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Abstract

Multiprocessor hardware platforms are now being con-

sidered for embedded systems, due to their high computa-

tional power and little additional cost when compared to

single processor systems. When scheduling real-time appli-

cations on multiprocessor platforms, a possibility is to use

global scheduling, where a scheduling algorithm dynami-

cally assign tasks to processors, and tasks can migrate from

one processor to another during their execution.

In this paper, we tackle the problem of schedulability

analysis of sporadic tasks in global scheduling systems,

where the scheduler is the Earliest Deadline First (EDF)

algorithm. We provide two main contributions. First, we

show that two recently proposed tests perform poorly when

the task set contains heavy tasks (i.e. tasks with high utiliza-

tion). We also show that neither test dominates the other. As

a second contribution, we introduce a new schedulability

test that improves significantly the percentage of accepted

task sets, especially when considering task sets containing

heavy tasks. We show the effectiveness of the proposed test

through an extensive set of experiments.

1. Introduction

Multiprocessor hardware platforms are becoming

widespread and commonly used. Given the current limits

of hardware technology, new increases in computational

power can be obtained more easily and in a cost-effective

way by using more than one processor rather than a more

powerful single processor technology. As an example of

this trend, the two major competitors in the high level

microprocessor market, Intel and AMD, are both propos-

ing dual core processors (i.e. chips with two processor

cores) [2, 19].

Today, multiprocessors platforms are being used also

in the embedded system domain. Example of such plat-

forms include Philips Nexperia [20], Texas Instrument

OMAP [15], Infineon Tricore [22].

Moreover, FPGA based solutions allow to customize the

hardware structure of the system. The developer can choose

the number of CPU cores, the buses and their connections

to the memory and peripherals [1]. Some researchers have

recently proposed hardware implementations of some parts

of the operating system [17, 10, 6, 23, 16].

In contrast, a complete theory of real-time scheduling

for multi-processor systems is still to come. We envision a

future where a real-time application will be able to dynam-

ically and adaptively scale from a single processor imple-

mentation to a multi-processor one, depending on the de-

sired performance and level of quality of service.

In this paper we will address the problem of scheduling a

set of real-time tasks in a symmetric multiprocessor (SMP)

system consisting of m processors. This problem can be

solved in two different ways: by partitioning tasks to pro-

cessors, or with a global scheduler. In the first case, the

tasks are allocated to processors at design time with an off-

line procedure. The partitioning problem is analogous to the

bin-packing problem, which is known to be NP-Hard in the

strong sense [13]. However, once the tasks are allocated,

the problem of scheduling is reduced to m single proces-

sor scheduling problems, for which optimal solutions are

known. The main advantages of this approach are its sim-

plicity and efficiency. Also, efficient communication and

synchronization protocols have been proposed [11, 12, 21].

If the task set is fixed and known a-priori, partitioning ap-

proaches are probably the most appropriate solutions. On

the other hand, if tasks can join and leave the system at run-

time, it may be necessary to reconfigure the system by re-

allocating tasks to processors.

We say that a task migrates if it is moved from one pro-

cessor to another during its execution. A scheduling algo-

rithm with migration assigns tasks to processors dynami-

cally. Usually, such algorithms maintain a global shared

queue for all processors, so they are referred to as global

schedulers. The p-fair class of algorithms is known to be

optimal for scheduling periodic real-time tasks with migra-

tion [8, 3]. Such algorithms are based on the concept of

quantum: the time line is divided into equal-size intervals

called quanta, and at each quantum the scheduler allocates

tasks to processors. A disadvantage of this approach is that
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all processors need to synchronize at the quantum bound-

ary, when the scheduling decision is taken. Moreover, if

the quantum is small, the overhead in terms of number of

context switches and migrations may be too high. To avoid

such overheads, some proposals are currently under investi-

gation [3].

Recently, some researchers are addressing the problem

of schedulability analysis of classical uniprocessor schedul-

ing algorithms, like FP and EDF, on SMPs. Regard-

ing schedulability analysis of periodic real-time tasks with

EDF, Goossens Funk and Baruah [14] have recently pro-

posed a schedulability test based on an utilization bound,

assuming that tasks have relative deadlines equal to the

period. Baker [7] proposed a different test extending the

model to tasks with deadline less than or equal to period.

