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Abstract This work studies external regret in sequential prediction games with both positive

and negative payoffs. External regret measures the difference between the payoff obtained

by the forecasting strategy and the payoff of the best action. In this setting, we derive new

and sharper regret bounds for the well-known exponentially weighted average forecaster and

for a second forecaster with a different multiplicative update rule. Our analysis has two main

advantages: first, no preliminary knowledge about the payoff sequence is needed, not even its

range; second, our bounds are expressed in terms of sums of squared payoffs, replacing larger

first-order quantities appearing in previous bounds. In addition, our most refined bounds have

the natural and desirable property of being stable under rescalings and general translations

of the payoff sequence.

Editor: Avrim Blum

∗An extended abstract appeared in the Proceedings of the 18th Annual Conference on Learning Theory,
Springer, 2005. The work of all authors was supported in part by the IST Programme of the European
Community, under the PASCAL Network of Excellence, IST-2002-506778.
The work was done while Yishay Mansour was a fellow in the Institute of Advance studies, Hebrew
University. His work was also supported by a grant no. 1079/04 from the Israel Science Foundation and an
IBM faculty award.

N. Cesa-Bianchi
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1 Introduction

The study of online forecasting strategies in adversarial settings has received considerable

attention in the last few years. One of the goals of the research in this area is the design

of randomized online algorithms that achieve a low external regret; i.e., algorithms able to

minimize the difference between their expected cumulative payoff and the cumulative payoff

achievable using the single best action (or, equivalently, the single best strategy in a given

class).

If the payoffs are uniformly bounded, and there are finitely many actions, then there exist

simple forecasting strategies whose external regret per time step vanishes irrespective to the

choice of the payoff sequence. In particular, under the assumption that all payoffs have the

same sign (say positive), the best achieved rates for the regret are of the order of
√

X∗/n,

where X∗/n is the highest average payoff among all actions after n time steps. If the payoffs

were generated by an independent stochastic process, however, the tightest rate for the regret

with respect to a fixed action should depend on the variance (rather than the average) of the

observed payoffs for that action. Proving such a rate in a fully adversarial setting would be

a fundamental result, and in this paper we propose new forecasting strategies that make a

significant step towards this goal.

Generally speaking, one normally would expect any performance bound to be maintained

under scaling and translation, since the units of measurement should not make a difference

(for example, predicting the temperature should give similar performances irrespective to

the scale, Celsius, Fahrenheit or Kelvin, on which the temperature is measured). However,

in many computational settings this does not hold, for example in many domains there is a

considerable difference between approximating a reward problem or its dual cost problem

(although they have an identical optimal solution). Most of our bounds also assume no

knowledge of the sequence of the ranges of the payoffs. For this reason it is important for

us to stress that our bounds are stable under rescalings of the payoff sequence, even in the

most general case of payoffs with arbitrary signs. The issues of invariance by translations and

rescalings, discussed more in depth in Section 5.3, show that—in some sense—the bounds

introduced in this paper are more “fundamental” than previous results. In order to describe

our results we first set up our model and notations, and then we review previous related

works.

In this paper we consider the following decision-theoretic variant proposed by Freund and

Schapire (1997) of the framework of prediction with expert advice introduced by Littlestone

and Warmuth (1994) and Vovk (1998). A forecaster repeatedly assigns probabilities to a fixed

set of actions. After each assignment, the actual payoff associated to each action is revealed

and new payoffs are set for the next round. The forecaster’s reward on each round is the

average payoff of actions for that round, where the average is computed according to the

forecaster’s current probability assignment. The goal of the forecaster is to achieve, on any

sequence of payoffs, a cumulative reward close to X∗, the highest cumulative payoff among

all actions. We call regret the difference between X∗ and the cumulative reward achieved by

the forecaster on the same payoff sequence.

In Section 2 we review the previously known bounds on the regret. The most basic one,

obtained via the exponentially weighted average forecaster of Littlestone and Warmuth (1994)
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and Vovk (1998), bounds the regret by a quantity of the order of M
√

n ln N , where N is the

number of actions and M is a known upper bound on the magnitude of payoffs.

In the special case of “one-sided games”, when all payoffs have the same sign (they are

either always nonpositive or always nonnegative), Freund and Schapire (1997) showed that

Littlestone and Warmuth’s weighted majority algorithm (1994) can be used to obtain a regret

of the order of
√

M |X∗| ln N + M ln N . (If all payoffs are nonpositive, then the absolute value

of each payoff is called loss and |X∗| is the cumulative loss of the best action.) By a simple

rescaling and translation of payoffs, it is possible to reduce the more general “signed game”,

in which each payoff might have an arbitrary sign, to either one of the one-sided games, and

thus, bounds can be derived using this reduction. However the transformation also maps |X∗|
to either Mn + X∗ or Mn − X∗

n , thus significantly weakening the attractiveness of such a

bound.

Recently, Allenberg-Neeman and Neeman (2004) proposed a direct analysis of the signed

game avoiding this reduction. They proved that weighted majority (used in conjunction with

a doubling trick) achieves the following: on any sequence of payoffs there exists an action

j (which might be different from the optimal action achieving X∗
n) such that the regret is

at most of order
√

M(ln N )
∑n

t=1 |x j,t |, where x j,t is the payoff obtained by action j at

round t , and M = maxi,t |xi,t | is a known upper bound on the magnitude of payoffs. Note

that this bound does not relate the regret to the sum A∗
n = |x j∗,1| + · · · + |x j∗,n| of payoff

magnitudes for the optimal action j∗ (i.e., the one achieving X∗
n). In particular, the bound

of order
√

M A∗
n ln N + M ln N for one-sided games is only obtained if an estimate of A∗

n is

available in advance.

In this paper we show new regret bounds for signed games. Our analysis has two main

advantages: first, no preliminary knowledge about the payoff magnitude M or about the best

cumulative payoff X∗ is needed; second, our bounds are expressed in terms of sums of squared

payoffs, such as x2
j,1 + · · · + x2

j,n and related forms. These quantities replace the larger terms

M(|x j,1| + · · · + |x j,n|) appearing in the previous bounds. As an application of our results

we obtain, without any preliminary knowledge on the payoff sequence, an improved regret

bound for one-sided games of the order of
√

(Mn − |X∗|)(|X∗|/n)(ln N ).

Some of our bounds are achieved using forecasters based on weighted majority run with

a dynamic learning rate. However, we are able to obtain second-order bounds of a differ-

ent flavor using a forecaster that does not use the exponential probability assignments of

weighted majority. In particular, unlike virtually all previously known forecasting schemes,

the weights of this forecaster cannot be represented as the gradient of an additive potential

(see the monograph by Cesa-Bianchi and Lugosi (2006) for an introduction to potential-based

forecasters).

2 An overview of our results

We classify the existing regret bounds as zero-, first-, and second-order bounds. A zero-order

regret bound depends on the number of time steps and on upper bounds on the individual

payoffs. In a first-order bound the dependence on the number of time steps is replaced by a

dependence on a sum of payoffs. Finally, the main term of a second order bound depends only

on a sum of squares of the payoffs. In this section we will also briefly discuss the information

which the algorithms require in order to achieve the bounds.

We first introduce some notation and terminology. Our forecasting game is played in

rounds. At each time step t = 1, 2, . . . the forecaster computes an assignment pt = (p1,t , . . . ,

pN ,t ) of probabilities over the N actions. Then the payoff vector xt = (x1,t , . . . , xN ,t ) ∈ RN
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for time t is revealed and the forecaster’s reward is x̂t = x1,t p1,t + · · · + xN ,t pN ,t . We define

the cumulative reward of the forecaster by X̂n = x̂1 + · · · + x̂n and the cumulative payoff of

action i by Xi,n = xi,1 + · · · + xi,n . For all n, let X∗
n = maxi=1,...,N Xi,n be the cumulative

payoff of the best action up to time n. The forecaster’s goal is to keep the regret X∗
n − X̂n as

small as possible uniformly over n.

The one-sided games mentioned in the introduction are the loss game, where xi,t ≤ 0 for

all i and t , and the gain game, where xi,t ≥ 0 for all i and t . We call signed game the setup

in which no assumptions are made on the sign of the payoffs.

2.1 Zero-order bounds

We say that a bound is of order zero whenever it only depends on bounds on the payoffs (or on

the payoff ranges) and on the number of time steps n. The basic version of the exponentially

weighted average forecaster of Littlestone and Warmuth (1994) ensures that the order of

magnitude of the regret is M
√

n ln N where M is a bound on the payoffs: |xi,t | ≤ M for

all t ≥ 1 and i = 1, . . . , N . (Actually, the factor M may be replaced by a bound E on the

effective ranges of the payoffs, defined by |xi,t − x j,t | ≤ E for all t ≥ 1 and i, j = 1, . . . , N .)

This basic version of this regret bound assumes that we have prior knowledge of both n and

M (or E).

In the case when n is not known in advance one can use a doubling trick (that is, restart

the algorithm at times n = 2k for k ≥ ln N ) and achieve a regret bound of the same order,

M
√

n ln N (only the constant factor increases). Similarly, if M is not known in advance,

one can restart the algorithm every time the maximum observed payoff exceeds the current

estimate, and take the double of the old estimate as the new current estimate. Again, this

influences the regret bound by only a constant factor. (The initial value of the estimate of M
can be set to the maximal value in the first time step, see the techniques used in Section 3.)

A more elegant alternative, rather than the restarting the algorithm from scratch, is pro-

posed by Auer, Cesa-Bianchi, and Gentile (2002) who consider a time-varying tuning pa-

rameter ηt ∼ (1/M)
√

(ln N )/t . They also derive a regret bound of the order of M
√

n ln N
uniformly over the number n of steps. Their method can be adapted along the lines of the

techniques of Section 4.2 to deal with the case when M (or E) is also unknown.

The results for the forecaster of Section 4 imply a zero-order bound sharper than E
√

n ln N .

This is presented in Corollary 1 and basically replaces E
√

n by
√

E2
1 + · · · + E2

n , where Et

is the effective range of the payoffs at round t ,

Et = max
i=1,...,N

xi,t − min
j=1,...,N

x j,t . (1)

2.2 One-sided games: first-order regret bounds

We say that a regret bound is first-order whenever its main term depends on a sum of payoffs.

Since the payoff of any action is at most Mn, these bounds are usually sharper than zero-

order bounds. More specifically, they have the potential of a huge improvement (when, for

instance, the payoff of the best action is much smaller than Mn) while they are at most worse

by a constant factor with respect to their zero-order counterparts.

