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Abstract

Improvements in comparative protein structure modeling for the remote target-template sequence

similarity cases are possible through the optimal combination of multiple template structures and

by improving the quality of target-template alignment. Recently developed MMM and M4T

methods were designed to address these problems. Here we describe new developments in both

the alignment generation and the template selection parts of the modeling algorithms. We set up a

new scoring function in MMM to deliver more accurate target-template alignments. This was

achieved by developing and incorporating into the composite scoring function a novel statistical

pairwise potential that combines local and non-local terms. The non-local term of the statistical

potential utilizes a shuffled reference state definition that helped to eliminate most of the false

positive signal from the background distribution of pairwise contacts. The accuracy of the scoring

function was further increased by using BLOSUM mutation table scores.
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Introduction

A key aim of the worldwide structural genomics efforts is the experimental solution of the

three dimensional structures of a carefully selected few thousand target sequences of

structurally uncharacterized proteins. Subsequently these newly solved structures will be

used as templates for computational modeling of about 10–100 times more proteins whose

sequences are related [1]. These efforts further underline the importance of theoretical

approaches to structure modeling, since consequently more than 99% of all three

dimensional models will be obtained computationally [2]. Homology modeling proved to be

the most accurate approach for protein structure prediction provided that a three dimensional

structure of a sequentially similar template protein exist [3–9]. Two key steps in homology
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modeling for the remote target-template cases are the identification and optimal combination

of the template structures and the construction of a correct target-template alignment.

We recently introduced a new approach, called multiple mapping method (MMM) to

address the target-template alignment problem [10, 11]. Depending on the overall target-

template similarity, various sequence alignment methods can result in solutions that share

identically aligned (constant regions) and differently aligned fragments (variable regions)

between the target and template sequences. MMM constructs an optimal alignment by

identifying and combining the more accurate solutions of alternatively aligned segments

with the constant parts of the input alignments. It is achieved by mapping the alternatively

aligned segments to the corresponding environment of the template and by using a scoring

function that evaluates the fit of each alternatively aligned segment. MMM has two

advantages over the input, sequence based alignments. First, it can identify additional

residues that may be far in the sequence but close in space to the alternatively aligned

segments, therefore it can increase the sensitivity of the alignment by comparing not only a

pair of residue positions, but also the fit of all those positions that compose the environment

of the segment. Second, by incorporating structural information, MMM can take advantage

of such scoring function terms that depend on the structural environment and not only on the

compared sequential positions.

It has been demonstrated that combining multiple template structures results in better quality

models as compared to models built on single templates [12]. This conclusion has been

confirmed at the meetings on Critical Assessment of Techniques for Protein Structure

Prediction [13]. While this idea seems to be obvious, its automated implementation is not

straightforward. It has been shown that a trivial combination of available templates does not

provide any advantage [14]. We established an approach, multiple mapping method with

multiple templates (M4T) [15, 16], to optimally select and combine the most suitable

templates. The method uses an iterative clustering approach, which takes into account

information on the template sequence similarity to the target, sequence similarity among the

templates, completeness of structural domain of the template, its experimental quality and

the unique contribution of each template to the target. Here we report new algorithmic

developments that improved template detection and the introduction our new pairwise

statistical potential that increased the accuracy of MMM approach for target-template

alignments.

Materials and methods

Template database for M4T

A local database for protein sequences of known structure was compiled. First, all protein

sequences from the Protein Data Bank (PDB) [17] were clustered with CD-HIT [18] at

99.9% sequence identity level. Each cluster was restricted to a subset of hits that are less

than eight residues different in length. The rest of the cluster was recursively re-clustered.