Anderson et. al [5, 4] provided bounds to the utilization of

feasible tasks sets scheduled with fixed priority.

The advantage of these schemes is the relatively simple

implementation and the minor overhead in terms of number

of context switches. However, many negative results are

known for such schedulers. For example, EDF loses its op-

timality on multiprocessor platforms. Also, the overhead of

migrating a task from one processor to another needs to be

taken into account. In fact, in modern architectures, proces-

sors have a local cache memory, and migrating a task may

invalidate the content of the cache.

Although global scheduling approaches seem to be com-

plex or require too much overhead, we think that in some

case they can be a valid option. For example, in some em-

bedded processor architecture, with no cache and with sim-

pler structures, the overhead of migration has a lower im-

pact on the performance. Furthermore, in FPGA-based ar-

chitectures, implementing the scheduler in HW can further

reduce the overhead. From a theoretical point of view, we

think that tackling the problem of global scheduling with

EDF or FP algorithms can help understand the general prob-

lem of scheduling in multiprocessors.

1.1. Our contribution

This paper presents two main results. First, we discuss

two recent solutions to the multiprocessor schedulability

analysis using EDF, one proposed by Gooseens, Funk and

Baruah [14], which will be denoted by GFB, and the other

one proposed by Baker [7], which will be denoted by BAK.

It was erroneously believed that the BAK test was more gen-

eral than GFB, in that a task set schedulable by GFB was

also schedulable by BAK. We prove that indeed this is not

the case, and that neither test dominates the other.

Then, we propose an improved schedulability analysis

that is able to successfully guarantee a larger portion of

schedulable task set, especially in the case that heavy tasks

(i.e. tasks whose utilization is greater than 0.5) are present.

Finally, we show, with an extensive set of experiments, the

improvements produced by our test.

The paper is organized as follows. In Section 2 we in-

troduce the terminology and notation. In Section 3, the two

main existing results on schedulability analysis with EDF

are summarized and compared. In Section 4, we present our

new test, which improves over the test proposed in [7]. In

Section 5, the effectiveness of the proposed test is demon-

strated through a set of experiments. Finally, in Section 6

we present our conclusions.

2. System model

We consider a set τ of periodic or sporadic tasks to

be scheduled on m identical processors. Each task τk =
(Ck, Dk, Tk) ∈ τ is characterized by a worst-case com-

putation time Ck , a period or minimum interarrival time

Tk, and a relative deadline Dk. We denote with implicit

deadline (resp. constrained deadline) the systems with

Dk ≤ Tk (resp. Dk = Tk). We define the utilization

of a task as Uk = Ck

Tk
. We also define λk = Ck

Dk
, which

represents the “worst-case” request of a task in a generic

time interval. Let Umax (resp. λmax) be the largest utiliza-

tion (resp. the largest worst-case request) among all tasks:

Umax = maxτk∈τ {Uk} (resp. λmax = maxτk∈τ {λk}).

A task is a sequence of jobs J j
k , each job is characterized

by an arrival time rj
k and by a finishing time f j

k . Goal of

the scheduling algorithm is to guarantee that each job will

complete before its absolute deadline dj
k = rj

k + Dk.

The interference over an interval [a, b] on a task τk is the

cumulative length of all interval in which the task is ready

to execute but it cannot execute due to higher priority jobs.

We will denote such interference with Ik(a, b).

We also define the interference of a task τi on a task τk

over an interval [a, b] as Ii,k(a, b) as the cumulative length

of all intervals in which τk is ready to execute, τi is execut-

ing while τk is not. Notice that by definition:

Ii,k(a, b) ≤ Ik(a, b), ∀i, k, a, b. (1)

The demand dfk(a, b) of a task τk in an interval [a, b] is

the sum of the executions time of all jobs J j
k with arrival

time and deadline in [a, b]:

dfk(a, b) =
∑

r
j

k
≥a d

j

k
≤b

Ck.

Given a generic interval [a, b], a job J j
k can have ar-

rival time before a and deadline in [a, b]. In such a case,

the job may execute only a part of its computation time in

[a, b]. The amount of execution time of such job in the inter-

val [a, b] is denoted as carry-in εk(a, b) [7]. The workload
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Wk(a, b) of task τk in interval [a, b] is the sum of the carry-

in and of the demand:

Wk(a, b) = εk(a, b) + dfk(a, b).