When all payoffs have the same sign Freund and Schapire (1997) first showed that Little-

stone and Warmuth’s weighted majority algorithm (1994) can be used as a basic ingredient

to construct a forecasting strategy achieving a regret of order
√

M |X∗
n | ln N + M ln N where
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|X∗
n | is the absolute value of the cumulative payoff of the best action (i.e., the largest cumu-

lative payoff in a gain game or the smallest cumulative loss in a loss game).

In order to achieve the above regret bound, the weighted majority algorithm needs prior

knowledge of |X∗
n | (or a bound on it) and of the payoff magnitude M . As usual one can

overcome this by a doubling trick. Doubling in this case is slightly more delicate, and would

result in a bound of the order of
√

M |X∗
n | ln N + M(ln Mn) ln N . Here again, the techniques

of Auer, Cesa-Bianchi, and Gentile (2002) could be adapted along the lines of the techniques

of Section 4 to get a forecaster that, without restarting and without previous knowledge of

M and X∗
n , achieves a regret bounded by a quantity of the order of

√
M |X∗

n | ln N + M ln N .

2.3 Signed games: first-order regret bounds

As mentioned in the introduction, one can translate a signed game to a one-sided game as

follows. Consider a signed game with payoffs xi,t ∈ [−M, M]. Provided that M is known

to the forecaster, he may use the translation x ′
i,t = xi,t + M to convert the signed game into

a gain game. For the resulting gain game, by using the techniques described above, one can

derive a regret bound of the order of

√
M (ln N )(Mn + X∗

n) + M ln N . (2)

Similarly, using the translation x ′
i,t = xi,t − M , we get a loss game, for which one can derive

the similar regret bound

√
M (ln N )(Mn − X∗

n) + M ln N . (3)

The main weakness of the transformation is that the bounds (2) and (3) are essentially zero-

order bounds, though this depends on the precise value of X∗
n . (Note that when M is unknown,

or to get tighter bounds, one may use the translation x ′
i,t = xi,t − min j=1,...,N x j,t from signed

games to gain games, or the translation x ′
i,t = xi,t − max j=1,...,N x j,t from signed games to

loss games.)

Recently, Allenberg-Neeman and Neeman (2004) proposed a direct analysis of the signed

game avoiding this reduction. They give a simple algorithm whose regret is of the order of√
M A∗

n ln N + M ln N where A∗
n = |xk∗

n ,1| + · · · + |xk∗
n ,n| is the sum of the absolute values

of the payoffs of the best expert k∗
n for the rounds 1, . . . , n. Since A∗

n = |X∗
n | in case of a

one-sided game, this is indeed a generalization to signed games of Freund and Schapire’s

first-order bound for one-sided games. Though Allenberg-Neeman and Neeman need prior

knowledge of both M and A∗
n to tune the parameters of the algorithm, a direct extension of

their results along the lines of Section 3.1 gives the first-order bound

√
M(ln N ) max

t=1,...,n
A∗

t + M lnN =
√√√√M(ln N ) max

t=1,...,n

t∑
s=1

|xk∗
t ,s | + M lnN (4)

which holds when only M is known.
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2.4 Second-order bounds on the regret

A regret bound is second-order whenever its main term is a function of a sum of squared

payoffs (or on a quantity that is homogeneous in such a sum). Ideally, they are a function of

Q∗
n =

n∑
t=1

x2
k∗

n ,t .

Expressions involving squared payoffs are at the core of many analyses in the framework

of prediction with expert advice, especially in the presence of limited feedback. (See, for

instance, the bandit problem, studied by Auer et al., 2002, and more generally prediction under

partial monitoring and the work of Cesa-Bianchi, Lugosi, and Stoltz, 2005; Cesa-Bianchi,

Lugosi, and Stoltz, 2006; Piccolboni and Schindelhauer, 2001). However, to the best of our

knowledge, the bounds presented here are the first ones to explicitly include second-order

information extracted from the payoff sequence.

In Section 3 we give a very simple algorithm whose regret is of the order of
√

Q∗
n ln N +

M ln N . Since Q∗
n ≤ M A∗

n , this bound improves on the first-order bounds. Even though our

basic algorithm needs prior knowledge of both M and Q∗
n to tune its parameters, we are able

to extend it (essentially by using various doubling tricks) and achieve a bound of the order of

√
(ln N ) max

t=1,...,n
Q∗

t + M ln N =
√√√√(ln N ) max

t=1,...,n

t∑
s=1

x2
k∗

t ,s + M ln N (5)

without using any prior knowledge about Q∗
n . (The extension is not as straightforward as one

would expect, since the quantities Q∗
t are not necessarily monotone over time.)

Note that this bound is less sensitive to extreme values. For instance, in case of a loss game

(i.e., all payoffs are nonpositive), Q∗
t ≤ M L∗

t , where L∗
t is the cumulative loss of the best

action up to time t . Therefore, maxs≤n Q∗
s ≤ M L∗

n and the bound (5) is at least as good as the

family of bounds called “improvements for small losses” (or first-order bounds) presented

in Section 2.2. However, it is easy to exhibit examples where the new bound is far better by

considering sequences of outcomes where there are some “outliers” among the xi,t . These

outliers may raise the maximum M significantly, whereas they have only little impact on the

maxs≤n Q∗
s .

We also analyze the weighted majority algorithm in Section 4, and show how exponential

weights with a time varying parameter can be used to derive a regret bound of the order of√
Vn ln N + E ln N where Vn is the cumulative variance of the forecaster’s rewards on the

given sequence and E is the range of the payoffs. (Again, we derive first the bound in the

case where the payoff range is known, and then extend it to the case where the payoff range

is unknown.) The above bound is somewhat different from standard regret bounds because

it depends on the predictions of the forecaster. In Sections 4.4 and 5 we show how one can

use such a bound to derive regret bounds which only depend on the sequence of payoffs.

3 Forecasting strategies and their second-order bounds

In this section we introduce a new family of forecasting strategies. These strategies use

probability assignments pt = (p1,t , . . . , pN ,t ) that are recursively defined via the update

Springer



Mach Learn (2007) 66:321–352 327

pi,t+1 = (1 + ηxi,t )pi,t/Wt+1, where η > 0 is a parameter and Wt+1 is a normalization con-

stant. For small η, 1 + ηx is close (up to second-order quantities) to eηx , the exponential

update used by the weighted majority forecasters of Littlestone and Warmuth (1994). This

new family of forecasters might thus be viewed as a first-order approximation to weighted

majority. Not surprisingly, similar zero-order and first-order bounds can be derived for both

updates. However, the second-order bounds derived in this paper (which are the main focus

of our research) will look quite different.

Remark 1. Updates of the form 1 + ηx have been considered earlier. Indeed, equivalent zero-

order bounds for any multiplicative update in the interval
[
1 + ηx, eηx

]
were first shown for

the forecaster P(β) introduced in Cesa-Bianchi et al. (1997, Section 4). Note, however, that

the analysis of P(β) developed in that paper is not shown to work with the linear predictions

x1,t p1,t + · · · + xN ,t pN ,t , which are essential to the setup considered here.

In Theorem 4, the main result of this section, we show that, without any preliminary

knowledge of the sequence of payoffs, the regret of a variant of our basic strategy is

bounded by a quantity defined in terms of the sums Qi,n = x2
i,1 + · · · + x2

i,n . Since Qi,n ≤
M(|xi,1| + · · · + |xi,n|), such second-order bounds are generally better than all previously

known bounds (see Section 2).

Our basic forecasting strategy, which we call prod(η), has an input parameter η > 0

and maintains a set of N weights. At time t = 1 the weights are initialized with wi,1 = 1

for i = 1, . . . , N . At each time t = 1, 2, . . ., prod(η) computes the probability assignment

pt = (p1,t , . . . , pN ,t ), where pi,t = wi,t/Wt and Wt = w1,t + · · · + wN ,t . After the payoff

vector xt is revealed, the weights are updated using the rule wi,t+1 = wi,t (1 + ηxi,t ). The

following simple fact plays a key role in our analysis.

Lemma 1. For all z ≥ −1/2, ln(1 + z) ≥ z − z2.

Proof: Let f (z) = ln(1 + z) − z + z2. Note that

f ′(z) = 1

1 + z
− 1 + 2z = z(1 + 2z)

1 + z

so that f ′(z) ≤ 0 for −1/2 ≤ z ≤ 0 and f ′(z) ≥ 0 for z ≥ 0. Hence the minimum of f is

achieved in 0 and equals 0, concluding the proof. �

We are now ready to state a lower bound on the cumulative reward of prod(η) in terms of

the quantities Qk,n .

Lemma 2. Assume there exists M > 0 such that the payoffs satisfy xi,t ≥ −M for t =
1, . . . , n and i = 1, . . . , N. For any sequence of payoffs, for any action k, for anyη ≤ 1/(2M),
and for any n ≥ 1, the cumulative reward of prod(η) is lower bounded as

X̂n ≥ Xk,n − ln N

η
− η Qk,n .
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Proof: For any k = 1, . . . , N , note that xk,t ≥ −M and η ≤ 1/(2M) imply ηxk,t ≥ −1/2.

Hence, we can apply Lemma 1 to ηxk,t and get

ln
Wn+1

W1

≥ ln
wk,n+1

W1

= − ln N + ln
n∏

t=1

(1 + ηxk,t ) = − ln N +
n∑

t=1

ln(1 + ηxk,t )

≥ − ln N +
n∑

t=1

(
ηxk,t − η2x2

k,t

) = − ln N + ηXk,n − η2 Qk,n . (6)

On the other hand,

ln
Wn+1

W1

=
n∑

t=1

ln
Wt+1

Wt
=

n∑
t=1

ln

(
N∑

i=1

pi,t (1 + ηxi,t )

)

=
n∑

t=1

ln

(
1 + η

N∑
i=1

xi,t pi,t

)
≤ η X̂n (7)

where in the last step we used ln(1 + zt ) ≤ zt for all zt = η
∑N

i=1 xi,t pi,t ≥ −1/2. Combin-

ing (6) and (7), and dividing by η > 0, we get the desired bound. �

By choosing η appropriately, we can optimize the bound as follows.

Theorem 1. Assume there exists M > 0 such that the payoffs satisfy xi,t ≥ −M for t =
1, . . . , n and i = 1, . . . , N. For any Q > 0, if prod(η) is run with

η = min
{
1/(2M),

√
(ln N )/Q

}
(8)

then for any sequence of payoffs, for any action k, and for any n ≥ 1 such that Qk,n ≤ Q,

X̂n ≥ Xk,n − max
{
2
√

Q ln N , 4M ln N
}
.