Finally, one entry with the highest resolution was selected from each cluster as a

representative. We refer the resulting database as “aapdb” in order to distinguish it from

NCBI “pdbaa” database. Current version of the “aapdb” database can be downloaded from

the M4T server web page (http://www.fiserlab.org/servers//M4T/aapdb.fasta).
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MMM testing set

The previously described set of 1,624 structurally aligned protein pairs [10] was used in this

study for analysis of the scoring of alternative alignments. MMM alignments produced from

CLUSTALW [19] and ALIGN2D [20, 21] or by CLUSTALW and MUSCLE [22]

alignments were compared to structural alignments obtained with STAMP [23]. The testing

set was additionally filtered in the following way: (a) pairs with nearly identical alignments

(less than 10 residues in variable regions) were excluded from the set; (b) pairs with little

agreement between any of participating alignments and the “true” (structural) alignment

were also excluded from further consideration. We required that between the variable

regions of the input alignments and the corresponding structural alignment at least 20% or a

minimum five residues (whichever is bigger) must be shared. This filtering reduced testing

set to 1,397 pairs for CLUSTALW-LIGN2D test and to 1,216 pairs for CLUSTALW-

MUSCLE test.

MMM scoring function

A composite scoring function is employed in MMM to assess the fitness of alternative

alignments of variable regions within the structural context of the template [10]. Originally,

it combined three scoring methods of different nature: environment specific substitution

matrices from FUGUE [24], secondary structure based 3D–1D substitution matrix H3P2

[25] and pairwise residue-based contact potential [26]. The latter one we will further refer as

“MJ”. The scores in these terms were converted to Z-scores and combined with weights 0.4,

0.4 and 0.2 to calculate a pseudo-energy score for the fit of he aligned segment in the given

structural neighborhood [10].

In addition to these scoring methods a direct sequence similarity scoring method

implemented in BLOSUM62 matrix [27] as well as our recently developed pairwise

statistical potential were explored in the current work.

The latter one (referred as “RF”) is Cβ-based residue– residue pair-potential (Rykunov and

Fiser, in preparation) derived in a similar way to the all-atom potential described previously

[28]. Briefly, this potential was generated from distances between Cβ-atoms measured on the

same set of proteins as described for all-atom potential. Artificial Cβ-pseudo-atoms were

generated for Glycine residues. To improve the signal to noise ratio a shuffled reference

state was used [28]. Our earlier designed shuffled reference state was further improved in

this work by introducing environmental dependence. This was achieved by choosing a

random position for a given atom only from that subset of atoms that make a similar number

of inter-residue contacts. Atom pairs were counted within 1 Å bins, with first bin

accumulating all pairs shorter than 4 Å. Pairs with sequence separation less than 3 (i.e. i:i +

1, i:i + 2) were excluded.

Resulting MMM scoring function can be expressed as

(1)
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where corresponding Z-scores are calculated from scores for test alignment and those

calculated for randomized environments as described in [10]. BLOSUM62 score is obtained

as

(2)

here summation is taken over all residues in the variable region(s), upper index “t”

designates template sequence at the position i, and upper index “q” stays for query sequence.

RF potential is calculated as:

(3)

here, first summation is taken over all residues in the variable region(s), while second

summation is taken over all residues that are within 12 Å from the residue i.

Results

Improved MMM scoring function

As we pointed out in the Methods section, the MMM scoring function was originally

composed of FUGUE, H3P2 and MJ terms [10]. The present work explored the contribution

of two other possible components, BLOSUM62 substitution matrix and a distance-

dependent statistical “RF” potential described in the Methods section. Alignments obtained

with MMM were compared to structural alignments. Test cases were split into two

categories of difficulty: target-template pairs sharing less than 30%, and more than 30%

sequence identity, respectively. Results of these tests obtained with different scoring

function terms and their combinations are shown in Fig. 1. Only the variable regions of the

participating MMM alignments were used in the analysis, since the rest was identically

aligned by both compared methods by definition and therefore would result in identical

scores. “Ideal” performance refers to the number of positions properly identified by at least

one participating methods. It is the maximal possible agreement with a structural alignment

that can be achieved by MMM with the given set of input sequence alignments. In other

words, if a certain—correct—alignment is not sampled by any of the input alignments then

it will not be possible to identify through MMM. The lower value for “ideal” performance

for the CLUSTALW-MUSCLE alignment methods as compared to CLUSTALW-

ALIGN2D “ideal” performance is due to the fact that variable regions in the former pairs

tend to be shorter and more difficult to score. “Ideal” values calculated for whole alignments

are 78.66 ± 0.29% and 83.57 ± 0.25% for CLUSTALW-ALIGN2D and CLUSTALW-

MUSCLE alignment pairs, respectively. When comparing the scoring function terms

individually in order to identify the best performing ones, MJ potential turns out to be the

least selective in all test sets. BLOSUM62 is the most selective individual scoring method

for CLUSTALW-ALIGN2D alignments and FUGUE is the second best one (Fig. 1a), while

their ranks are reversed in the case of CLUSTALW-MUSCLE alignments (Fig. 1b). The

“RF” pairwise potential introduced in this work is significantly more selective than “MJ”
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potential, especially in the difficult and most frequently occurring cases when less than 30%

of the residues are shared by target and template sequences.

