), a level parameter� 2 (0; 1),

and a confidence parameter� 2 (0; 1).

Let RP (�) = P [f(X; �)] andRP (�) = (1=n) n

j=1
f(Xj; �).

Then we have the following.

1) Choose integersm andn

m �
log(2=�)

log[1=(1� �)]
n =

100

"2
log

8

�
+ 1:

2) Generatem independent samples according to distributionQ
andn independent samples according to distributionP .

3) Evaluate the stopping variable


 = max
1�i�m

1

n

n

j=1

rjf(Xj ; Yi)

whererj are Rademacherrandom variables, i.e., independent
identically distributed random variables (also independent of the
plant sample) taking values+1 and�1 with probability 1/2 each.
If 
 > "=5, addnmore independent samples generate according
to distributionP , setn := 2n and repeat Step 3.

4) Let R̂ = min1�i�m RP . Then with confidence at least1� �,
R̂ is a minimum ofRP to a level� and accuracy".

Fig. 1. The closed-loop system.

Comparison with Earlier Algorithms:In order to solve the problem
of designing robust controllers, in [15] two other algorithms were pro-
posed. The first of them is based on the Hoeffding’s inequality, whereas
the second one is obtained from VC theory. In all the cases, since the
minimization is carried out in a Monte Carlo fashion, the number of
controllers evaluates to

m �
log(2=�)

log[1=(1� �)]

as in our Algorithm 1 (see also Section III). On the other hand, using
the Hoeffding’s inequality the number of plants that are needed is

n �
1

2"2
log

4m

�

whereas based on VC theoryn evaluates to

n � max
16

"2
log

4

�
;
32d

"2
log

32e

"2

whered is an upper bound of the VC-dimension. We have already dis-
cussed at the beginning of Section II the advantages of our method over
the methods which are based on the VC theory (see also the example in
Section III). On the other hand, it is possible to show that, even though
m andn arecoupledin the bounds based on the Hoeffding’s inequal-
ities, unless one chooses anextremelysmall �, Hoeffding’s bounds
result to be more computationally efficient. Moreover in the multidi-
mensional situation, the simple Monte Carlo scheme of minimization
can be very misleading and the empirical minimum can be much larger
than the true minimum with probability practically equal to one [25].
In these cases, one has to choose� extremely small such that the com-
putational efficiency of the algorithm based on the Hoeffding’s bounds
disappears. In such situations, more efficient methods of minimization
[26] should be used and their justification would heavily rely on statis-
tical learning theory. Therefore in these cases the Hoeffding’s bounds
could not be used anymore.

III. A PPLICATIONS TOCONTROL DESIGN

In this example we consider the control problem presented by
Vidyasagar in [16] and solved via randomized algorithms. This will
allow us to illustrate our method and to compare it to the ones proposed
in [16]. The example concerns the design of an inner-loop controller
for the longitudinal axis of an aircraft. The problem is to minimize
the weighted sensitivity function over a certain set of uncertain plants,
given some constraints on the nominal plant.

The closed-loop system is shown in Fig. 1. The plantG(s; X) is in
the form

_x =Ax +Bu

y =Cx

where

A =
Z� 1� Zq
M� Mq

; B =
Z�e
M�e

; C =
1 0

0 1
:

The parameters of the matrices have Gaussian distribution with means
and standard deviations as in Table I. In the following, we letX =
[Z� Zq M� Mq Z�e M�e]

T .



2386 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 12, DECEMBER 2000

TABLE I
PARAMETERS FOR THEAIRCRAFT MODEL

The transfer functionHW (s) models the different hardware com-
ponents, such as the sensors, the actuators, the structural filters, etc. It
is given by

HW (s) =
0:000697s2 � 0:0397s+ 1

0:000867s2 + 0:0591s+ 1
:

We will denote byG0(s) the nominal plant and bŷG(s; X),
[respectively,Ĝ0(s)] the series connectionG(s; X)HW (s) [respec-
tively, G0(s)HW (s)].

We choose the controller to have the following structure:

C(s; Y ) = �Ka �Kq

(1 + s�1)

(1 + s�2)
where the four parametersKa; Kq; �1; and�2 have uniform distribu-
tions in the ranges

Ka 2 [0; 2]; Kq 2 [0; 1] �1 2 [0:01; 0:1]; �2 2 [0:01; 0:1]:

We thus letY = [Ka Kq �1 �2]
T . Our objective is to find the

controller which solves the following problem:

min W I + ĜC
�1

1

subject to
0:75CĜ0

1 + 1:25CĜ0
1

� 1

where the weighting functionW (s) is given by

W (s) =

2:8 � 6:28 � 31:4

(s+ 6:28) (s+ 31:4)
0

0
2:8 � 6:28 � 3:14

(s+ 6:28) (s+ 31:4)

:

In order to adopt a randomized algorithm solution, in [16], this
problem has been reformulated in the following way. Let us define a
cost function

	(Y ) = maxf 1(Y );  2(Y )g

where

 1(Y ) =
1; if

0:75CĜ0

1 + 1:25CĜ0
1

> 1

0; otherwise

and

 2(Y ) = EP (�(X; Y ))

with

�(X; Y ) =

1; if Ĝ(X); C(Y ) is unstable

kW I + Ĝ(X)C(Y )
�1

k1

1 + kW I + Ĝ(X)C(Y )
�1

k1

; otherwise.