3.1 Unknown bound on quadratic variation (Q)

To achieve the bound stated in Theorem 1, the parameter η must be tuned using preliminary

knowledge of a lower bound on the payoffs and an upper bound on the quantities Qk,n . In this

and the following sections we remove these requirements one by one. We start by introducing

a new algorithm that, using a doubling trick over prod, avoids any preliminary knowledge

of an upper bound on the Qk,n .

Let k∗
t be the index of the best action up to time t ; that is, k∗

t ∈ argmaxk Xk,t (ties are

broken by choosing the action k with minimal associated Qk,t ). We denote the associated
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quadratic penalty by

Q∗
t = Q∗

k∗
t

=
t∑

s=1

x2
k∗

t ,s .

Ideally, our regret bound should depend on Q∗
n and be of the form

√
Q∗

n ln N + M ln N .

However, note that the sequence Q∗
1, Q∗

2, . . . is not necessarily monotone, since if at time

t + 1 the best action changes, then Q∗
t and Q∗

t+1 are not related. Therefore, we cannot use

a straightforward doubling trick, as this only applies to monotone sequences. Our solution

is to express the bound in terms of the smallest nondecreasing sequence that upper bounds

the original sequence (Q∗
t )t≥1. This is a general trick to handle situations where the penalty

terms are not monotone.

Let prod − Q(M) be the prediction algorithm that receives a quantity M > 0 as input

parameter and repeatedly runs prod(ηr ), where ηr is defined below. The parameter M is a

bound on the payoffs, such that for all i = 1, . . . , N and t = 1, . . . , n, we have |xi,t | ≤ M .

The r -th parameter ηr corresponds to the parameter η defined in (8) for M and Q = 4r M2.

Namely, we choose

ηr = min
{
1/(2M),

√
ln N/(2r M)

}
.

We call epoch r , r = 0, 1, . . ., the sequence of time steps when prod − Q is running prod(ηr ).

The last step of epoch r ≥ 0 is the time step t = tr when Q∗
t > 4r M2 happens for the first

time. When a new epoch r + 1 begins, prod is restarted with parameter ηr+1.

Theorem 2. Given M > 0, for all n ≥ 1 and all sequences of payoffs bounded by M, i.e.,
max1≤i≤N max1≤t≤n |xi,t | ≤ M, the cumulative reward of algorithm prod − Q(M) satisfies

X̂n ≥ X∗
n − 8

√
(ln N ) max

s≤n
Q∗

s − 2 M(1 + log4 n + 2(1 + 	(log2 ln N )/2
) ln N )

= X∗
n − O

(√
(ln N ) max

s≤n
Q∗

s + M ln n + M ln N ln ln N

)
.

Proof: We denote by R the index of the last epoch and let tR = n. If we have only one epoch,

then the theorem follows from Theorem 1 applied with a bound of Q = M2 on the squared

payoffs of the best expert. Therefore, for the rest of the proof we assume R ≥ 1. Let

X (r )
k =

tr −1∑
s=tr−1+1

xk,s, Q(r )
k =

tr −1∑
s=tr−1+1

x2
k,s, X̂ (r ) =

tr −1∑
s=tr−1+1

x̂s

where the sums are over all the time steps s in epoch r except the last one, tr . (Here t−1 is

conventionally set to 0.) We also denote kr = k∗
tr −1 the index of the best overall expert up

to time tr − 1 (one time step before the end of epoch r ). We have that Q(r )
kr

≤ Qkr ,tr −1 =
Q∗

tr −1. Now, by definition of the algorithm, Q∗
tr −1 ≤ 4r M2. Theorem 1 (applied to time steps

tr−1 + 1, . . . , tr − 1) shows that

X̂ (r ) ≥ X (r )
kr

− max
{
2
√

4r M2 ln N , 4M ln N
}
.
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The maximum in the right-hand side equals 2r+1 M
√

ln N when r > r0 = 1 +
	(log2 ln N )/2
. Summing over r = 0, . . . , R we get

X̂n =
R∑

r=0

(
X̂ (r ) + x̂kr ,tr

)
≥

R∑
r=0

(̂
xkr ,tr + X (r )

kr

) − 4(1 + r0)M ln N −
R∑

r=r0+1

2
√

4r M2 ln N

≥
R∑

r=0

(̂
xkr ,tr + X (r )

kr

) − 4(1 + r0)M ln N − 2R+2 M
√

ln N

≥
R∑

r=0

X (r )
kr

− (R + 1)M − 4(1 + r0)M ln N − 2R+2 M
√

ln N . (9)

Now, since k0 is the index of the expert with largest payoff up to time t0 − 1, we have that

Xk1,t1−1 = X (0)
k1

+ xk1,t0 + X (1)
k1

≤ X (0)
k0

+ X (1)
k1

+ M . By a simple induction, we in fact get

XkR ,tR−1 ≤
R−1∑
r=0

(
X (r )

kr
+ M

) + X (R)
kR

. (10)

As, in addition, XkR ,tR−1 = Xk∗
n−1,n−1 and Xk∗

n ,n may only differ by at most M , combining (9)

and (10) we have indeed proven that

X̂n ≥ Xk∗
n ,n − (

2(R + 1)M + 4M(1 + r0) ln N + 2R+2 M
√

ln N
)
.

The proof is concluded by noting first, that R ≤ log4 n, and second that, as R ≥ 1,

maxs≤n Q∗
s ≥ 4R−1 M2 by definition of the algorithm. �

3.2 Unknown bound on payoffs (M)

In this section we show how one can overcome the case when there is no a priori bound on

the payoffs. In the next section we combine the techniques of this section and Section 3.1 to

deal with the case when both parameters are unknown

Let prod − M(Q) be the prediction algorithm that receives a number Q > 0 as input

parameter and repeatedly runs prod(ηr ), where the ηr , r = 0, 1, . . ., are defined below. We

call epoch r the sequence of time steps when prod − M is running prod(ηr ). At the beginning,

r = 0 and prod − M(Q) runs prod(η0), where

M0 =
√

Q/(4 ln N ) and η0 = 1/(2M0) =
√

(ln N )/Q.

For all t ≥ 1, we denote

Mt = max
s=1,...,t

max
i=1,...,N

2�log2 |xi,s |�.

The last step of epoch r ≥ 0 is the time step t = tr when Mt > Mtr−1
happens for the first

time (conventionally, we set Mt−1
= M0). When a new epoch r + 1 begins, prod is restarted

with parameter ηr+1 = 1/(2Mtr ).
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Note that η0 = 1/(2M0) in round 0 and ηr = 1/(2Mtr−1
) in any round r ≥ 1, where Mt0 >

M0 and Mtr ≥ 2Mtr−1
for each r ≥ 1.

Theorem 3. For any sequence of payoffs, for any action k, and for any n ≥ 1 such that
Qk,n ≤ Q, the cumulative reward of algorithm prod − M(Q) is lower bounded as

X̂n ≥ Xk,n − 2
√

Q ln N − 12 M(1 + ln N )

where M = max1≤i≤N max1≤t≤n |xi,t |.

Proof: As in the proof of Theorem 2, we denote by R the index of the last epoch and let

tR = n. We assume R ≥ 1 (otherwise, the theorem follows directly from Theorem 1 applied

with a lower bound of −M0 on the payoffs). Note that at time n we have either Mn ≤ MtR−1
,

implying Mn = MtR = MtR−1
, or Mn > MtR−1

, implying Mn = MtR = 2MtR−1
. In both cases,

MtR ≥ MtR−1
. In addition, since R ≥ 1, we also have MtR ≤ 2M .

Similarly to the proof of Theorem 2, for all epochs r and actions k introduce

X (r )
k =

tr −1∑
s=tr−1+1

xk,s, Q(r )
k =

tr −1∑
s=tr−1+1

x2
k,s, X̂ (r ) =

tr −1∑
s=tr−1+1

x̂s

where, as before, we set t−1 = 0. Applying Lemma 2 to each epoch r = 0, . . . , R we get that

X̂n − Xk,n is equal to

X̂n − Xk,n =
R∑

r=0

(
X̂ (r ) − X (r )

k

) +
R∑

r=0

(̂
xtr − xk,tr

)
≥ −

R∑
r=0

ln N

ηr
−

R∑
r=0

ηr Q(r )
k +

R∑
r=0

(̂
xtr − xk,tr

)
.

We bound each sum separately. For the first sum, since Mts ≥ 2s−r Mtr for each 0 ≤ r ≤ s ≤
R − 1, we have for s ≤ R − 1,

s∑
r=0

Mtr ≤
s∑

r=0

2r−s Mts ≤ 2Mts . (11)

Thus,

R∑
r=0

ln N

ηr
=

R∑
r=0

2Mtr−1
ln N ≤ 2

(
Mt−1

+ 2MtR−1

)
ln N ≤ 6MtR ln N

where we used (11) and Mt−1
= M0 ≤ MtR−1

≤ MtR . For the second sum, using the fact that

ηr decreases with r , we have

R∑
r=0

ηr Q(r )
k ≤ η0

R∑
r=0

Q(r )
k ≤ η0 Qk,n ≤

√
ln N

Q
Q =

√
Q ln N .
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Finally, using (11) again,
R∑

r=0

∣∣̂xtr − xk,tr

∣∣ ≤
R∑

r=0

2 Mtr ≤ 2
(
2 MtR−1

+ MtR

) ≤ 6 MtR .

The resulting lower bound 6MtR (1 + ln N ) +
√

Q ln N implies the one stated in the theorem

by recalling that, when R ≥ 1, MtR ≤ 2 M . �

3.3 Unknown bounds on both payoffs (M) and quadratic variation (Q)

We now show a regret bound for the case when M and the Qk,n are both unknown. We

consider again the notation of the beginning of Section 3.1. The quantities of interest for

the doubling trick of Section 3.1 were the homogeneous quantities (1/M2) maxs≤t Q∗
s . Here

we assume no knowledge of M . We propose a doubling trick on the only homogeneous

quantities we have access to, that is, maxs≤t (Q∗
s /M2

s ), where Mt is defined in Section 3.2

and the maximum is needed for the same reasons of monotonicity as in Section 3.1.

We define the new (parameterless) prediction algorithm prod-MQ. Intuitively, the algorithm

can be thought as running, at the low level, the algorithm prod-Q(Mt ). When the value of Mt

changes, we restart prod-Q(Mt ), with the new value but keep track of Q∗
t .

