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ABSTRACT
Differential spatial modulation (DSM) is able to transmit additional data bits without increasing radio-
frequency circuits and power consumption and also avoids pilot overhead. In this paper, we propose two new
schemes of DSM to improve the original DSM. One is an increased-rate scheme that transmits one additional
data bit per two blocks. The bit mapping and maximum-likelihood detection is particularly designed. The
other scheme is to increase the diversity of DSM. By properly designing block coded modulation and
complex antenna-index matrices, the proposed scheme can achieve the desired diversity order. Compared
with the existing schemes with the same constellation of the transmitted signals, the proposed scheme
achieves higher transmission rates.

INDEX TERMS spatial modulation, block coded modulation, differential encoding

I. INTRODUCTION

Various multi-antenna techniques have been proposed for
increasing transmission rates of wireless communications.
Among them, spatial modulation (SM) [1]- [4] which uses
a single transmit antenna each time attracts much attention.
Compared with the conventional single-antenna system, SM
is able to transmit additional data bits by selecting indexes of
antennas without increasing RF circuits and power consump-
tion.

The original SM technique is coherent and thus is not
suitable for rapidly-varying channels. For such channels,
differential SM (DSM) [5], [6] together with differential
detection can avoid pilot overhead. In fact, DSM is a special
case of differential space-time modulation (DSTM) [13],
[14]. Original DSM and DSTM use the same encoding and
decoding process, but DSM activates single transmit antenna
each time while DSTM does not have such restriction. DSM
with complex-valued antenna-index matrices in [6] has better
error performance than DSM in [5] whose entries of antenna-
index matrices are 0 and 1. However, the complex-valued
matrices are obtained through random searches in [6], and
there are unlimited possibilities of transmitted signals after
differential encoding. In [7], we proposed a systematic de-
sign of complex-valued antenna-index matrices to avoid the
unbounded constellation size.

In this paper, we propose two improved schemes of DSM.

One scheme is increased-rate DSM which transmits one
additional data bit per two blocks. In each transmitted block,
the number of permutating the antenna index is not a power
of two, so some permutations are not mapped by data bits.
By utilizing the unused permutations of two blocks, one
additional data bit can be transmitted. Adding bits on modu-
lation, e.g, from QPSK to 8PSK, decreases the minimum Eu-
clidean distance in the signal space, so the error probability
increases significantly. However, adding bits in permutation
does not affect the minimum Euclidean distance in the signal
space, so the error probability increases very slightly. The
permutations of two blocks have to be detected jointly, which
increases the detection complexity exponentially. Therefore,
we propose a simpler maximum-likelihood (ML) detection
method instead, which increases the detection complexity
linearly. Besides, we also consider bit mapping which affects
bit error rates. In addition to a conventional mapping method,
we propose a new bit-mapping method that uses a look-
up table. Both theoretical analysis and computer simulations
show that this new bit mapping outperforms the conventional
one.

The other scheme is increased-diversity DSM. The DSMs
in [5] and [7] are full-rate, i.e., there is no redundancy
for increasing diversity. To increase diversity, DSM using
repeated symbols was proposed in [6], and various coded
DSM schemes were designed in [9]- [12]. In this paper,
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we propose a different method to increase the diversity of
DSM. The proposed scheme called block coded DSM (BC-
DSM) utilizes coherent multilevel block coded modulation
(BCM) [16], [17] to encode nonzero symbols. By properly
designing complex antenna-index matrices and BCM, the
desired diversity order can be achieved. Compared with
coded DSM schemes in [6] and [9]- [12] with the same
signal constellation, BC-DSM has higher data rates. In other
words, to the authors’ best knowledge, BC-DSM is the most
bandwidth-efficient coded DSM scheme given a fixed MPSK
(M -ary phase-shift keying) constellation of the transmitted
signals.

The remainder of this paper is organized as follows. In
Sec. II, we first review DSM and BCM, and slightly modify
the complex-valued antenna-index matrices in [7]. In Sec. III,
we propose the increased-rate DSM scheme including sim-
plified ML detection and bit-mapping methods. Then we
propose BC-DSM scheme including an algorithm which
searches antenna-index matrices for a desired diversity in
Sec. IV. Finally Sec. V concludes this paper.

Notation: (.)†, ‖.‖ and rank(.) denote the conjugate trans-
pose, the Frobenius norm and the rank of a matrix, respec-
tively. diag{.} represents the operation from a row vector to
a diagonal matrix. bc denotes the floor function. CN (0, σ2)
denotes the zero-mean, σ2-variance, complex Gaussian dis-
tribution.