The load Lk(a, b) of a task τk in an interval [a, b] is sim-

ply the workload divided by the length of the interval:

Lk(a, b) =
Wk(a, b)

b − a
.

To simplify the equations, we use (x)0 as a short notation

for max(0, x).

3. Summary of existing results

Recently, some authors tackled the problem of finding a

schedulability test for periodic and sporadic real-time tasks

on multiprocessor platforms, with a global EDF schedul-

ing. We will describe here two different results that are both

based on checking the utilization of the task set.

The first one, due to Goossens, Funk and Baruah [14]

assumes an implicit deadline task model. It consists of a

single simple inequality that compares the global utilization

of the task set with a bound proved to be tight (in the sense

that there is a task set with total utilization that exceeds by

ǫ the bound, that EDF cannot schedule, ∀ǫ > 0).

The second one, presented by Baker [7], is valid for con-

strained deadline task sets. The test consists in n condi-

tions (one for each task) that must hold for the task set to be

schedulable.

Now we briefly describe both results. Then we will com-

pare them on specific examples and on a large number of

randomly generated task sets.

3.1. The GFB test

According to the terminology introduced in [14], a uni-

form multiprocessor platform π consists of m equivalent

processors, each one characterized by a computing capacity

si. This means that a job that executes on the i-th processor

for t time units completes si × t units of execution. Let Sπ

and sπ be the sum of the computing capacities of all pro-

cessors and the computing capacity of the fastest processor

of platform π, respectively. The first theorem was proved

in [9].

Theorem 1 A periodic task system τ = {τ1, . . . , τn} is fea-

sible on a uniform multiprocessor platform π having

Sπ =
∑

τi∈τ

Ui

and

sπ = Umax

The following theorem shows a relation between an op-

timal algorithm for a uniform multiprocessor platform and

EDF on a unit-capacity SMP.

Theorem 2 A set of jobs I that is feasible on some uni-

form multiprocessor platform π with cumulative computing

capacity Sπ and in which the fastest processor has speed

sπ < 1 is schedulable with EDF on the SMP π′ composed

by m processors with unit capacity, if

m ≥
Sπ − sπ

1 − sπ

.

Combining these results, the following schedulability

test is obtained:

Theorem 3 (Goossens, Funk, Baruah) A periodic task

set τ is EDF-schedulable upon a SMP composed by m pro-

cessors with unitary capacity, if

∑

τi∈τ

Ui ≤ m(1 − Umax) + Umax. (2)

The previous test can be easily extended to the case of

tasks with deadlines less than or equal to period. Note that

Theorem 2 assumes an arbitrary collection of jobs. Theo-

rem 1 can be easily modified as follows:

Lemma 1 A task system τ composed by periodic and spo-

radic tasks is feasible on a uniform multiprocessor platform

π which has

Sπ =
∑

τi∈τ

Ci

Di

(3)

and

sπ = max
τi∈τ

{

Ci

Di

}

. (4)

Proof.

An arbitrary task set τ with n tasks can always be sched-

uled on a uniform multiprocessor platform π composed by

n processors, that for each task τi has a corresponding pro-

cessor with computing capacity si = Ci/Di. This can be

done with an algorithm that allocates each task to the asso-

ciated processor. The sum of the computing capacities of all

processors and the computing capacity of the fastest proces-

sor of the platform π clearly respect conditions (3) and (4).

�

By combining Lemma 1 with Theorem 2, it is possible

to formulate a sufficient scheduling condition.
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Theorem 4 (GFB) A task set τ composed by both periodic

and sporadic tasks is EDF-schedulable upon a SMP com-

posed by m processors with unitary capacity, if

∑

τi∈τ

λi ≤ m(1 − λmax) + λmax. (5)

From now on we will refer with GFB to the test given by

Equation (5).