Formally, we define the prediction algorithm prod-MQ in the following way. Epochs are

indexed by pairs (r, s). At the beginning of each epoch (r, s), the algorithm takes a fresh start

and runs prod(η(r,s)), where η(r,s), for r = 0, 1, . . . and s = 0, 1, . . ., is defined by

η(r,s) = min
{
1
/(

2M (r )
)
,
√

ln N
/(

2Sr−1+s M (r )
)}

and M (r ), Sr are defined below.

At the beginning, r = 0, s = 0, and since prod(η) always sets p1 to be the uniform

distribution irrespective to the choice of η, without loss of generality we assume that prod
is started at epoch (0, 0) with M (0) = M1 and S−1 = 0.

The last step of epoch (r, s) is the time step t = t(r,s) when either:

(C1) Q∗
t > 4Sr−1+s M2

t happens for the first time

or

(C2) Mt > M (r ) happens for the first time.

If epoch (r, s) ends because of (C1), the next epoch is (r, s + 1), and the value of M (r ) is

unchanged. If epoch (r, s) ends because of (C2), the next epoch is (r + 1, 0), Sr = Sr−1 + s,

and M (r+1) = Mt .

Note that within epochs indexed by the same r , the payoffs in all steps but the last one are

bounded by M (r ). Note also that the quantities Sr count the number of times an epoch ended

because of (C1). Finally, note that there are Sr − Sr−1 + 1 epochs (r, s) for a given r ≥ 0,

indexed by s = 0, . . . , Sr − Sr−1.

Theorem 4. For any sequence of payoffs and for any n ≥ 1, the cumulative reward of algo-
rithm prod-MQ satisfies

X̂n ≥ X∗
n − 32M

√
q ln N − 22M(1 + ln N )−2M log2 n − 4M(ln N )�(log2 ln N )/2�

= X∗
n − O(M

√
q ln N + M ln n + M(ln N ) (ln ln N ))

where M = max1≤i≤N max1≤t≤n |xi,t | and q = max
{

1, maxs≤n
Q∗

s
M2

s

}
.

The proof is in the Appendix.
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4 Second-order bounds for weighted majority

In this section we derive new regret bounds for the weighted majority forecaster of Littlestone

and Warmuth (1994) using a time-varying learning rate. This allows us to avoid the doubling

tricks of Section 3 and keep the assumption that no knowledge on the payoff sequence is

available to the forecaster beforehand.

Similarly to the results of Section 3, the main term in the new bounds depends on second-

order quantities associated to the sequence of payoffs. However, the precise definition of

these quantities makes the bounds of this section generally not comparable to the bounds

obtained in Section 3. (One would prefer, for instance, the bounds of this section in case

of randomized prediction, see Section 4.3, whereas the bounds of the previous section are

more explicit in terms of the payoff sequence as they do not involve the way the algorithm

predicts.)

The weighted majority forecaster using the sequence η2, η3, . . . > 0 of learning rates

assigns at time t a probability distribution pt over the N experts defined by p1 =
(1/N , . . . , 1/N ) and

pi,t = eηt Xi,t−1∑N
j=1 eηt X j,t−1

for i = 1, . . . , N and t ≥ 2. (12)

Note that the quantities ηt > 0 may depend on the past payoffs xi,s , i = 1, . . . , N and s =
1, . . . , t − 1.

The analysis of Auer, Cesa-Bianchi, and Gentile (2002), for a related variant of weighted

majority, is at the core of the proof of the following lemma (proof in Appendix).

Lemma 3. Consider any nonincreasing sequence η2, η3, . . . of positive learning rates and
any sequence x1, x2, . . . ∈ RN of payoff vectors. Define the nonnegative function � by

�(pt , ηt , xt ) = −
N∑

i=1

pi,t xi,t + 1

ηt
ln

N∑
i=1

pi,t e
ηt xi,t

= 1

ηt
ln

(
N∑

i=1

pi,t e
ηt (xi,t −x̂t )

)
.

Then the weighted majority forecaster (12) run with the sequence η2, η3, . . . satisfies, for
any n ≥ 1 and for any η1 ≥ η2,

X̂n − X∗
n ≥ −

(
2

ηn+1

− 1

η1

)
ln N −

n∑
t=1

�(pt , ηt , xt ).

Let Zt be the random variable with range {x1,t , . . . , xN ,t } and distribution pt . Note that EZt

is the expected payoff x̂t of the forecaster using distribution pt at time t . Introduce

Var Zt = EZ2
t − E2 Zt =

N∑
i=1

pi,t x
2
i,t −

(
N∑

i=1

pi,t xi,t

)2

.
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Hence Var Zt is the variance of the payoffs at time t under the distribution pt and the

cumulative variance Vn = Var Z1 + · · · + Var Zn is the main second-order quantity used in

this section. The next result bounds �(pt , ηt , xt ) in terms of Var Zt .

Lemma 4. For all payoff vectors xt = (x1,t , . . . , xN ,t ), all probability distributions pt =
(p1,t , . . . , pN ,t ), and all learning rates ηt ≥ 0, we have

�(pt , ηt , xt ) ≤ E

where E is such that |xi,t − x j,t | ≤ E for all i, j = 1, . . . , N. If, in addition, 0 ≤ ηt |xi,t −
x j,t | ≤ 1 for all i, j = 1, . . . , N, then

�(pt , ηt , xt ) ≤ (e − 2)ηt Var Zt .

Proof: The first inequality is straightforward. To prove the second one we use ea ≤ 1 + a +
(e − 2) a2 for |a| ≤ 1. Consequently, noting that ηt |xi,t − x̂t | ≤ 1 for all i by assumption, we

have that

�(pt , ηt , xt ) = 1

ηt
ln

(
N∑

i=1

pi,t e
ηt (xi,t −x̂t )

)

≤ 1

ηt
ln

(
N∑

i=1

pi,t
(
1 + ηt (xi,t − x̂t ) + (e − 2)η2

t (xi,t − x̂t )
2
))

.

Using ln(1 + a) ≤ a for all a > −1 and some simple algebra concludes the proof of the

second inequality. �

In Auer et al. (2002, proof of Theorem 2.1) a very similar result is proven, except that there

the variance is further bounded (up to a multiplicative factor) by the expectation x̂t of Zt .

4.1 Known bound on the payoff ranges (E)

We now introduce a time-varying learning rate based on Vn . For simplicity, we assume in a

first time that a bound E on the payoff ranges Et , defined in (1), is known beforehand and

turn back to the general case in Theorem 6. The sequence η2, η3, . . . is defined as

ηt = min

{
1

E
, C

√
ln N

Vt−1

}
(13)

for t ≥ 2, with C =
√

2(
√

2 − 1)/(e − 2) ≈ 1.07.

Note that ηt depends on the forecaster’s past predictions. This is in the same spirit as the

self-confident learning rates considered in Auer, Cesa-Bianchi, and Gentile (2002).

Theorem 5. Provided a bound E on the payoff ranges is known beforehand, i.e.,
maxt=1,...,n maxi, j=1,...,N |xi,t − x j,t | ≤ E, the weighted majority forecaster using the time-
varying learning rate (13) achieves, for all sequences of payoffs and for all n ≥ 1,

X̂n − X∗
n ≥ −4

√
Vn ln N − 2E ln N − E/2.
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Proof: We start by applying Lemma 3 using the learning rate (13), and setting η1 = η2 for

the analysis,

X̂n − X∗
n ≥ −

(
2

ηn+1

− 1

η1

)
ln N −

n∑
t=1

�(pt , ηt , xt )

≥ −2 max{E ln N , (1/C)
√

Vn ln N } − (e − 2)
n∑

t=1

ηt Var Zt

where C is defined in (13) and the second inequality follows from the second bound of

Lemma 4. We now denote by T the first time step t when Vt > E2/4. Using that ηt ≤ 1/E
for all t and VT ≤ E2/2, we get

n∑
t=1

ηt Var Zt ≤ E

2
+

n∑
t=T +1

ηt Var Zt . (14)

We bound the last sum using ηt ≤ C
√

(ln N )/Vt−1 for t ≥ T + 1 (note that, for t ≥ T + 1,

Vt−1 ≥ VT > E2/4 > 0). This yields

n∑
t=T +1

ηt Var Zt ≤ C
√

ln N
n∑

t=T +1

Vt − Vt−1√
Vt−1

.

Since Vt ≤ Vt−1 + E2/4 and Vt−1 ≥ E2/4 for t ≥ T + 1, we have

Vt − Vt−1√
Vt−1

=
√

Vt + √
Vt−1√

Vt−1

(√
Vt −

√
Vt−1

)
≤ (√

2 + 1
) (√

Vt −
√

Vt−1

)
=

√
Vt − √

Vt−1√
2 − 1

.

Therefore, by a telescoping argument,

n∑
t=T +1

ηt Var Zt ≤ C
√

ln N√
2 − 1

(√
Vn −

√
VT

)
≤ C√

2 − 1

√
Vn ln N . (15)

Putting things together, we have already proved that

X̂n − X∗
n ≥ −2 max{E ln N , (1/C)

√
Vn ln N } − e − 2

2
E − C(e − 2)√

2 − 1

√
Vn ln N .

In the case when
√

Vn ≥ C E
√

ln N , the (negative) regret X̂n − X∗
n is bounded from below

by

−
(

2

C
+ C(e − 2)√

2 − 1

) √
Vn ln N − e − 2

2
E ≥ −4

√
Vn ln N − E/2,
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where we substituted the value of C and obtained a constant for the leading term equal to

2
√

2(e − 2)/
√√

2 − 1 ≤ 3.75. When
√

Vn ≤ C E
√

ln N , the lower bound is more than

−2E ln N − C(e − 2)√
2 − 1

√
Vn ln N − e − 2

2
E ≥ −2E ln N − 2

√
Vn ln N − E/2.

This concludes the proof. �

4.2 Unknown bound on the payoff ranges (E)

We present the adaptation needed when no bound on the real-valued payoff range is known

beforehand. For any sequence of payoff vectors x1, x2, . . . and for all t = 1, 2, . . ., we define,

similarly to Section 3.2, a quantity that keeps track of the payoff ranges seen so far. More

precisely, Et = 2k , where k ∈ Z is the smallest integer such that maxs=1,...,t maxi, j=1,...,N

|xi,s − x j,s | ≤ 2k . Now let the sequence η2, η3, . . . be defined as

ηt = min

{
1

Et−1

, C

√
ln N

Vt−1

}
(16)

for t ≥ 2, with C =
√

2(
√

2 − 1)/(e − 2).