II. PRELIMINARIES
Consider a communication system with NT transmitter an-
tennas and NR receiver antennas. The channels between
antenna pairs are Rayleigh-fading and independent of each
other. Each block of DSM containsNT time slots. For the tth
block, the transmitted signal is represented by an NT × NT
matrix S(t), and there is only one nonzero entry in each
column and row of S(t). For the tth block, the NR × NT
matrix of received signals is

Y(t) = H(t)S(t) + N(t) (1)

where H(t) is the NR × NT matrix of channel coefficients
whose entries are CN (0,1), and N(t) is the NR×NT matrix
of AWGN with CN (0, N0) entries.

The number of permutating the antenna index is NT !,
but only L = 2blog2NT !c permutations are used. For the
tth block, log2 L bits determine an antenna-index matrix
A(t) ∈ A = {A0,A1, · · · ,AL−1} and other data bits
decide NT symbols x(t) = [x1(t), x2(t), · · · , xNT (t)] ∈ X
where X denotes the set of all possible values of x(t). At the
transmitter, S(t) is determined by

S(t) = S(t− 1)X(t). (2)

where X(t) is an NT ×NT data matrix calculated by

X(t) = diag{x(t)}A(t). (3)

At the receiver, the noncoherent maximum-likelihood (ML)
detection is

X̂(t) = arg min
X̃∈X ′

‖Y(t)−Y(t− 1)X̃‖2 (4)

where X ′ denotes the set of all possible values of X(t). For
any two different elements in X ′, denoted by X and X′, the
minimum value of rank(X−X′) which represents transmitter
diversity order, denoted by dT , should be maximized first
[14].

The low-complexity noncoherent ML detector proposed in
[7] is described as follows. Let p(k)

l represent the position of
the nonzero entry, ejθl,k , in the kth column of Al where k ∈
{1, 2, · · · , NT } and l ∈ {0, 1, · · · , L − 1}. At the receiver,
∀l ∈ {0, 1, · · · , L− 1}, the determined x(t) for Al, denoted
by x̂l(t) = [x̂

(l)
1 (t), x̂

(l)
2 (t), · · · , x̂(l)

NT
(t)], are obtained by

x̂
(l)

p
(k)
l

(t) = arg min
x̃

NR∑
i=1

|yik(t)− y
ip

(k)
l

(t− 1)x̃ejθl,k |2 (5)

and the metric of Al is

ml(t) =

NT∑
k=1

NR∑
i=1

|yik(t)− y
ip

(k)
l

(t− 1)x̂
(l)

p
(k)
l

(t)ejθl,k |2. (6)

The detected value of A(t) is Al̂ satisfying

l̂ = arg min
l∈{0,1,··· ,L−1}

ml(t) (7)

and the detected value of x(t) is

x̂(t) = x̂l̂(t). (8)

The signal constellation of the elements in x(t) is M -ary
PSK where M = 2b and b is an integer. For the full-rate
DSM [5]- [7], the number of data bits mapped to x(t) isNT b,
so the spectral efficiency is log2 L

NT
+ b bits/s/Hz. In [7], by

a systematic construction for A, the diversity between any
two different antenna-index matrices is increased. However,
due to uncoded data symbols x(t), the overall transmitter
diversity of the full-rate DSM is still only one.

Consider be the systematic construction proposed in [7].
In this A, there are only two types of A(t): the nonzero
entries are all 1, or all ejθ. We have shown in [7] that if
two matrices in this A have only two different elements
of the permutation order, then the two matrices belong-
ing to two different types and the transmitter diversity be-
tween them is NT . Take NT = 4 as an example: for

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and A′ =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

,

rank(A−A′) is only 1, so A′ in the construction in

[7] becomes A′ =


0 ejθ 0 0
ejθ 0 0 0
0 0 ejθ 0
0 0 0 ejθ

 such that

rank(A−A′) becomes 4. In [7], the optimal value of θ is
obtained by considering such A and A′ where the rank of
A − A′ is full. However, there exist two different matrices
belong to the same type, and the transmitter diversity between
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them is only two, e.g., A and A′′ =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

.

To calculate the coding gain, only codeword-pairs with the
least diversity are considered. Therefore, the value of θ is
independent of the coding gain which is based on codeword-
pairs with dT = 2 such as (A,A′′). To minimize the number
of the points in the signal constellation for S(t), we choose
θ = π

M in this paper. By doing so, the signal constellation of
S(t) is only 2M -ary PSK.