In our example, and for� = 0:01, � = 0:1, and" = 0:1,m evalu-
ated to 51 controllers andn evaluated to 66 848 plants and the proce-
dure outlined in Algorithm 1 stopped after one iteration, i.e.,k = 1.
The parameters of thestatistically optimalcontroller are

Ka =1:7826; Kq = 0:7621; �1 = 0:0511; �2 = 0:0117

and the corresponding value of the cost function is	̂(Yopt) = 0:7149,
which compares favorably with the results of [16], where 2 619 047
plants were needed for the same", �, and�.

IV. CONCLUSIONS

In this paper we have drastically reduced the number of plant sam-
ples needed in order to obtain performance guarantees in robust control
synthesis problems. This reduction is achieved by introducing sequen-
tial bootstrapping algorithms and exploiting the fact that the sample
complexity is itself a random variable. This has allowed us to present
Algorithm 1 as an efficient design methodology for fixed-order robust
control design problems [27]. Recall for example that the static output
feedback (SOF) was shown in [1] to be NP-hard when the gains of the
feedback matrix were bounded, but that Algorithm 1, is well suited to
address the SOF problem exactly under those conditions.

It should be noted that the methodology presented in this paper can
be used in many other application areas: one only needs to have an ef-
ficient analysis tool in order to convert it to an efficient design method-
ology. This is due to the fact that the design problem is converted to
a sequence of analysis or verification problems after sampling more
plants and controllers than the minimum number required by Algo-
rithm 1. It should also be noted that the computational complexity or
the undecidability of the problems studied are not eliminated but only
avoided by relaxing the design requirements from absolute (hard) to
probabilistic (soft) ones.

The randomized algorithms approach may be applied to design
fixed-structure controllers for nonlinear systems and to building
software systems for practical control design problems. Our future
research is concentrating at the theoretical level in obtaining better
optimization algorithms and at the application level in designing
software modules for linear and nonlinear control design.

APPENDIX

The proof of Theorem 1 needs some preliminary lemmas.
Lemma 1: For all " > 0

fkPn � PkF � kPn � PkF + "g � expf�"2n=2g

and

f kPn � PkF � kPn � PkF + "g � expf�"2n=2g:

Lemma 2: For all " > 0

n�1
n

j=1

rj�X

F

� n�1
n

j=1

rj�X

F

+ "

� expf�"2n=4g

and

n�1
n

j=1

rj�X

F

� n�1
n

j=1

rj�X

F

+ "

� expf�"2n=4g:

Lemma 3: The following inequality holds:

1

2
n�1

n

j=1

rj(�X � P )

F

� kPn � Pk
F
� 2 n�1

n

j=1

rj�X

F

:

The proofs of Lemmas 1, 2 follow from the well known and widely
used concentration inequalities for martingale difference sequences
(see, e.g., Ledoux and Talagrand [28, Lemma 1.5]). See also [21, Ths.
9.1, 9.2]. The proof of Lemma 3 can be found, for instance, in [20].
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Lemma 4: SupposeZ1; Z2 are independent stochastic processes in
`1(F). Then for allt > 0; c > 0

fkZ1kF � t+ cg � fkZ1 � Z2kF � tg
inf
f2F

fjZ2(f)j � cg :

Proof of Theorem 1:We setn := n("; �), we then have here

n2f2 n: k=0; 1; ...g

fkPn � PkF � kPn � PkF + "g

� 1�
1

k=0

expf�"2n2k=4g

� 1� 2 expf�"2n=4g � 1� �=2

where we have used the fact that for any� � 1 we have

1

k=1

expf��(2k � 1)g �
1

k=1

expf�(2k � 1)g

�
1

k=1

e�k = (e� 1)�1 < 1

and hence

1

k=0

expf��2kg � 2e��:

To prove the second property in the definition of the weakly efficient
stopping times, letN := N("; �), letnk := 2kn(24"; �) and choose
k such thatnk � N < nk+1. Then

f�(24"; �) > Ng � f�(24"; �) > nkg:
If �(24"; �) > nk, then forn = nk

n�1
n

j=1

rj�X

F

> 24":

Since, by the assumptions,N � n, we getnk � n=2. Then we obtain
that with probability� 1 � �

kPn � PkF � 1

2
n�1

n

j=1

rj�X

F

� 1

2
p
n
� 6"

which implies that

f�(24"; �) > nkg � fkPn � PkF � 4"g+ �

= fkSn kF � 4"nkg+ �

� fkSn kF � 2"Ng+ �

where

Sn(f) :=

n

j=1

[f(Xj)� P (f)]; f 2 F :