We are now ready to state and prove the main result of this section, which bounds the

regret in terms of the variance of the predictions. We show in the next section how this bound

leads to more intrinsic bounds on the regret.

Theorem 6. Consider the weighted majority forecaster using the time varying learning
rate (16). Then, for all sequences of payoffs and for all n ≥ 1,

X̂n − X∗
n ≥ −4

√
Vn ln N − 4E ln N − 6E

where E = maxt=1,...,n maxi, j=1,...,N |xi,t − x j,t |.

Proof: The proof is similar to the one of Theorem 5, we only have to deal with the estimation

of the payoff ranges. We apply again Lemma 3,

X̂n − X∗
n ≥ −

(
2

ηn+1

− 1

η1

)
ln N −

n∑
t=1

�(pt , ηt , xt )

≥ −2 max{En ln N , (1/C)
√

Vn ln N } −
n∑

t=1

�(pt , ηt , xt )

= −2 max{En ln N, (1/C)
√

Vn ln N } −
∑
t∈T

�(pt , ηt , xt ) −
∑
t �∈T

�(pt , ηt , xt)

where C is defined in (16), and T is the set of time steps t ≥ 2 when Et = Et−1 (note that 1 �∈
T by definition). Thus T is a finite union of intervals of integers, T = [[1, n]]\{t1, . . . , tR},
where we denote t1 = 1 and let t2, . . . , tR be the time rounds t ≥ 2 such that Et �= Et−1.

Using the second bound of Lemma 4 on t ∈ T (since, for t ∈ T , ηt Et ≤ Et/Et−1 = 1)

and the first bound of Lemma 4 on t �∈ T , which in this case reads �(pt , ηt , xt ) ≤ Et , we
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get

X̂n − X∗
n ≥ −2 max{En ln N , (1/C)

√
Vn ln N } − (e − 2)

∑
t∈T

ηt Var Zt −
∑
t �∈T

Et .

(17)

We consider the r -th regime, r = 1, . . . , R, that is, the time steps s between tr + 1 and tr+1 − 1

(with tR+1 = n by convention whenever tR < n). For all these time steps s, Es = Etr . We

use the same arguments that led to (14) and (15): denote by Tr the first time step s ≥ tr + 1

when Vs > E2
tr /4. Then,

tr+1−1∑
s=tr +1

ηt Var Zt ≤ Etr

2
+ C

√
ln N√

2 − 1

(√
Vtr+1−1 − √

VTr

)
.

Summing over r = 1, . . . , R and noting that a telescoping argument is given by Vtr ≤ VTr ,

∑
t∈T

ηt Var Zt ≤ C
√

ln N√
2 − 1

√
Vn + 1

2

R∑
r=1

Etr .

We deal with the last sum (also present in (17)) by noting that

∑
t �∈T

Et =
R∑

r=1

Etr ≤
�log2 E�∑
r=−∞

2r ≤ 21+�log2 E� ≤ 4E .

Putting things together,

X̂n − X∗
n ≥ −2 max{En ln N , (1/C)

√
Vn ln N } − (e − 2)C

√
ln N√

2 − 1

√
Vn − 2e E .

The proof is concluded, as the previous one, by noting that En ≤ 2E . �

4.3 Randomized prediction and actual regret

In this paper, the focus is on improved bounds for the expected regret. After choosing a

probability distribution pt on the actions, the forecaster gets x̂t = x1,t p1,t + · · · + xN ,t pN ,t

as a reward. In case randomized prediction is considered, after choosing pt , the forecaster

draws an action It at random according to pt and gets the reward xIt ,t , whose conditional

expectation is x̂t . In this version of the game of prediction, the aim is now to minimize the

(actual) regret, defined as the difference between xI1,1 + · · · + xIn ,n and X∗
n .

Bernstein’s inequality for martingales (see, e.g., Freedman, 1975) shows however that the

actual regret of any forecaster is bounded by the expected regret with probability 1 − δ up to

deviations of the order of
√

Vn ln(n/δ) + M ln(n/δ). These deviations are of the same order

of magnitude as the bound of Theorem 6. Unless we are able to apply a sharper concentration

result than Bernstein’s inequality, no further refinement of the above bounds is worthwhile. In

particular, in view of the deviations from the expectations, as far as actual regret is concerned,

we may prefer the results of Section 4 to those of Section 3. The next section, as well as
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Section 5, explain how bounds in terms of
√

Vn lead to many interesting bounds on the regret

that do not depend on quantities related to the forecaster’s rewards.

4.4 Bounds on the forecaster’s cumulative variance

In this section we show a first way to deal with the dependency of the bound on Vn , the

forecaster’s cumulative variance. Section 5 will illustrate this further.

Recall that Zt is the random variable which takes the value xi,t with probability pi,t , for

i = 1, . . . , N . The main term of the bound stated in Theorem 6 contains Vn = Var Z1 +
· · · + Var Zn . Note that Vn is therefore smaller than all quantities of the form

n∑
t=1

N∑
i=1

pi,t (xi,t − μt )
2

where (μt )t≥1 is any sequence of real numbers which may be chosen in hindsight, as it is not

required for the definition of the forecaster. (The minimal value of the expression is obtained

for μt = x̂t .) This gives us a whole family of upper bounds, and we may choose for the

analysis the most convenient sequence of μt .

To provide a concrete example, recall the definition (1) of payoff effective range Et and

consider the choice μt = min j=1,...,N x j,t + Et/2.

Corollary 1. The regret of the weighted majority forecaster with variable learning rate (16)
satisfies

X̂n − X∗
n ≥ −2

√√√√(ln N )
n∑

t=1

E2
t − 4E ln N − 6E

where E is a bound on the payoff ranges, E = maxt=1,...,n Et .

The bound proposed by Corollary 1 shows that for an effective range of E , say if the payoffs

all fall in [0, E], the regret is lower bounded by a quantity equal to −2E
√

n ln N (a closer

look at the proof of Theorem 6 shows that this constant factor is less than 1.9, and could be

made as close to 2
√

(e − 2) = √
2
√

2 (e − 2) as desired). The best leading constant for such

bounds is, to our knowledge,
√

2 (see Cesa-Bianchi & Lugosi, 2006). This shows that the

improved dependence in the bound does not come at a significant increase in the magnitude

of the leading coefficient. When the actual ranges are small, these bounds give a considerable

advantage. Such a situation arises, for instance, in the setting of on-line portfolio selection,

when we use linear upper bound on the regrets (see, e.g., the EG strategy by Helmbold et al.,

1998). Moreover, we note that Corollary 1 improves on a result of Allenberg-Neeman and

Neeman (2004), who show a regret bound, in terms of the cumulative effective range, whose

main term is 5.7
√

2M(ln N )
∑n

t=1 Et , for a given bound M over the payoffs.

Finally, we note that using translations of payoffs forprod-type algorithms, as suggested by

Section 5.1, may be worthwhile as well, see Corollary 4 below. However, unlike the approach

presented here for the weighted majority based forecaster, there the payoffs have to be

translated explicitly and on-line by the forecaster, and thus, each translation rule corresponds

to a different forecaster.
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4.5 Extension to problems with incomplete information

An interesting issue is how the second-order bounds of this section extend to incomplete infor-

mation problems. In the literature of this area, exponentially weighted averages of estimated

cumulative payoffs play a key role (see, for instance, Auer et al., 2002 for the multiarmed

bandit problem, Cesa-Bianchi, Lugosi, and Stoltz, 2005 for label-efficient prediction, and

Piccolboni and Schindelhauer, 2001, Cesa-Bianchi, Lugosi, and Stoltz, 2006 for prediction

under partial monitoring).

A careful analysis of the proofs therein shows that the order of magnitude of the bound

on the regret is given by the root of the sum of the conditional variances of the estimates of

the payoffs used for prediction,

√√√√√(ln N )
n∑

t=1

Et

⎡⎣ N∑
i=1

pi,t (̃xi,t )2 −
(

N∑
i=1

pi,t x̃i,t

)2
⎤⎦.

Here we denote by x̃i,t the (unbiased) estimate available for xi,t (whose form varies depending

on the precise setup and the considered strategy), by pt = (p1,t , . . . , pN ,t ) the probability

distributions over the actions, and by Et the conditional expectation with respect to the infor-

mation available up to round t (for instance, in multiarmed bandit problems, this information

is the past payoffs). Note that the conditioning in Et determines the values of the payoffs

xt = (x1,t , . . . , xN ,t ) and of pt .

In setups with full monitoring, that is, for the setups considered in this paper, no estimation

is needed, x̃i,t = xi,t , and the bound is exactly that of Theorem 6.

In multiarmed bandit problems (with payoffs in, say, [−M, M]), the estimators are given

by x̃i,t = (xi,t/pi,t )I[It =i] where It is the index of the chosen component of the payoff vector.

Now,

Et
[

pi,t x̃2
i,t

] = x2
i,t ≤ M2. (18)

Summing over i = 1, . . . , N and t = 1, . . . , n the bound M
√

nN ln N of Auer et al. (2002)

is recovered.

In label-efficient prediction problems, x̃i,t = (xi,t/ε)Zt , where the Zt are i.i.d. random

variables distributed according to a Bernoulli distribution with parameter ε ∼ m/n. Then,

Et
[

pi,t x̃2
i,t

] = pi,t
x2

i,t

ε
≤ pi,t

M2

ε
.

Summing over i = 1, . . . , N and t = 1, . . . , n we recover the bound M
√

(n/ε) ln N ∼
Mn

√
(ln N )/m of Cesa-Bianchi, Lugosi, and Stoltz (2005).

Finally, in games with partial monitoring, the quantity (18) is less than

M2t−1/3 N 2/3(ln N )−1/3, at least for the estimators proposed by Cesa-Bianchi, Lugosi,

and Stoltz (2006). Summing over i = 1, . . . , N and t = 1, . . . , n we recover the

Mn2/3 N 2/3(ln N )1/3 bound of the mentioned article.

In conclusion, the smaller
√

n (order of magnitude for the regret in bandit problems), as

opposed to the n2/3 (order in problems of prediction under partial monitoring), is due to better

statistical performances (i.e., smaller conditional variance) of the available estimators.
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5 Using translations of the payoffs

We now consider the bounds derived from those of Sections 3 and 4 in the case when

translations are performed on the payoffs (Section 5.1). We show that they lead to several

improvements or extensions of earlier results (Section 5.2) and also relieve the forecaster

from the need of any preliminary manipulation on the payoffs (Section 5.3).