A short description for BCM using M -ary PSK is given
as follows. For the convenience of presentation, we restrict
M to 8. Consider 8PSK whose signal points are labeled
by three bits (a, b, c), where a, b, and c ∈ {0, 1}. Let
(a1, b1, c1), (a2, b2, c2), · · · , (aNT , bNT , cNT ) be a block of
transmitted 8PSK signals with length NT . A multilevel
block-coded 8PSK C is designed in such a manner that
ca = (a1, a2, · · · , aNT ) is a codeword of a binary block
code Ca, cb = (b1, b2, · · · , bNT ) is a codeword of a binary
block code Cb and cc = (c1, c2, · · · , cNT ) is a codeword of
a binary block code Cc. Herein, Ci represents the component
code used for coding level i, where i ∈ {a, b, c}. The
transmitted codeword of C composed of ca, cb and cc is
x = exp{j 2π

M (ca + 2cb + 4cc)}.
Assume thatCi is an (NT , ki, di) binary block code, where

di denotes the minimum Hamming distance of Ci for i ∈
{a, b, c}. Each block consists of NT 8PSK signals and the
data rate is (ka + kb + kc)/NT bits per 8PSK signal. The
minimum Hamming distance of C, i.e., the minimum value
of distinct symbols between two different codewords in C, is
min{da, db, dc}. In this letter, in order to maximize data rates
given a minimum Hamming distance, we use Gray labeling
and choose da = db = dc, i.e., component codes Ca = Cb =
Cc.

III. INCREASED-RATE DSM
Let A′ = {A0,A1, · · · ,ANT !−1} denote the set of all
possible antenna-index matrices. If NT !2 ≥ 2L2 which is
true for NT = 3, 4, 5, then the total permutations of the
antenna index in two blocks is enough to transmit 2 log2 L+1
data bits. We propose two methods to map 2 log2 L + 1 data
bits to A(t− 1) and A(t).

A. A SIMPLE BIT MAPPING METHOD
This bit mapping is straightforward and is similar to the bit
mapping in [8]. For the t − 1th and tth blocks, 2 log2 L + 1
data bits form an integer m (0 ≤ m < 2L2) first. Di-
viding m by NT ! gives out a quotient of q with a re-
mainder of r. The antenna-index matrices A(t − 1) and
A(t) are Aq and Ar, respectively. Let 2L2 − 1 (the largest
value of m) divided by NT ! gives out a quotient of q′

with a remainder of r′. The set of possible values of
(q, r), denoted by Ω, is {(0, 0), (0, 1), (0, 2), · · · , (0, NT ! −
1), (1, 0), (1, 1), · · · , (1, NT !− 1), · · · , (q′, r′)}.

Throughout this section, Aq̂ and Ar̂ denote the detected

values of A(t−1) and A(t) at the receiver, respectively. The
value of m is estimated by

m̂ = q̂ ×NT ! + r̂ (9)

and the 2 log2 L + 1 detected data bits are generated ac-
cordingly. However, Aq̂ and Ar̂ cannot be separately de-
termined because there are (NT !)2 − 2L2 unused pairs of
(A(t− 1),A(t)). The noncoherent ML detection is

(q̂, r̂) = arg min
(l,l′)∈Ω

ml(t− 1) +ml′(t) (10)

whereml(t) is the metric of Al of the tth block defined in (6).
Note that performing (10) has to try all 2L2 possible values
of (l, l′) in Ω.

We propose a simplified ML detection method which first
finds

q̃ = arg min
l∈{0,1,··· ,q′−1}

ml(t− 1) (11)

r̃ = arg min
l′∈{0,1,··· ,NT !−1}

ml′(t). (12)

and
l̃′ = arg min

l′∈{0,1,··· ,r′}
ml′(t). (13)

and then Aq̂ and Ar̂ are determined by (14) shown on the
next page.

The comparison of metrics in (14) is easy, so the main
complexity of the proposed detection is the minimization in
(11)-(13). The minimization in (13) can be obtained during
the minimization in (12), so to obtain q̃, r̃, and l̃′, only
q′ + NT ! < 2NT ! values are tested, which is less than the
complexity of performing (10). Before compare the complex-
ity between (10) and (14) by examples, we first show that the
proposed detection is ML detection.