Template detection protocol

In addition to improvement in the MMM scoring function we also added a new module to

the template search protocol of M4T. In the original implementation of M4T template

candidates were detected with three iterations of PSI-BLAST search on PDB [29]. This

search is quick and results in suitable templates for almost 50% cases as we observed during

ongoing CASP8 experiment. In the improved version, if the PSI-BLAST search does not

result a hit against PDB or results in a hit that covers less than 60% of the target, a sequence

profile is built by searching the target sequence against the “nr” database, which is used then

to run a profile-to-profile alignment against possible targets in PDB. This improvement

allowed us to model additional 17% of CASP8 targets. A third, rather time consuming step,

is a standard PSI-BLAST search against “nr” database for a maximum of 10 iterations. It is

invoked only if the first two fail to result in any suitable templates and in our experience is

activated in about 4% of the cases only.

Availability of methods

MMM and M4T methods are publicly accessible via web servers at http://www.fiserlab.org/

servers.

Discussion

We introduced a new scoring function for the MMM. The composite nature of the MMM

scoring function is important since different components demonstrate different performances

in “easy” and “difficult” modeling cases, and their combination performs most selectively

over the whole range of that target difficulties. For instance, BLOSUM62 scoring term is

more selective than FUGUE if MMM alignments are constructed from CLUSTALW and

ALIGN2D (which is not surprising because CLUSTALW is based on the BLOSUM62

matrix and it generally produces more accurate alignment than ALIGN2D), while FUGUE

performs better when the more accurate MUSCLE method replaces ALIGN2D. We

introduced a distance-dependent statistical potential (RF term) that demonstrates

substantially superior selectivity as compared to the earlier applied MJ contact potential. In

case of CLUSTALW-MUSCLE-based MMM alignments the RF pairwise statistical

potential shows higher selectivity than BLOSUM62 term for low sequence identity cases

(Fig. 1b, blue bars). As a result, the new, combined scoring function (BLOSUM62 +

FUGUE + H3P2 + RF) is superior to the old one (FUGUE + H3P2 + MJ) and to any scoring

terms when those are used individually. After converting scores from BLOSUM, FUGUE,

RF and H3P2 terms into Z-scores over randomized samples and combining them into a

scoring function we obtained a superior performance of MMM over the previously used

combination of FUGUE, MJ and H3P2 scores.

Although MMM significantly improves alignment accuracy in difficult cases when

comparing to individual alignment methods, but it is still unable to produce alignments

identical or really close to the one obtained from structural superposition. As one can see in
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Fig. 1, “ideal” performance for the variable regions using MMM with the current alignment

sampling technique and scoring function terms is about 65–70%. Meanwhile the overall

performance for the entire length of the alignments are 78–83%. Thus, the biggest

improvement in the overall alignment quality arises from the use of more accurate MUSCLE

alignment method instead of ALIGN2D. However, even in that case 17% of residues remain

misaligned and cannot be recovered with MMM, simply because MMM will not be

presented with a correct alignment solution to identify. Further improvement in the

alignment accuracy can be achieved when better alignment methods will become available

that sample the sequence alignment space more accurately.
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Fig. 1.
Agreement between structural and MMM alignments determined with different components

of the MMM scoring function for a CLUSTALW-ALIGN2D and b CLUSTALW-MUSCLE

MMM alignments. Blue bars represent protein pairs sharing less than 30% identical

residues, green bars—more than 30%, and yellow bars show overall performance. Error

bars represent corresponding standard errors. Values obtained with “Ideal”, “FUGUE”,

“MJ”, “H3P2” and “FUGUE + MJ + H3P2” methods are shown for reference
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