5.1 On-line translations of the payoffs

Note that any on-line forecasting strategy may be used by a meta-forecaster which, before

applying the given strategy, may first translate the payoffs according to a prescribed rule

that may depend on the past. More formally, the meta-forecaster runs the strategy with the

payoffs rk,t = xk,t − μt , where μt is any quantity possibly based on the past payoffs xi,s , for

i = 1, . . . , N and s = 1, . . . , t .
The forecasting strategies of Section 4 (and the obtained bounds) are invariant by such

translations. This is however not the case for the prod-type algorithms of Section 3. An

interesting application is obtained in Section 5.2 by considering μt = x̂t where we recall that

x̂t = x1,t p1,t + · · · + xN ,t pN ,t is the forecaster’s reward at time t . As the sums μ1 + · · · + μn

cancel out in the difference X̂n − Xk,n , we obtain the following corollary of Theorem 2. Note

that the remainder term here is now expressed in terms of the effective ranges (1) of the

payoffs.

Corollary 2. Given E > 0, for all n ≥ 1 and all sequences of payoffs with effective ranges
Et bounded by E, the cumulative reward of algorithm prod − Q(E) run using translated
payoffs xk,t − x̂t satisfies

X̂n ≥ X∗
n − 8

√
(ln N ) max

s≤n
R∗

s − 2 E(1 + log4 n + 2
(
1 + 	(log2 ln N )/2
) ln N ).

where the R∗
s are defined as follows. For 1 ≤ t ≤ n and k = 1, . . . , N, Rk,t = (xk,1 − x̂1)2 +

· · · + (xk,t − x̂t )
2 and R∗

t = Rk∗
t ,t , where k∗

t is the index of the action achieving the best
cumulative payoff at round t (ties are broken by choosing the action k with smallest associated
Rk,t ).

Remark 2. In one-sided games, for instance in gain games, the forecaster has always an

incentive to translate the payoffs by the minimal payoff μt obtained at each round t ,

μt = min
j=1,...,N

xk,t .

This is since for all j and t , (x j,t − μt )
2 ≤ x2

j,t in a gain game. The issue is not so clear however

for signed games, and it may be a delicate issue to determine beforehand if the payoffs should

be translated, and if so, which translation rule should be used. See also Section 4.4, as well

as Section 5.2.

5.2 Improvements for small or large payoffs

As recalled in Section 2.2, when all payoffs have the same sign Freund and Schapire (1997)

first showed that Littlestone and Warmuth’s weighted majority algorithm (1994) can be
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used to construct a forecasting strategy achieving a regret of order
√

M |X∗
n | ln N + M ln N ,

where N is the number of actions, M is a known upper bound on the magnitude of payoffs

(|xi,t | ≤ M for all t and i), and |X∗
n | is the absolute value of the cumulative payoff of the best

action (i.e., the largest cumulative payoff in a gain game or the smallest cumulative loss in a

loss game), see also Auer, Cesa-Bianchi, and Gentile (2002).

This bound is good when |X∗
n | is small in the one-sided game; that is, when the best action

has a small gain (in a gain game) or a small loss (in a loss game). However, one often expects

the best expert to be effective (for instance, because we have many experts and at least one

of them is accurate). An effective expert in a loss game suffers a small cumulative loss, but

in a gain game, such an expert should get a large cumulative payoff X∗
n . To obtain a bound

that is good when |X∗
n | is large one could apply the translation x ′

i,t = xi,t − M (from gains

to losses) or the translation x ′
i,t = xi,t + M (from losses to gains). In both cases one would

obtain a bound of the form
√

M(Mn − |X∗
n |) ln N , which is now suited for effective experts

in gain games and poor experts in loss games, but not for effective experts in loss games

and poor experts in gain games. Since the original bound is not stable under the operation

of conversion from one type of one-sided game into the other, the forecaster has to guess

whether to play the original game or its translated version, depending on his beliefs on the

quality of the experts and on the nature of the game (losses or gains).

In Corollary 4 we use the sharper bound of Corollary 2 to prove a (first-order) bound of

the form √
M min

{|X∗
n |, Mn − |X∗

n |
}

ln N .

This is indeed an improvement for small losses or large gains, though it requires knowledge

of M . However, in Remark 3 we will indicate how to extend this result to the case when M
is not known beforehand. Note that the (second-order) bound of Corollary 3 also yields the

same result without any preliminary knowledge of M .

We thus recover an earlier result by Allenberg-Neeman and Neeman (2004). They proved,

in a gain game, for a related algorithm, and with the previous knowledge of a bound M on

the payoffs, a bound whose main term is 11.4
√

M min
{√

X∗
n,

√
Mn − X∗

n

}
. That algorithm

was specifically designed to ensure a regret bound of this form, and is different from the

algorithm whose performance we discussed before the statement of Corollary 1, whereas we

obtain the improvements for small losses or large gains as corollaries of much more general

bounds that have other consequences.

5.2.1 Analysis for exponentially weighted forecasters

The main drawback of Vn , used in Theorem 6, is that it is defined directly in terms of the

forecaster’s distributions pt . We now show how this dependence could be removed.

Corollary 3. Consider the weighted majority forecaster run with the time-varying learn-
ing rate (16). Then, for all sequences of payoffs in a one-sided game (i.e., payoffs are all
nonpositive or all nonnegative),

X̂n ≥ X∗
n − 4

√
|X∗

n |
(

M − |X∗
n |

n

)
ln N − 39 M max {1, ln N }

where M = maxt=1,...,n maxi=1,...,N |xi,t |.
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Proof: We give the proof for a gain game. Since the payoffs are in [0, M], we can write

Vn ≤
n∑

t=1

(
M

N∑
i=1

pi,t xi,t −
(

N∑
i=1

pi,t xi,t

)2)
=

n∑
t=1

(M − x̂t )̂xt

≤ n

(
M X̂n

n
−

(
X̂n

n

)2)
= X̂n

(
M − X̂n

n

)

where we used the concavity of x �→ Mx − x2. Assume that X̂n ≤ X∗
n (otherwise the result

is trivial). Then, Theorem 6 ensures that

X̂n − X∗
n ≥ −4

√
X∗

n

(
M − X̂n

n

)
ln N − κ

where κ = 4M ln N + 6M . We solve for X̂n obtaining

X̂n − X∗
n ≥ −4

√
X∗

n

(
M − X∗

n

n
+ κ

n

)
ln N − κ − 16

X∗
n

n
ln N .

Using the crude upper bound X∗
n/n ≤ M and performing some simple algebra, we get the

desired result. �

Similarly to the remark about constant factors in Section 4.4 the factor 4 in Corollary 3

can be made as close as desired to 4
√

e − 2 = 2
√

2
√

2 (e − 2), which is not much larger

than the best known leading constant for improvements for small losses, 2
√

2, see Auer,

Cesa-Bianchi, and Gentile (2002). But here, we have in addition an improvement for large

losses, and deal with unknown ranges M . (Note, similarly to the discussion in Section 4.4,

the presence of the same small factor
√

2 (e − 2) ≈ 1.2.)

5.2.2 Analysis for prod-type forecasters

Quite surprisingly, a bound of the same form as the one shown in Corollary 3 can be derived

from Corollary 2.

Corollary 4. Given M > 0, for all n ≥ 1 and all sequences of payoffs bounded by M, i.e.,
max1≤i≤N max1≤t≤n |xi,t | ≤ M, the cumulative reward of algorithm prod-Q(2M), run using
translated payoffs xk,t − x̂t in a one-sided game, is larger than

X̂n ≥ X∗
n − 8

√
2M min{X∗

n, Mn − X∗
n} ln N − 128 M ln N − κ − 8

√
2M(ln N )κ
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where

κ = 4 M(1 + log4 n + 2(1 + 	(log2 ln N )/2
) ln N )

= �(M(ln n) + M(ln N )(ln ln N )).

Proof: As in the proof of Corollary 3, it suffices to give the proof for a gain game. In fact, we

apply below the bound of Corollary 2, which is invariant under the change 	i,t = M − xi,t

that converts bounded losses into bounded nonnegative payoffs.

The main term in the bound of Corollary 2, with the notations therein, involves

max
s≤n

R∗
s ≤ min

{
M(X∗

n + X̂n), M(2 Mn − X∗
n − X̂n)

}
. (19)

Indeed, using that (a − b)2 ≤ a2 + b2 for a, b ≥ 0, we get on the one hand, for all 1 ≤ s ≤ n,

R∗
s ≤

s∑
t=1

x2
k∗

s ,t + x̂2
s ≤ M(Xk∗

s ,s + X̂s) ≤ M(X∗
n + X̂n)

whereas on the other hand, the same techniques yield

R∗
s =

s∑
t=1

(
(M − xk∗

s ,t ) − (
M − x̂2

s

))2

≤ M
(
(Ms − X∗

s ) + (Ms − X̂s)
)
.

Now, we note that for all s, X∗
s+1 ≤ X∗

s + M , and similarly, X̂s+1 ≤ X̂s + M . Thus we also

have maxs≤n R∗
s ≤ M (2Mn − X∗

n − X̂n).

Corollary 2, combined with (19), yields

X̂n ≥ X̂∗
n − 8

√
M(ln N ) min

{
(X∗

n + X̂n), (2 Mn − X∗
n − X̂n)

} − κ

where κ = 4 M(1 + log4 n + 2(1 + 	(log2 ln N )/2
) ln N ). Without loss of generality, we

may assume that X̂n ≤ X∗
n and get

X̂n ≥ X̂∗
n − 8

√
2M(ln N ) min

{
X∗

n, (Mn − X̂n)
} − κ.

Solving for X̂n and performing simple algebra in case the minimum is achieved by the term

containing X̂n concludes the proof. �

Remark 3. The forecasting strategy of Theorem 4, when used by a meta-forecaster translating

the payoffs by x̂t , achieves an improvement for small or large payoffs of the form

M

√
min

{
max
s≤n

X∗
s

Ms
, max

s≤n

s Ms − X∗
s

Ms

}
without previous knowledge of M .
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5.2.3 The case of signed games

The proofs of Corollaries 3 and 4 reveal that the assumption of one-sidedness cannot be

relaxed. However, we may also prove a version of the improvement for small losses or for

large gains suited to signed games. Remember that, as explained in Section 2.3, a meta-

forecaster may always convert a signed game into a one-sided game by performing a suitable

translation on the payoffs, and then apply a strategy for one-sided games. Since Corollary 2

and Theorem 6 are stable under general translations, applying them to the payoffs xi,t or

to a translated version of them x ′
i,t results in the same bounds. If the translated version x ′

i,t
correspond to a one-sided game, then the bounds of Corollaries 3 and 4 may be applied. Using

x ′
i,t = xi,t − min j=1,...,N x j,t ≥ 0 and x ′

i,t = xi,t − max j=1,...,N x j,t ≤ 0 for the analysis, we

may show, for instance, that for any signed game the forecaster of Theorem 6 ensures that

the regret is bounded by a quantity whose main term is less than

min

⎧⎨⎩
√√√√E (ln N ) max

j=1,...,N

(
n∑

t=1

(
x j,t − min

i=1,...,N
xi,t

))
,

√√√√E (ln N ) min
j=1,...,N

(
n∑

t=1

(
max

i=1,...,N
xi,t − x j,t

)) ⎫⎬⎭ .