3.2. The BAK test

Using a different approach, Baker derived a different suf-

ficient schedulability condition [7]. The idea is based on the

consideration that if a job J j
k of task τk misses its deadline

dj
k, it means that the load in the interval [rj

k, dj
k] is at least

m(1−λk)+λk. The situation is depicted in Figure 1. Note

that, to have a deadline miss for job J j
k , all m processors

have to execute other jobs for more than Dk − Ck . If it is

possible to show, for every job J j
k , that the task set cannot

generate so much load in interval [rj
k, dj

k], the schedulability

is guaranteed.

Unfortunately, checking the condition directly in [rj
k, dj

k]
is not simple. Therefore, Baker proposes to enlarge the in-

terval to find a better estimation of the carry-in of the inter-

fering tasks. Instead of concentrating on interval [rj
k, dj

k],

Baker extends such interval in [a, dj
k]. The basic idea is that

[a, dj
k] is the largest possible interval such that the load is

still greater than m(1−λk)+λk. This new interval is called

busy window. By deriving an upper bound on the load pro-

duced in the busy window, the final result is obtained.

Theorem 5 (BAK) A task set τ composed by n tasks is

schedulable with EDF on a SMP with m processors if

∀τk :
n

∑

i=1

min {1, βi} ≤ m(1 − λk) + λk, (6)

where

βi =

{

Ui(1 + Ti−Di

Dk
) if λk ≥ Ui

Ui(1 + Ti−Di

Dk
) + Ci−λkTi

Dk
if λk < Ui

3.3. Comparison between GFB and BAK

In his paper, Baker claims that test GFB is a special case

of BAK, in the sense that task sets passing GFB are a subset

of those passing BAK. To show this property, he introduced

a simplified (less general) form of BAK. Unfortunately, due

to an error in the derivation of the simplified form, the prop-

erty is not true. We prove that there are schedulable task sets

that pass GFB but not BAK, and vice versa.

The simplified test proposed by Baker says that a task set

is EDF-schedulable on m processors if

n
∑

i=1

min

{

1, Ui

(

1 +
Ti − Di

Dmin

)}

≤ m(1 − λmax) + λmax

(7)

where Dmin = minn
k=1{Dk}.

It is easy to see that for implicit deadline systems Equa-

tion (7) coincides with Equation (2). However, the simpli-

fied test (7) is not correctly derived from Equation (6). In

fact, among the n inequalities of the general test, the mini-

mum of the rightmost terms is chosen (the one with greatest

λk), while the leftmost term is not necessarily the maximum

one.

To highlight the problem, we present a counter-example.

Consider a SMP with m = 2 processors and a task set τ
consisting of 3 tasks:

{τ1 =(49, 100, 100), τ2=(49, 100, 100), τ3=(2, 50, 100)}.

with the notation τi = (Ci, Di, Ti).
Applying Equation (6), the test for k = 1 and k = 2 is

successful, but for k = 3 we have:

49

100
+

45

50
+

49

100
+

45

50
+

2

100
(1+

50

100
) < 2(1−

2

50
)+

2

50
281

100
<

196

100
.

Therefore the task set does not pass the BAK test. How-

ever, it is easy to see that the task set passes the simplified

test (7). Therefore, the simplified test is not a less general

form of BAK, and it cannot be used to verify if BAK domi-

nates GFB.

For implicit deadline systems, a correct simplification of

Equation (6) is the following:

∀τk :

n
∑

i=1

min {1, βi} ≤ m(1 − Uk) + Uk,

where

βi =

{

Ui if Uk ≥ Ui

Ui + Ci−UkTi

Tk
if Uk < Ui

It consists of n inequalities, one of which coincides with

Equation (2) of the GFB schedulability test. Therefore, it

is possible to conclude that, for implicit deadline systems,

Theorem 5 is a special case of Theorem 3.

However, for the general case of constrained deadline

systems, it is not possible to conclude that one of the test is

a special case of the other. In fact, by applying Equation (5)

to the previous example we have:

49

100
+

49

100
+

2

50
< 2(1 −

49

100
) +

49

100
⇔

102

100
<

151

100
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Ik > Dk − Ck

job J
j

k

τk

τk

τk

Dk

r
j

k
d

j

k

jobs of other tasks

processors

deadline

miss

Figure 1. Problem window.

and the GFB test is passed, whereas BAK fails. It is also

possible to show that there are task sets for which BAK

gives a positive response and GFB does not.