Theorem 1: The detection by (14) is equivalent to the
noncoherent ML detection by (10).
Proof: There are two cases for (q̂, r̂) in (10): (i) q̂ ∈
{0, 1, · · · , q′ − 1} and r̂ ∈ {0, 1, · · · , NT ! − 1}; (ii) q̂ = q′

and r̂ ∈ {0, 1, · · · , r′}. For case (i), (q̃, r̃) has the lowest
metric mq̃(t − 1) + mr̃(t) in (10), so we have q̂ = q̃ and
r̂ = r̃ and mq̃(t− 1) +mr̃(t) < mq′(t− 1) +ml̃′(t); while
for case (ii), (q′, l̃′) has the lowest metricmq′(t−1)+ml̃′(t)
in (10), so we have q̂ = q′ and r̂ = l̃′ andmq̃(t−1)+mr̃(t) >
mq′(t− 1) +ml̃′(t). �

Example 1: For NT = 3, the number of the permu-
tations of the antenna index in one block is 3! = 6, so
the original DSM has L = 4 and the spectral efficiency
2.667 bits/s/Hz for M = 4. In the proposed scheme, we
use 5 data bits to choose 32 antenna indexes from all
6× 6 = 36 permutations, so the spectral efficiency becomes
2.833 bits/s/Hz for M = 4. Because q′ = 5 and r′ = 1
(31 = 6× 5 + 1), the used matrices of (A(t− 1),A(t)) are
(A0,A0),(A0,A1), · · · ,(A0,A5),(A1,A0), · · · ,(A4,A5),
(A5,A0),(A5,A1), and the four unused matrix-pairs are
(A5,A2),(A5,A3), (A5,A4),(A5,A5). The proposed ML
detection needs to test 11 times for (11) and (12), while the
original ML detection is 32 times.
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(q̂, r̂) =

{
(q̃, r̃) if mq̃(t− 1) +mr̃(t) < mq′(t− 1) +ml̃′(t)

(q′, l̃′) otherwise
(14)

TABLE 1. The bit mapping table for Example 1.

A(t)
A0 A1 A2 A3 A4 A5

A0 00000 00001 00010 00011 00100 00101
A1 00110 00111 01000 01001 01010 01011

A(t− 1) A2 01100 01101 01110 01111 10000 10001
A3 10010 10011 10100 10101 10110 10111
A4 11000 11001 11010 11011 11100 11101
A5 11110 11111 X X X X

Example 2: For NT = 4, the original DSM has L = 16 <
4! = 24. In the proposed scheme, we use 9 data bits to choose
512 antenna indexes from all 24 × 24 = 576 permutations.
Since 511 = 24× 21 + 7, we have q′ = 21 and r′ = 7. The
proposed ML detection needs to test 45 times for (11) and
(12), while the original ML detection is 512 times.

Example 3: For NT = 5, the original DSM has L = 64 <
5! = 120. In the proposed scheme, we use 13 data bits to
choose 8192 antenna indexes from all 14400 permutations,
and we have q′ = 68 and r′ = 31. The proposed ML
detection needs to test 188 times for (11) and (12), much less
than that for the original ML detection which is 8192 times.

In some cases, the data rate can be further increased by
adding two additional bits in three blocks, e.g.,NT = 5 since
1203 > 220. The proposed mapping and detection can be
easily modified for such situation.

B. BIT MAPPING BY A TABLE
For the bit mapping in Sec. III.A, if one block is detected
incorrectly, perhaps most data bits of two blocks are wrong.
Table 1 shows the bit mapping in Example 1 where “X"
denotes an unused matrix-pair. Consider the case of (A(t −
1),A(t)) = (A2,A3). If A(t) is incorrectly detected and the
detected values are (Aq̂,Ar̂) = (A2,A4), total data bits are
wrong.

In [18] and [19], we indicated that differential encoding
can be performed by looking up a table. Similarly, bit map-
ping can be represented by a look-up table. To obtain better
bit labeling for the proposed increased-rate DSM, we propose
a new bit mapping that uses a look-up table. The procedure of
constructing this table contains two steps. First, construct an
L× 2L table which is separative bit mapping: log2 L bits are
mapped to A(t− 1) and log2 L+ 1 bits are mapped to A(t).
Then, remove L

2 columns of A(t) in this table to L
2 rows of

A(t− 1). The resulting table consists of an L× 3L
2 table and

an L
2 × L table.

Take NT = 3 as an example. In the first step, as-
sume that A(t − 1) ∈ {A0,A1,A2,A3} and A(t) ∈
{A0,A1,A2,A3,A4,A5,A6,A7}, so two bits are mapped
to A(t−1) and three bits are mapped to A(t). Table 2 shows
the resulting bit mapping, for which if only one block is

detected incorrectly, at most 3 data bits are wrong. Table 2
cannot be used since A′ for NT = 3 is {A0,A1, · · · ,A5}
in fact. In the second step, A4 and A5 are added to A(t− 1)
and A6 and A7 are removed from A(t) in Table 2. The two
columns of A6 and A7 in A(t) are divided into two 2 × 2
blocks, which become two rows of A4 and A5 for A(t− 1).
One 2 × 2 block is removed to the two columns of A0 and
A1 for A(t), and the other 2 × 2 block is removed to the
two columns of A2 and A3 for A(t). Table 3 shows the
resulting table. The 2 × 2 block of A2 and A3 for A(t) is
perfect because the most right two bits of the same column
are the same, but the 2 × 2 block of A0 and A1 for A(t)
is imperfect. Note that switching the two 2 × 2 blocks has
the same problem. By the same procedure, we construct bit-
mapping tables for NT = 4 and 5, shown in Tables 4 and 5,
respectively.