This bound is obtained without any previous knowledge of a bound E on the effective ranges

of the payoffs, and is sharper than both bounds (2) and (3). It may be interpreted as an

improvement for small or large cumulative payoffs.

5.3 What is a “fundamental” bound?

Most of the known regret bounds are not stable under natural transformations of the payoffs,

such as translations and rescalings.1 If a regret bound is not stable, then a (meta-)prediction

algorithm might be willing to manipulate the payoffs in order to achieve a better regret.

However, in general it is hard to choose the payoff transformation that is best for a given and

unknown sequence of payoffs. For this reason, we argue that regret bounds that are stable

under payoff transformations are, in some sense, more fundamental than others. The bounds

that we have derived in this paper are based on sums of squared payoffs. They are not only

generally tighter than the previously known bounds, but also stable under different transfor-

mations, such as those described below (in what follows, we use x ′
i,t to indicate a transformed

payoff).

Additive translations: x ′
i,t = xi,t − μt .

Note that the regret (of playing a fixed sequence p1, p2, . . .) is not affected by this trans-

formation. Hence, stable bounds should not change when payoffs are translated. As already

1 Here we do not distinguish between stable bounds and stable algorithms because all the stability properties
we consider for the bounds are due to a corresponding stability of the prediction scheme they are derived from.
When a stable algorithm does not achieve a stable bound, it suffices to optimize the bound in hindsight, thanks
to the stability properties of the prediction scheme.
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explained in Section 5.2, translations can be used to turn a gain game into a loss game and

vice versa.

The invariance by general translations is the hardest to obtain, and this paper is the first

one to show tight translation-invariant bounds that depend on the specific sequence of payoffs

rather than just on its length (see Corollary 2, Theorem 6 and some of their corollaries, e.g.,

Corollary 1). It is also important to remark that, in a stable bound, not only the leading term,

but also the smaller order terms, have to be stable under translations. This is why the smaller

order terms of Corollary 2 and Theorem 6 involve bounds on the payoff ranges xi,t − x j,t

rather than just on the payoffs xi,t .

Rescalings: x ′
i,t = α xi,t , α > 0.

As this transformation causes the regret to be multiplied by a factor of α, stable bounds

should only change by the same factor α. Obtaining bounds that are stable under rescalings

is not always easy when the payoff ranges are not known beforehand, or when we try to

get bounds sharper than the basic zero-order bounds discussed in Section 2.1. For instance,

the application of a doubling trick on the magnitude of the payoffs, or even the use of

more sophisticated incremental techniques, may lead to small but undesirable M ln(Mn)

terms, which behave badly upon rescalings. This was the case with the remainder term

M ln(1 + |X∗
n |) in Theorem 2.1 by Auer, Cesa-Bianchi, and Gentile (2002) where they assume

knowledge of the payoff range but seek sharper bounds.

Note also that forecasters with scaling-invariant bounds should require no previous knowl-

edge on the payoff sequence (such as the payoff range) as this information is scale-sensitive.

This is why, for instance, the bounds of Theorems 2 and 5 cannot be considered scaling-

invariant. However, modifications of these forecasters that increase their adaptiveness lead to

Theorems 4 and 6. There we could derive scaling-invariant bounds by using forecasters based

on updates which are defined in terms of quantities that already have this type of invariance.

Whereas translation-invariant bounds that are also sharp are generally hard to obtain, we

feel that any bound can be made stable with respect to rescalings via a reasonably accurate

analysis.

Unstable bounds can lead the meta-forecaster to Cornelian dilemmas. Consider for the

instance the bound (4) by Allenberg-Neeman and Neeman (2004). If we use a meta-forecaster

that translates payoffs by a quantity μt (possibly depending on past observations), then the

bound takes the form

√√√√M(ln N ) max
t=1,...,n

t∑
s=1

|xk∗
t ,s − μs | + M ln N .

Note that the choice μt = −M (or μt = min j=1,...,N x j,t ) yields the improvement for small

payoffs (2) and the choice μt = M (or μt = max j=1,...,N x j,t ) yields the improvement for

large payoffs (3). In general, the above bound is tight if, for a large number of rounds, all

payoffs x j,t at a given round t are close to a common value, and we may guess this value to

choose μt accordingly. In Section 5.2.3, on the other hand, we show that Corollaries 3 and 4

propose bounds that need no preliminary choices of μt and are better than both (2) and (3).
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6 Discussion and open problems

We have analyzed forecasting algorithms that work indifferently in loss games, gain games,

and signed games. In Corollary 2 and Theorem 6 we have shown, for these forecasters, sharp

regret bounds that are stable under rescalings and general translations. These bounds lead to

improvements for small or large payoffs in one-sided games (Corollaries 3 and 4) and do not

assume any preliminary information about the payoff sequence.2

A practical advantage of the weighted majority forecaster is that its update rule is com-

pletely incremental and never needs to reset the weights. This in contrast to the forecaster

prod − MQ of Theorem 4 that uses a nested doubling trick. On the other hand, the bound

proposed in Theorem 6 is not in closed form, as it still explicitly depends through Vn on the

forecaster’s rewards x̂t . We therefore need to solve for the regrets as we did, for instance,

in Sections 4.4 and 5.2. Finally, it was also noted in Section 4.4 that the weighted majority

forecaster update is invariant under translations of the payoffs. This is not the case for the

prod-type forecasters, which need to perform translations explicitly. Though in general it

may be difficult to determine beforehand what a good translation could be, Corollaries 2

and 4, as well as Remark 2, indicate some general effective translation rules.

Several issues are left open:

– Design and analyze incremental updates for the prod-type forecasters of Section 3.

– Obtain second-order bounds with updates that are not multiplicative; for instance, updates

based on the polynomial potentials (see Cesa-Bianchi & Lugosi, 2003). These updates

could be used as basic ingredients to derive forecasters achieving optimal orders of mag-

nitude on the regret when applied to problems such as nonstochastic multiarmed bandits,

label-efficient prediction, and partial monitoring. Note that, to the best of our knowledge,

in the literature about incomplete information problems only exponentially weighted av-

erages have been able to achieve these optimal rates (see Section 4.5 and the references

therein).

– Extend the analysis of prod-type algorithms to obtain an oracle inequality of the form

X̂n ≥ max
k=1,...,N

(
Xk,n − γ1

√
Qk,n ln N

)
− γ2 M ln N

where γ1 and γ2 are absolute constants. Inequalities of this form can be viewed as game-

theoretic versions of the model selection bounds in statistical learning theory.

Appendix

Proof of Theorem 4

We use some additional notation for the proof: (r, s) − 1 denotes the epoch right before

(r, s); that is, (r, s − 1) when s > 0, and (r − 1, Sr−1 − Sr−2) when s = 0. For notational

convenience, t(0,0)−1 is conventionally set to 0.

2 Whereas the bound of Theorem 6 is already stated this way, we recall that it is easy to modify the forecaster
used to prove Corollary 2 in order to dispense with the need of any preliminary knowledge of a bound E on
the payoff ranges.
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Proof: The proof combines the techniques from Theorems 2 and 3. As in the proof of

Theorem 3, we denote by (R, SR − SR−1) the index of the last epoch and let t(R,SR−SR−1) = n.

We assume R ≥ 1 and SR ≥ 1. Otherwise, if R = 0, this means that Mt = M (0) for all

t ≤ n − 1, and the strategy, and thus the proposed bound, reduces to the one of Theorem 2.

The case SR = 0 is dealt with at the end of the proof. In particular, SR ≥ 1 implies that some

epoch ended at time t when Q∗
t > 4SR−1 M2

t . This implies that q ≥ 4SR−1(≥ 1), which in turn

implies 2SR ≤ 2
√

q and SR ≤ 1 + (log2 q)/2.

Denote M (R+1) = Mn . Note that at time n we have either Mn ≤ M (R), implying Mn =
M (R+1) = M (R), or we have Mn > M (R), implying Mn = M (R+1) = 2M (R). In both cases,

M (R) ≤ M (R+1) ≤ 2M . Furthermore, M (s) ≥ 2s−r M (r ) for each 0 ≤ r ≤ s ≤ R, and thus (11)

holds for s ≤ R with Mtr replaced by M (r ).

Similar to the proof of Theorem 2, for each epoch (r, s), let

X (r,s)
k =

t(r,s)−1∑
t=t(r,s)−1+1

xk,t , Q(r,s)
k =

t(r,s)−1∑
t=t(r,s)−1+1

x2
k,t , X̂ (r,s) =

t(r,s)−1∑
t=t(r,s)−1+1̂

xt

where the sums are over all the time steps t in epoch (r, s) except the last one, t(r,s). We also

denote k(r,s) = k∗
t(r,s)−1 the index of the best overall expert up to time t(r,s) − 1 (one time step

before the end of epoch (r, s)).

We upper bound the cumulative payoff of the best action as

X∗
n ≤

R∑
r=0

(
M (r+1) + (Sr − Sr−1)M (r ) +

Sr −Sr−1∑
s=0

X (r,s)
k(r,s)

)
(20)

by using the same argument by induction as in (10). More precisely, we write, for each (s, r ),

Xk(r,s),t(r,s)−1 = X (r,s)
k(r,s)

+ Mt(r,s)−1
+ Xk(r,s)−1,t(r,s)−1−1

≤ X (r,s)
k(r,s)

+ Mt(r,s)−1
+ Xk(r,s)−1,t(r,s)−1−1.

We note that Mt(r,s)−1
= M (r ) whenever 0 ≤ s < Sr − Sr−1 and Mt(r,s)−1

= M (r+1) otherwise.

This and

X∗
n ≤ X∗

n−1 + M (R+1) = Xk(R,SR ),t(R,SR )−1 + M (R+1)

show (20) by induction.

Let

κ =
R∑

r=0

(
M (r+1) + (Sr − Sr−1)M (r )

)
.