3.4. Experimental evaluation of GFB and BAK

To evaluate the differences between the two tests and as-

sess their effectiveness, we performed a set of experiments,

measuring the percentage of task sets that are schedulable

according to GFB and BAK with respect to the total per-

centage of schedulable task sets. The experiments were per-

formed with RTSIM [18] tool1.

We considered different SMP platforms. We performed

a simulation for each combination of the following parame-

ters: m=3, m=5, m=10 processors; n=1.5 m, n=3 m,

n=6 m tasks; total utilization of the task sets varying from

0.2 m to 0.8 m. To further consider the impact of tasks with

high utilization factor, we classified the tasks into two cate-

gories: heavy tasks have utilization greater than 0.5 whereas

light tasks have utilization less than 0.5. Experiments were

made with a number of heavy tasks varying from 0 to 3.

Task sets were randomly generated according to the pre-

vious parameters. The period Ti of a task τi is taken from

a set {100, 200, 300, . . . , 1600}, each number having an

equal probability of being selected. The deadline Di fol-

lows a uniform distribution with a minimum value of 0.5 Ti

and a maximum value of Ti. The execution time Ci is ac-

cordingly computed from the generated utilization of the

task (heavy or light).

We randomly generated 5,000 task sets for each exper-

iment. For each generated task set we performed a simu-

lation of the schedule up to the hyperperiod checking for

missed deadlines, and we applied both GFB and BAK.

In Figure 2.a, we show the number of task sets passing

each test (in relation to the total number of schedulable task

sets) for the case of 9 tasks and 3 processors, with a total

1RTSIM is distributed under the Gnu Public License and it is available

for download at http://rtsim.sssup.it/

a)

100

80

60

40

20

percentage

BAK GFB GFB or BAK

b)

Figure 2. Percentage of schedulable task sets

with GFB and BAK a) The case of 1 heavy task
with utilization U = 0.8. b) The case of only

light tasks.

utilization Utot = 1.2. One of the tasks is heavy, having uti-

lization Umax = 0.8. Notice that the percentage of task sets

for which both tests give a positive answer is low. More-

over, neither test dominates the other and there are many

task sets for which BAK is successful whereas GFB is not,

and vice versa.

If only light tasks are considered, GFB has a much bet-

ter behavior, as shown in Figure 2.b. In this experiment we

considered again 3 processors and 9 tasks, with total uti-

lization equal to Utot = 1.2, and all tasks with utilization

less than 0.5. Notice that the percentage of schedulable task

sets with BAK is again low, whereas GFB gives a positive

response for almost all schedulable task sets.

It is worth to make some consideration on these simple

experiments. Test GFB is very effective when analyzing

task sets with a small Umax, as it is immediately evident

from Equations (2) and (5). However, when Umax increases,

the utilization bound becomes smaller and the test less ef-
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Figure 3. Experiments with 3 processors, 9
light tasks.

fective. On the contrary, BAK does not depend on the value

of Umax in a direct way, and it becomes more advantageous

when considering task sets with one or more heavy tasks.

As a general remark, for task sets including heavy tasks,

none of the two tests is very effective, as there is a large

subset of schedulable tasks for which GFB and BAK do not

give a positive answer.

These conclusions are also supported by the plots shown

in Figures 3 and 4.

In Figure 3, we considered 3 processors, 9 light tasks

and a total utilization varying from Utot = 0.3 m = 1.5 to

Utot = 0.8 m = 4. Notice that GFB gives a positive re-

sponse in nearly all cases up to Utot = 1.2, and then de-

creases abruptly, while BAK gives a positive response only

in few cases.

In Figure 4, we considered 3 processors and 9 tasks. One

of these tasks is heavy (utilization Umax = 2
3 Utot), while the

others are light. In this case, BAK has performance very

close to GFB, and there is some task set that is not schedu-

lable according to GFB, for which BAK gives a positive

response.

Starting from these considerations, a new test is pre-

sented in the next sections, which behaves better in presence

of heavy tasks.

4. Scheduling analysis

In this section, we will extend the line of reasoning used

in [7]. To clarify the methodology, we briefly describe the

main steps that will be followed to derive the schedulability

test.