To evaluate the error performance for different bit labeling,
we define a parameter denoted by η which is the average
number of different labeling bits in the same column or row.
In Table 2, the average numbers of different labeling bits in
the same column and in the same row are (1+1+2)/3 = 4/3
and (1 + 1 + 1 + 2 + 2 + 2 + 3)/7 = 12/7, respectively.
Because there are totally 8 ×

(
4
2

)
= 48 pairs for the same

column and 4 ×
(

8
2

)
= 112 pairs for the same row, its η

is (48 × 4/3 + 112 × 12/7)/160 = 1.6. Although the bit
mapping of Table 3 is not perfect, its η is 1.722 which is
smaller than η = 2.178 in Example 1. The values of η for
two bit-mapping methods are presented in Table 6 which
indicates that for NT = 4 and 5, the bit mapping by a table
is better than the mapping in Sec. III.A.

For this bit mapping, we propose a simplified ML detec-
tion which is similar to the simplified ML detection proposed
in Sec. III.A. Let

q̃ = arg min
l∈{0,1,··· ,L−1}

ml(t− 1) (15)

r̃ = arg min
l′∈{0,1,··· , 3L2 −1}

ml′(t). (16)

l̃ = arg min
l∈{L,L+1,··· , 3L2 −1}

ml(t− 1) (17)

and
l̃′ = arg min

l′∈{0,1,··· ,L−1}
ml′(t). (18)

and then Aq̂ and Ar̂ are determined by (19) shown on
the next page. Similarly, the minimization in (18) can be
obtained during the minimization in (16), so to obtain (15)-
(18), only 3L < 2NT ! values are tested. Similar to Theorem
1, the detection by (19) is equivalent to the noncoherent ML
detection. The proof is similar to the proof of Theorem 1 and
thus omitted.

Simulation results for NT = 3, 4 and 5 with M = 4 and 8
using complex-valued antenna matrices are shown in Fig. 1,
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TABLE 2. The bit-mapping table in the first step for NT = 3.

A(t)
A0 A1 A2 A3 A4 A5 A6 A7

A0 00000 00001 00010 00011 00100 00101 00110 00111
A(t− 1) A1 01000 01001 01010 01011 01100 01101 01110 01111

A2 10000 10001 10010 10011 10100 10101 10110 10111
A3 11000 11001 11010 11011 11100 11101 11110 11111

(q̂, r̂) =

{
(q̃, r̃) if mq̃(t− 1) +mr̃(t) < ml̃(t− 1) +ml̃′(t)

(l̃, l̃′) otherwise
(19)

TABLE 3. The proposed bit-mapping table for NT = 3.

A(t)
A0 A1 A2 A3 A4 A5

A0 00000 00001 00010 00011 00100 00101
A1 01000 01001 01010 01011 01100 01101

A(t− 1) A2 10000 10001 10010 10011 10100 10101
A3 11000 11001 11010 11011 11100 11101
A4 00110 00111 10110 10111
A5 01110 01111 11110 11111
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FIGURE 1. Simulation results for NT = 3.

2 and 3, respectively. For all simulations in this paper, we use
NR = 1, and the elements inA′ are in lexicographic order. A
smaller index means a lexicographically smaller permutation.
For all cases, the mapping in Sec. III.B outperforms the
mapping in Sec. III.A. Compared with the original DSM,
the proposed increased-rate DSM with the table mapping has
higher data rates and slightly worse error performance.

IV. THE PROPOSED BC-DSM SCHEME
In the DSM scheme using repeated symbols in [6], to obtain
transmitter diversity order dT , data symbols are repeated dT
times. Consequently, only bNTdT c data symbols per block are
transmitted. For example, to have dT = 2 for NT = 4, x(t)
is [x1(t), x1(t), x2(t), x2(t)] where x1(t) and x2(t) represent
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FIGURE 2. Simulation results for NT = 4.
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FIGURE 3. Simulation results for NT = 5.

two data symbols in the tth block [6, eqn. (7)]. To increase
diversity order, unlike [6] and other coded DSM schemes in
[9]- [12], we propose to use BCM for X .
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TABLE 4. The proposed bit-mapping table for NT = 4.