To show a bound on κ note that (11) implies

R∑
r=0

M (r+1) ≤ 2M (R) + M (R+1) ≤ 3M (R+1) ≤ 6M (21)
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and

R∑
r=0

(Sr − Sr−1)M (r ) ≤ 2M SR ≤ M(2 + log2 q).

Thus, κ ≤ (8 + log2 q)M .

Now, similarly to the above bound on X∗
n ,

X̂n ≥ −κ +
R∑

r=0

Sr −Sr−1∑
s=0

X̂ (r,s)

so that the regret X̂n − X∗
n is larger than

X̂n − X∗
n ≥ −2κ +

R∑
r=0

Sr −Sr−1∑
s=0

(
X̂ (r,s) − X (r,s)

k(r,s)

)
.

Now note that each time step t (but the last one) of epoch (r, s) satisfies Mt ≤ M (r ) and

η(r,s) ≤ 1/2M (r ). Therefore, we can apply Lemma 2 to X̂ (r,s) − X (r,s)
k(r,s)

for each epoch (r, s).

This gives

X̂n − X∗
n ≥ −2κ −

R∑
r=0

Sr −Sr−1∑
s=0

(
ln N

η(r,s)

+ η(r,s) Q(r,s)
k(r,s)

)
.

By definition of the algorithm, for all epochs (r, s),

Q(r,s)
k(r,s)

≤ Qk(r,s),t(r,s)−1 = Q∗
t(r,s)−1 ≤ 4Sr−1+s

(
M (r )

)2

and

η(r,s) ≤
√

ln N
/(

2Sr−1+s M (r )
)
.

Therefore,

R∑
r=0

Sr −Sr−1∑
s=0

η(r,s) Q(r,s)
k(r,s)

≤
R∑

r=0

Sr −Sr−1∑
s=0

2Sr−1+s M (r )
√

ln N

≤
R∑

r=0

Sr −Sr−1∑
s=1

2Sr−1+s(2M)
√

ln N +
R∑

r=0

2Sr−1 M (r )
√

ln N

≤ (2M)
SR∑

s=1

2s
√

ln N + 2SR

R∑
r=0

M (r )
√

ln N

≤ (2M)2SR+1
√

ln N + 2SR (4M)
√

ln N (22)

(using (11) and M (R) ≤ 2M)

≤ (16M)
√

q ln N
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since q ≥ 4SR−1 implies 2SR ≤ 2
√

q .

We now turn our attention to the remaining sum

R∑
r=0

Sr −Sr−1∑
s=0

ln N

η(r,s)

.

By definition of the algorithm,

η(r,s) =
{

1/(2M (r )) if Sr−1 + s ≤ �(log2 ln N )/2�
√

ln N/(2Sr−1+s M (r )) otherwise.

We denote by (r∗, s∗) the last couple (r, s) for which ηr,s = 1/(2M (r )). With obvious notation,

a crude overapproximation leads to

R∑
r=0

Sr −Sr−1∑
s=0

ln N

η(r,s)

≤
∑

(r,s)≤(r∗,s∗)

2M (r ) ln N +
R∑

r=0

Sr −Sr−1∑
s=0

2Sr−1+s M (r )
√

ln N .

We already have the upper bound (16M)
√

q ln N for the second sum. For the first one, we

write

∑
(r,s)≤(r∗,s∗)

2M (r ) ln N

=
r∗∑

r=0

2M (r ) ln N +
r∗−1∑
r=0

(Sr − Sr−1)
(
2M (r )

)
ln N + s∗(2M (r∗)

)
ln N

≤
R∑

r=0

2M (r ) ln N + (Sr∗−1 + s∗)(4M) ln N

≤ 2M(ln N ) (3 + 2�(log2 ln N )/2�)

where we used (21). The proof is concluded in the case SR ≥ 1 by putting things together

and performing some overapproximation.

When SR = 0, q = 1, κ is simply less than 6M , (22) is less than 8M
√

ln N , so that the

bound holds as well in this case. �

Proof of Lemma 3

We first note that Jensen’s inequality implies that � is nonnegative.

The proof below is a simple modification of an argument first proposed in Auer, Cesa-

Bianchi, and Gentile (2002). Note that we consider real-valued (non necessarily nonnegative)

payoffs in what follows. For t = 1, . . . , n, we rewrite pi,t = wi,t/Wt , where wi,t = eηt Xi,t−1

and Wt = ∑N
j=1 w j,t (the payoffs Xi,0 are understood to equal 0, and thus, η1 may be any

positive number satisfying η1 ≥ η2). Use w′
i,t = eηt−1 Xi,t−1 to denote the weight wi,t where

the parameter ηt is replaced by ηt−1. The associated normalization factor will be denoted by
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W ′
t = ∑N

j=1 w′
j,t . Finally, we use j∗

t to denote the expert with the largest cumulative payoff

after the first t rounds (ties are broken by choosing the expert with smallest index). That is,

X j∗
t ,t = maxi≤N Xi,t . We also make use of the following technical lemma.

Lemma 5 (Auer, Cesa-Bianchi, and Gentile, 2002). For all N ≥ 2, for all β ≥ α ≥ 0, and
for all d1, . . . , dN ≥ 0 such that

∑N
i=1 e−αdi ≥ 1,

ln

∑N
i=1 e−αdi∑N
j=1 e−βd j

≤ β − α

α
ln N .

Proof [of Lemma 5]: We begin by writing

ln

∑N
i=1 e−αdi∑N
j=1 e−βd j

= ln

∑N
i=1 e−αdi∑N

j=1 e(α−β)d j e−αd j

= − ln E
[
e(α−β)D

]
≤ (β − α)E [D]

where we applied Jensen’s inequality to the random variable D taking value di with proba-

bility e−αdi /
∑N

j=1 e−αd j for each i = 1, . . . , N . Since D takes at most N distinct values, its

entropy H (D) is at most ln N . Therefore

ln N ≥ H (D) =
∑N

i=1 e−αdi∑N
j=1 e−βd j

(
αdi + ln

N∑
j=1

e−βd j

)

= αE [D] + ln
N∑

j=1

e−βd j ≥ αE [D]

where the last inequality holds since
∑N

i=1 e−αdi ≥ 1. Hence E [D] ≤ (ln N )/α. As β > α

by hypothesis, we can plug the bound on E [D] in the upper bound above and conclude the

proof. �

Proof [of Lemma 3]: As it is usual in the analysis of the exponentially weighted average

predictor, we study the evolution of ln(Wt+1/Wt ). However, here we need to couple this

term with ln(w j∗
t−1,t/w j∗

t ,t+1) including in both terms the time-varying parameters ηt , ηt+1.

Tracking the currently best expert j∗
t is used to lower bound the weight ln(w j∗

t ,t+1/Wt+1). In

fact, the weight of the overall best expert (after n rounds) could get arbitrarily small during

the prediction process. We thus obtain the following

1

ηt
ln

w j∗
t−1,t

Wt
− 1

ηt+1

ln
w j∗

t ,t+1

Wt+1

=
(

1

ηt+1

− 1

ηt

)
ln

Wt+1

w j∗
t ,t+1

+ 1

ηt
ln

w′
j∗
t ,t+1/W ′

t+1

w j∗
t ,t+1/Wt+1

+ 1

ηt
ln

w j∗
t−1,t/Wt

w′
j∗
t ,t+1/W ′

t+1

= (A) + (B) + (C).
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We now bound separately the three terms on the right-hand side. The term (A) is easily

bounded by using ηt+1 ≤ ηt and using the fact that j∗
t is the index of the expert with largest

payoff after the first t rounds. Therefore, w j∗
t ,t+1/Wt+1 must be at least 1/N . Thus we have

(A) =
(

1

ηt+1

− 1

ηt

)
ln

Wt+1

w j∗
t ,t+1

≤
(

1

ηt+1

− 1

ηt

)
ln N .

We proceed to bounding the term (B) as follows

(B) = 1

ηt
ln

w′
j∗
t ,t+1/W ′

t+1

w j∗
t ,t+1/Wt+1

= 1

ηt
ln

∑N
i=1 e−ηt+1(X j∗t ,t −Xi,t )∑N
j=1 e−ηt (X j∗t ,t −X j,t )

≤ ηt − ηt+1

ηtηt+1

ln N =
(

1

ηt+1

− 1

ηt

)
ln N

where the inequality is proven by applying Lemma 5 with di = X j∗
t ,t − Xi,t . Note that di ≥ 0

since j∗
t is the index of the expert with largest payoff after the first t rounds and

∑N
i=1 e−ηt+1di ≥

1 as for i = j∗
t we have di = 0.

The term (C) is first split as follows,

(C) = 1

ηt
ln

w j∗
t−1,t/Wt

w′
j∗
t ,t+1/W ′

t+1

= 1

ηt
ln

w j∗
t−1,t

w′
j∗
t ,t+1

+ 1

ηt
ln

W ′
t+1

Wt
.

We bound separately each one of the two terms on the right-hand side. For the first one, we

have

1

ηt
ln

w j∗
t−1,t

w′
j∗
t ,t+1

= 1

ηt
ln

e
ηt X j∗t−1

,t−1

eηt X j∗t ,t
= X j∗

t−1,t−1 − X j∗
t ,t .

The second term is handled by using the very definition of �,

1

ηt
ln

W ′
t+1

Wt
= 1

ηt
ln

∑N
i=1 wi,t eηt xi,t

Wt
= 1

ηt
ln

N∑
i=1

pi,t e
ηt xi,t

=
N∑

i=1

pi,t xi,t + �(pt , ηt , xt ).

Finally, we plug back in the main equation the bounds on the first two terms (A) and (B),

and the bounds on the two parts of the term (C). After rearranging we obtain

0 ≤ (
X j∗

t−1,t−1 − X j∗
t ,t

) +
N∑

i=1

pi,t xi,t + �(pt , ηt , xt )

− 1

ηt+1

ln
w j∗

t ,t+1

Wt+1

+ 1

ηt
ln

w j∗
t−1,t

Wt

+ 2

(
1

ηt+1

− 1

ηt

)
ln N .
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We apply the above inequalities to each t = 1, . . . , n and sum up using

n∑
t=1

X j∗
t−1,t−1 − X j∗

t ,t = − max
j=1,...,N

X j,n

and
n∑

t=1

(
− 1

ηt+1

ln
w j∗

t ,t+1

Wt+1

+ 1

ηt
ln

w j∗
t−1,t

Wt

)
≤ − 1

η1

ln
w j∗

0 ,1

W1

= ln N

η1

to conclude the proof. �
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