1. As in [7], we start by assuming that a job J j
k of task τk

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.25  0.3  0.35  0.4  0.45

T
a
s
k
 S

e
ts

U/m

n. schedulable
BAK
GFB

BAK+GFB

Figure 4. Experiments with 3 processors, one
heavy task (Uheavy = 2

3 Utot) and 9 light tasks.

misses its deadline dj
k;

2. Based on this assumption, we give a schedulability

condition that uses the interference Ik that the job must

suffer in interval [rj
k, dj

k] for the deadline to be missed;

3. If we were able to precisely compute this interference

in any interval, the schedulability test would simply

consist in the condition derived at the precedent step

and it would be necessary and sufficient; unfortunately,

computing such interference is very difficult;

4. Therefore, we give an upper bound to the interference

using the workload in the interval and derive a suffi-

cient scheduling condition.

Let us first start by deriving some useful results on the

interference that a task can suffer in an interval for the si-

multaneous execution of other tasks scheduled on the same

multiprocessor platform.

4.1. Interference time

Lemma 2 The interference that a task τi causes on a task

τk in an interval [a, b] is never greater than the workload of

the task in the same interval:

∀i, k, a, b Ii,k(a, b) ≤ Wi(a, b) ≤ b − a.

Lemma 2 is obvious, since Wi(a, b) is an upper bound on

the execution of τi in interval [a, b].

Lemma 3 The interference that a task τk can suffer in in-

terval [a, b] is the sum of the interferences of all other tasks
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(in the same interval) divided by the number of processors:

Ik(a, b) =

∑

Ii,k(a, b)

m
.

This descends from the observation that EDF is work-

conserving, thus in the time instants in which a job is ready

but not executing, each processor must be occupied by a job

of another task.

Lemma 4 Ik(a, b)≥x iff
∑

i min (Ii,k(a, b), x)≥mx.

Proof.

Only If. Let ξ be the number of tasks for which it is

Ii,k(a, b) ≥ x.

n
∑

i=1

min (Ii,k(a, b), x) = ξx +
∑

i:Ii,k<x

Ii,k(a, b) =

= ξx + mIk(a, b) −
∑

i:Ii,k≥x

Ii,k(a, b) ≥

≥ ξx+mIk(a, b)−ξIk(a, b) ≥ ξx+(m−ξ)x = mx.

If. Note that if
∑

i min (Ii,k(a, b), x) ≥ mx, it follows

that

Ik(a, b)=
∑

i

Ii,k(a, b)

m
≥

∑

i

min (Ii,k(a, b), x)

m
≥

mx

m
=x

�

Now we are ready to give the first schedulability con-

dition. It is clear that, for a job to meet its deadline, the

total interference on the task must be less than or equal to

its slack time Dk − Ck. Hence, for a task to be schedula-

ble, the condition must hold for all its jobs. We define the

worst-case interference for task τk as:

Ik = max
j

(Ik(rj
k, dj

k)) = Ik(rj∗
k , dj∗

k ),

where j∗ is the job instance in which the total interference

is maximal. To simplify the notation, we define:

Ii,k = Ii,k(rj∗
k , dj∗

k )

Theorem 6 The task set is schedulable iff, for each task τk

one of the following is true:

1)
∑

i�=k min
(

Ii,k, Dk − Ck

)

< m(Dk − Ck)

2)
∑

i�=k min
(

Ii,k, Dk − Ck

)

= m(Dk − Ck) and

∃h �= k : 0 < Ih,k ≤ Dk − Ck

Proof.

If. If 1) is true, from Lemma 4, we have that

Ik < (Dk − Ck) and the task τk is feasible.

Now, suppose that 2) holds for task τk . It follows that

task τh exists with 0 < Ih,k ≤ Dk − Ck. There are less

than m tasks with Ii,k > Dk − Ck, otherwise it would be:
∑

i min
(

Ii,k, Dk − Ck

)

> m(Dk − Ck), which contra-

dicts the assumption.

In this situation, we substitute Dk−Ck with Dk−Ck+ǫ.