A(t)
A0 A1 A2 · · · A15 A16 A17 · · · A23

A0 000000000 000000001 000000010 · · · 000001111 000010000 000010001 · · · 000011000
A1 000100000 000100001 000100010 · · · 000101111 000110000 000110001 · · · 000111000
A2 001000000 001000001 001000010 · · · 001001111 001010000 001010001 · · · 001011000

...
...

...
...

. . .
...

...
...

. . .
...

A(t− 1) A15 111100000 111100001 111100010 · · · 111101111 111110000 111110001 · · · 111111000
A16 000011001 000011010 000011011 · · · 100011111
A17 000111001 000111010 000111011 · · · 100111111

...
...

...
...

. . .
...

A23 011111001 011111010 011111011 · · · 111111111

TABLE 5. The proposed bit-mapping table for NT = 5.

A(t)
A0 A1 · · · A63 A64 A65 · · · A95

A0 0000000000000 0000000000001 · · · 0000000111111 0000001000000 0000001000001 · · · 0000001100000
A1 0000010000000 0000010000001 · · · 0000010111111 0000011000000 0000011000001 · · · 0000011100000

...
...

...
. . .

...
...

...
. . .

...
A(t− 1) A63 1111110000000 1111110000001 · · · 1111110111111 1111111000000 1111111000001 · · · 1111111100000

A64 0000001100001 0000001100010 · · · 1000001111111
A65 0000011100001 0000011100010 · · · 100001111111

...
...

...
. . .

...
A95 0111111100001 0111111100010 · · · 1111111111111

TABLE 6. Comparison of η between Examples 1-3 and Tables 3-5.

Examples 1-3 Tables 3-5
NT = 3 2.178 1.722
NT = 4 3.823 2.574
NT = 5 5.240 3.448

Theorem 2: To achieve transmitter diversity order dT , X
should be a code with minimum Hamming distance dmin ≥
dT .
Proof: Let X = diag{x}A and X′ = diag{x′}A′ represent
two different data matrices in (3). If the minimum Hamming
distance of X is dmin < dT , there are x and x′ between
which only dmin elements are different. For X 6= X′, there
are only two possible cases: (i) A = A′ and x 6= x′ (ii)
A 6= A′. For case (i), the different columns between X and
X′ is only dmin, so the transmitter diversity is dmin < dT .
Consequently, to achieve transmitter diversity dT , the min-
imum Hamming distance of X should not be less than dT .

�

A. BC-DSM WITH TRANSMITTER DIVERSITY ORDER 2
LetX be BCM whose component code is the (NT , NT−1, 2)
block code, and A be the systematic construction proposed
in [7] with θ = π

M . The received symbols can be decoded
by the Viterbi algorithm. The decoding trellis diagram for
an (NT , NT − 1, 2) block code needs only two states, so
the overall decoding trellis diagram at the receiver needs 2b

states. Fig. 4 shows the trellis diagram for NT = M = 4
where the number, say k, denotes the QPSK symbol ej

kπ
2 .

According to (5) and (6), for Al, the metric of a symbol x̃ cor-

FIGURE 4. The trellis diagram for NT = M = 4 where BC-DSM uses (4,3,2)
component codes.

responding to x(l)

p
(k)
l

(t) is
NR∑
i=1

|yik(t)− y
ip

(k)
l

(t− 1)x̃ejθl,k |2.

For Al where l ∈ {1, 2, · · · , L}, the Viterbi decoding is
done once and get a candidate Xl with the metric ml(t) in
(6) where now x̂l(t) = [x̂

(l)
1 (t), x̂

(l)
2 (t), · · · , x̂(l)

NT
(t)] is the

survivor path of the trellis diagram for Al. The detection of
A(t) and x(t) is the same as (7) and (8).