Next we use Lemma 4

fkSn kF � 2"Ng � fkSNkF � "Ng
inf
f2F

fj(SN � Sn )(f)j � "Ng

and by Hoeffding’s inequality [6]

inf
f2F

fj(SN � Sn )(f)j � "Ng
= 1� sup

f2F
fj(SN � Sn )(f)j > "Ng

� 1� 2 expf�"2N=2g � 1� �

we get

fkSn kF � 2"Ng
� (1� �)�1 fkPN � PkF � "g � �(1� �)�1:

Hence, we get

f�(24"; �) > nkg � �(1� �)�1 + � � 3�

for � < 1=4, which implies weak efficiency withK1 = 5; K2 = 24;
andK3 = 3.
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Input Output Linearization Approach to State Observer
Design for Nonlinear System

Nam H. Jo and Jin H. Seo

Abstract—In this paper, we present a state observer for a class of non-
linear systems based on the input output linearization. While the previous
result presented state observers for nonlinear systems of full relative degree,
we proposed a procedure for the design of nonlinear state observers which
do not require the hypothesis of full relative degree. Assuming that there
exists a global state observer for internal dynamics and that some functions
are globally Lipschitz, we can design a globally convergent state observer.
It is also shown that if the zero dynamics are locally exponentially stable,
then there exists a local state observer. An example is given to illustrate the
proposed design of nonlinear state observers.

Index Terms—Coordinate change, nonlinear system, normal form, state
observer.

I. INTRODUCTION

The problem of observing the states of a nonlinear system has been
considered in the literature. Some sufficient conditions for the existence
of an observer have been established, and computational algorithms
for construction of the observers have been presented. The first con-
tributions to the nonlinear observer design were made by, for instance,
[10] and [2]. Krener and Isidori [10] proposed the Lie-algebraic condi-
tions under which nonlinear observers with linearizable error dynamics
can be designed. Bestle and Zeitz [2] introduced a nonlinear observer
canonical form in which system nonlinearities depend only on the input
and output of the original system. To broaden the class of nonlinear sys-
tems for which a state observer exists, Keller [8] presented an observer
design based on a transformation into a generalized observer canonical
form (GOCF) that depends on the firstn time derivatives of the input
variables. Since afore-mentioned approaches require quite restrictive
conditions on coordinate transformation, the problem of deriving ap-
proximate observers has been also studied in the literature [1], [11],
[16].
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Apart from observers which are based on the state transformation
into canonical forms, alternative methods for the design of nonlinear
observers have been examined. Walcott and Zak [15] investigated
an observer design technique utilizing theory of variable-structure
systems (VSS) and Slotineet al. [12] discussed the potential use of
sliding surfaces for observer design. Tsinias [14] provided a sufficient
Lyapunov-like condition for the existence of a nonlinear observer and
showed that it is equivalent to detectability condition for linear case.
However, in general, the construction of this Lyapunov function is
quite difficult. Gauthieret al. [5] showed that if a nonlinear system is
uniformly observable for any inputs and some functions are globally
Lipschitz, then there exists a nonlinear observer whose gain depends
on the solution of some Lyapunov-like equation. Ciccarellaet al.
[4] proposed a nice extension of the Luengerger-like observer for
nonlinear systems of full relative degree under the global Hölder con-
dition for certain functions. However, if nonlinear system has relative
degree less than system order, their technique requires additional
assumption that some time derivatives of the input should be zero
almost everywhere.

In this paper, we propose a global nonlinear observer that guarantees
the estimation error to converge to zero asymptotically. Our scheme
is based on the input output linearization technique and utilizes the
state transformation into the normal form [7]. In contrast to [4], we do
not require the hypothesis of full relative degree. Our main assumption
is concerned with the existence of nonlinear observer for internal dy-
namics. Thus, the proposed technique can be regarded as a dual of stabi-
lization problem via input–output linearization, since the latter is solv-
able if the zero dynamics of nonlinear system have a globally asymptot-
ically stable equilibrium at the origin [3]. Moreover, as far as the local
observation problem is concerned, the proposed condition is reduced to
that the zero dynamics have a locally exponentially stable equilibrium
at the origin.

Our paper is organized as follows. Section II states the problem for-
mulation and motivation which comes from comparison between some
result of the linear case and the previous work on nonlinear observer.
Section III provides sufficient conditions for the existence of the pro-
posed observer and the main theorem is given in Section IV. An illus-
trative example is given in Section V and finally some conclusions are
given in Section VI.

Before we begin, some notations used in the paper are to be specified.

• A Hurwitz matrixwill be a matrix with all eigenvalues� such
thatRe(�) < 0.

• For any integerr, Ir denote ther � r identity matrix.
• For any integerr, 0r denote ther � r zero matrix.
• k � k stands for the Euclidean norm of a vector in some Euclidean

space.
• kxk1 is defined bykxk1 := supfkx(t)k: t � 0g.
• Finally, the Jacobian matrices off(x1; x2) 2 C1 with respect

to its first and second argument at(x1; x2) are denoted by
D1f(x1; x2), D2f(x1; x2), respectively.

II. PROBLEM FORMULATION AND MOTIVATION

In this paper, we will consider the following single-input single-
output (SISO) nonlinear systems:

_x = f(x) + g(x)u

y =h(x) (1)

0018–9286/00$10.00 © 2000 IEEE
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