The rightmost term increases by mǫ, while the leftmost term

increases by less than mǫ because less than m tasks will

select the second term of the minimum:

∀ǫ > 0
∑

i min
(

Ii,k, Dk − Ck + ǫ
)

<m(Dk−Ck+ǫ),

where ǫ is an arbitrarily small positive number. From

Lemma 4: ∀ǫ > 0, Ik < Dk − Ck + ǫ, which means

that the interference that τk suffers is never greater than its

slack time, so the task cannot have a deadline miss.

Only If. If it is:
∑

i min
(

Ii,k, Dk − Ck

)

>m(Dk−Ck),
then we have:

Ik =
P

i
Ii,k

m
≥

P

i min(Ii,k,Dk−Ck)
m

> m(Dk−Ck)
m

=Dk−Ck,

hence task τk is not schedulable.

Now suppose
∑

i min
(

Ii,k, Dk − Ck

)

=m(Dk − Ck),

but ∀i : Ii,k = 0 or Ii,k > Dk − Ck. There are exactly m
tasks with Ii,k > Dk − Ck. We have:

Ik =
P

i
Ii,k

m
>

P

i min(Ii,k,Dk−Ck)
m

= m(Dk−Ck)
m

=Dk−Ck,

hence task τk is not schedulable. �

To better understand the key idea behind Theorem 6,

consider again the situation depicted in Figure 1. It is clear

that, if the interference that a task τi can impose on task τk

in window [rj
k, dj

k] is greater than Dk − Ck, it is sufficient

to consider only the portion Dk − Ck in the sum to verify

the schedulability of task τk.

4.2. Workload

To apply the schedulability test of Theorem 6, the most

straightforward approach is to compute, for each task τk,

the interference Ii,k(rj
k, dj

k) of each task τi, in every interval

[rj
k, dj

k], until the hyperperiod. This is actually impossible

without a simulation of the system.

To avoid the complexity of this approach, we will use an

upper bound on the interference. The test derived will then

represent only a sufficient condition. From Lemma 2, we

know that an upper bound on the interference Ii,k(rj
k, dj

k) is

the workload Wi(r
j
k, dj

k). The worst case for this workload

is when the deadlines of job J j
k and of the interfering task

τi are aligned, because in this case the number of instances

of τi that interfere with τk is maximum, as shown in [7].

Let Ni =
(⌊

Dk−Di

Ti

⌋

+ 1
)

be the maximum number

of jobs of τi that can be completely contained in [rj
k, dj

k].
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Figure 5. Carry in for task τi.

An upper bound on the workload of a task τk in a generic

interval [rj
k, dj

k] is:

Wi(r
j
k, dj

k) ≤ NiCi + εi(r
j
k, dj

k)

where εi(r
j
k, dj

k) is the carry-in of task τi in interval

[rj
k, dj

k].

Lemma 5 An upper bound on the carry-in is the following:

εi(r
j
k, dj

k) ≤ min (Ci, (Dk − NiTi)0) .

Proof.

Obviously, the carry-in of a task cannot exceed the worst-

case computation time Ci of the task. Moreover, from Fig-

ure 5 it is easy to see that the carry-in cannot be greater than

Dk − NiTi, when this term is positive. �

To further simplify the formula and to better appreci-

ate the differences with the BAK test, we can express the

schedulability test using the load. We denote with βi an up-

per bound on the load of task τi in our interval of interest.

In this case, for our interval [rj
k, dj

k], we can write:

βi =
NiCi + min (Ci, (Dk − NiTi)0)

Dk

.

Theorem 7 The task set is feasible if, for each task τi one

of the followings is true:

1)
∑

i�=k min (βi, 1 − λk) < m(1 − λk)

2)
∑

i�=k min (βi, 1 − λk) = m(1 − λk) and

∃i �= k : 0 < βi ≤ 1 − λk.

(8)

Proof.

Follows from Theorem 6. �

One of the main differences between our work and the

results presented in [7] lies in term (1 − λk) in the min-

imum. This term directly derives from term Dk − Ck in

Theorem 6. The underlying idea is that when considering

the interference of a heavy task τi over τk, we do not want

to overestimate its contribution to the total interference. If

we consider its entire load, when we sum it together with

the load of the other tasks on all m processors, its contribu-

tion could be much higher than Dk−Ck

Dk
and we could end

up overestimating the total interference. Therefore, we must

consider only the fraction of its workload that can actually

interfere with task τk. This fraction is bounded by 1 − λk.