In the proposed scheme for dT = 2, x(t) is
[x1(t), x2(t), · · · , xNT−1(t), xp(t)] where xi(t) is a data
symbol ∀i ∈ {1, 2, · · · , NT − 1} and xp(t) is a redundant
symbol due to channel coding. Therefore, the data rate of the
proposed DSM with dT = 2 is [log2 L+ b× (NT − 1)]/NT
bits/symbol. Compared with the DSM scheme using repeated
symbols in [6], the proposed scheme is able to transmit
additional NT − 1 − bNTdT c data symbols per block. For
NT = 4 and 6, the additional data bits per block are b and
2b bits, respectively.
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We compare BC-DSM with other coded DSM schemes
for the same signal constellation of the transmitted signals.
For BC-DSM, the signal constellation of the elements in
x(t) is M -ary PSK and θ of A is π

M , so the constellation
of the transmitted signals is 2M -ary PSK. In the DSM
scheme using repeated symbols in [6], the complex-valued
A is randomly searched do the signal constellation is very
complicated, so we also let A be the systematic construction
proposed in [7] with θ = π

M . Table 7 shows data rates of
various coded DSM schemes, including the DSM scheme
using repeated symbols, FE-DSM-DR in [9], DSTBC-ISK
in [11], DSTSK-DAST in [12], DSTSK-TAST in [12] and
BC-DSM, when the constellation of the transmitted sig-
nals is 8PSK or 16PSK. The data rate of FE-DSM-DR
is log2(MdT )/dT + blog2(NT /dT )c/NT bits/symbol [9,
eqn. (15)]. In [10], no codes with higher rates were proposed.
For DSTBC-ISK, DSTSK-DAST and DSTSK-TAST, only
codes for NT = 2 and 4 are presented in [11] and [12]. It can
be found that the data rate of BC-DSM is highest among all
code DSM schemes in all four cases. Notice that other coded
DSM schemes perhaps have higher diversity order than BC-
DSM.

Computer simulations are done for verifying the im-
provement over the original full-rate DSM and the effect
of complex-valued antenna-index matrices. Because other
coded DSM schemes have lower data rates than the proposed
scheme, their error performances are not compared with
BC-DSM in simulations. Figure 5 shows simulation results
of NT = M = 4 where “DSM, real” denotes the full-
rate DSM with real-valued antenna-index matrices whose
nonzero entries are 1, “DSM, complex” denotes the original
full-rate DSM using complex antenna-index matrices in [7]
with θ = π

M , “BC-DSM" denotes the proposed DSM, and
“BC-BCM, real” denotes BC-DSM whose nonzero entries
of antenna-index matrices all become 1. At high SNRs, BC-
DSM outperforms other three DSMs significantly. Compared
with [7] which has the same complex antenna-index matrices,
BC-DSM offers more than 10 dB gain at bit error rate 10−4,
at the price of slight rate loss 0.5 bits/symbol.

Simulation results of NT = 6 and M = 4 are presented
in Fig. 6 where the meaning of “DSM, real” and “DSM,
complex” are the same as Fig. 5, “BC-DSM (6,5,2)" rep-
resents BC-DSM using (6,5,2) component codes, and “BC-
BCM (6,5,2), entries 1” denotes the BC-DSM using (6,5,2)
component codes whose nonzero entries of antenna-index
matrices all become 1 Still, BC-DSM has lower BER than
[6] and [7], at the price of slight rate loss 0.33 bits/symbol.

B. DSM WITH TRANSMITTER DIVERSITY ORDER 3
In Theorem 2, we show thatX with dmin ≥ dT is a necessary
condition for DSM with transmitter diversity order dT . If A
is real, we will show that X with dmin = dT and A with
transmitter diversity order dT is a sufficient condition for
transmitter diversity order dT .

Theorem 3: If X is a code with minimum Hamming dis-
tance dmin = dT andA is real with mini6=j rank(Ai−Aj) =
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FIGURE 5. Simulation results of NT = M = 4 where BC-DSM uses (4,3,2)
component codes.
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FIGURE 6. Simulation results of M = 4 and NT = 6 or 7.

dT , then the transmitter diversity order of DSM is dT .

Proof: Let X = diag{x}A and X′ = diag{x′}A′ represent
two different data matrices. There are two possible cases for
X 6= X′: (i) A = A′ and x 6= x′ (ii) A 6= A′. For case
(i), the different columns between X and X′ is dmin, so the
transmitter diversity is also dmin. For case (ii), we will show
rank(X −X′) ≥ rank(A −A′), so the transmitter diversity
is dT .

Assume that there are d different columns (rows) between
A and A′. In the d columns and rows, each column and row
of A−A′ contains one 1, one -1 and NT − 2 zeros. Because
interchanging any two columns or rows is rank-preserving,

VOLUME 4, 2016 7
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TABLE 7. Data rates of various coded DSM schemes.

DSM, repeated symbols FE-DSM-DR DSTBC-ISK DSTSK-DAST DSTSK-TAST BC-DSM
8PSK NT = 4 2 2.25 1.25 0.75 1.25 2.5

NT = 6 2.67 2.17 – – – 3.17
16PSK NT = 4 2.5 2.75 1.5 1 1.5 3.25

NT = 6 3 2.67 – – – 4

we can permutate columns and rows of A−A′ such that

A−A′ =



1 −1 01 −1
. . . . . . 00 1 −1

−1 1

0 0


. (20)

Obviously, the first d − 1 columns are independent and the
sum of the first d columns is zero. Hence, the rank of A−A′

is d − 1. The corresponding X − X′ is shown on the next
page. Because at least the first d − 1 columns in (21) are
independent, the rank of X−X′ is equal to or larger than d−
1. When x = x′ = (1 1 · · · 1), X−X′ in (21) becomes A−
A′ in (20), so mini6=j rank(Xi −Xj) = mini6=j rank(Ai −
Aj) = dT �

In this subsection, we aim to design DSM with dT = 3
for NT ≥ 6. As indicated in the previous subsection,
the systematic construction of complex-valued antenna-index
matrices proposed in [7] has dT = 2 only. We randomly
search complex-valued antenna-index matrices like [6], but
the obtained matrices have extremely small coding gain. Note
that the antenna-index matrices in [6] were random searched
for the cases NT ≤ 4, so our unsatisfactory results are likely
due to too huge search space for NT ≥ 6.

We propose a new method to find antenna-index matrices
with a desired transmitter diversity order dT . Unlike the
methods in [6] and [7], the proposed method uses matrices
whose entries are either 1 or 0. Starting from the original L
antenna-index matrices, A = {A1,A2, · · · ,AL}, we select
matrices with transmitter diversity order dT by the following
algorithm.

Step 1 Define a set Φ = A and an integer K = L.

Step 2 ∀i ∈ {1, 2, · · · ,K}, compute Ni =
K∑

j=1,j 6=i

di,j

where di,j =

{
1 if rank(Ai −Aj) < dT
0 otherwise .

Step 3 Find î = arg maxi∈{1,2,··· ,K}Ni. If there are mul-
tiple values, randomly choose one. If Nî = 0, go to
Step 5.

Step 4 Delete Aî from Φ and decrease the index of Ai∀i ∈
{̂i + 1, î + 2, · · · ,K} by 1. Decrease K by 1 and
go to Step 2.

Step 5 Define L′ = 2blog2Kc. The set A′ =
{A1,A2, · · · ,AL′} is the used set of antenna-
index matrices.

In the algorithm,Ni denotes the number of matrices which
to Ai has diversity smaller than dT , and removing Aî in Step
4 can delete the most unwanted pairs whose diversity is less
than dT . This algorithm is not applied to dT = NT since
there do not exist two real matrices in A with full diversity.
We apply the algorithm to dT = 3 for NT = 6 or 7. For
NT = 6, the obtained value of L′ is 16, and the component
code of BCM is the (6,3,3) block code; while forNT = 7, the
obtained value of L′ is 64, and the component code of BCM
is the (7,4,3) Hamming code. Compared with the scheme
in [6], the proposed scheme is able to transmit additional
one and two data symbols per block for NT = 6 and 7,
respectively. For NT = 6 and M = 4, the scheme in [9]
has data rate 1.167 bits/symbol, while the proposed scheme
has data rate 1.667 bits/symbol. For NT = 7 and M = 4, the
proposed scheme has data rate 2 bits/symbol.

Simulation results of dT = 3 with M = 4 are also shown
in Fig. 3. For NT = 6, compared with BC-DSM with dT =
2, BC-DSM with dT = 3 provides more than 10 dB gain at
bit error rate 10−5, at the price of reduced rate. For dT = 3,
with one more transmitter antennas, i.e., increasing NT = 6
by one, the bit error rate of BC-DSM can be further improved
and the data rate is increased as well.

V. CONCLUSION
In this paper, we propose two new schemes of DSM. The
first scheme is able to transmit additional one bit per two
blocks. For the increased-rate DSM, we propose simplified
ML detection and two different bit labeling methods. With
the proposed bit mapping by a table, the error performance of
the proposed scheme is close to that of the original DSM. The
second scheme is increased-diversity DSM called BC-DSM.
With the same antenna-index matrices, BC-BCM using the
(NT , NT − 1, 2) block code has transmitter diversity order
dT = 2 and thus outperforms the DSM in [7] significantly, at
the price of only one data-symbol rate-loss. In addition, we
propose an algorithm to find real-valued antenna-index matri-
ces with a desired transmitter diversity order dT . Compared
with the coded DSM scheme in [6] and [9], the proposed BC-
DSM scheme achieves higher transmission rate with the same
diversity order.
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X−X′ =
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−x′d xd
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. . .
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