As we show in the next section, this term will bring a

substantial improvement on the schedulability test.

5. Experimental results

In this section, we compare our Equation (8) with GFB

and BAK. To simplify the presentation, our test will be de-

noted by BCL. We used the same parameters already de-

scribed in Section 3.4.

In Figure 6, we show the case of 5 processors, 2 heavy

tasks with total utilization of 1.4 and 6 light tasks with total

utilization varying from 0.1 to 1.1. The percentage of task

sets that are schedulable by BCL is much higher than the

ones obtained by GFB and BAK.

When we increase the number of processors, the results

are similar. In Figure 7 we show the case of 10 processors,

2 heavy tasks with total utilization of 1.4 and 13 light tasks

with total utilization varying from 0.1 to 1.9.

Increasing the number of heavy tasks, only BCL gives

some positive result, whereas both GFB and BAK never

give any response. An example of this situation is depicted

in Figure 8, with 5 processors, 3 heavy tasks having total

utilization 2.1, and only 5 light tasks with utilization vary-

ing from 0.1 to 0.5.

The good performances of BCL with one or more heavy

tasks are due to term 1 − λk in Equation 8. For tasks with

high utilization, this term is low, so that it will be selected

in the minimum, bounding the overall interference.

Finally, in Figure 9 we show the results of an experi-

ment consisting of 3 processors and 9 tasks, all light. In

this case, test GFB is the best option, since it accepts al-

most all schedulable task sets for low utilization, whereas

tests BAK and BCL behave badly. Without heavy tasks, the

term 1 − λk of test BCL is high, and will never be selected

in the minimum of Equation 8. In this case, BAK performs

slightly better than BCL , since it can take advantage of its

better estimation of the carry-in.

5.1. Considerations

From the experimental evaluation, GFB is the best test

for task sets with small Umax (for example consisting only

of light tasks). However, its performance degrades dramati-

cally as Umax increases. On the other hand, the proposed test
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Figure 6. Experiment with 5 processors, 2
heavy tasks (Uheavy tot = 1.4) and 6 light tasks.
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Figure 7. Experiment with 10 processors, 2
heavy tasks (Uheavy tot = 1.4) and 13 light tasks.

BCL behaves well when task sets with some heavy tasks are

considered. In very rare cases, the BAK test may return a

positive response where the other two fail.

All tests have a very low computational complexity:

GFB has complexity equal to O(n), whereas both BAK and

BCL have complexity O(n2). Since GFB and BCL behave

well in different situations, one possibility is then to run all

three tests: if the task set is accepted by one of the tests,

it can be guaranteed to be schedulable. The overall com-

plexity of the resulting test is O(n2). Hence, for small task

sets it is also possible to use this test for on-line admission

control.

It is worth to make one final observation. In the gen-

eral case, all proposed tests provide results that are far from

the necessary and sufficient test (i.e. the simulation). We

believe that there is still some space for improvement. We

are currently investigating the possibility to extend our BCL
test. One possibility is to improve the estimation of the

carry-in, by extending the busy window with a technique

similar to the one described by Baker in [7].

6. Conclusions

In this paper we tackled the problem of schedulability

analysis of global scheduling systems, where the schedul-

ing algorithm is EDF. We presented two main contributions.

First, we have shown that, contrary to the current belief, the

BAK test, proposed by Baker [7], does not dominate the

GFB test, proposed by Gooseens, Funk and Baruah [14].

Moreover, both tests perform poorly when considering task

sets with one or more heavy tasks. As second contribution,

we proposed a novel schedulability test, BCL, that improves

the percentage of accepted task sets when considering also

tasks sets with heavy tasks. Given their low complexity,

we propose to use a combination of the three tests. In fact,

test GFB is more effective for tasks sets consisting only of

light tasks, whereas BCL is more effective when consider-

ing heavy tasks.

However, as discussed in the previous section, we be-

lieve that there is still space for significant improvements.

In fact, in many situations, the percentage of tasks sets ac-

cepted by any of the three tests with respect to the total

number of schedulable task sets is still very low. We are cur-

rently investigating the possibility to extend our BCL tests

to include more cases.
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