
Improved Side-Channel Collision Attacks

on AES

Andrey Bogdanov

Chair for Communication Security
Ruhr University Bochum, Germany

abogdanov@crypto.rub.de

www.crypto.rub.de

Abstract. Side-channel collision attacks were proposed in [1] and ap-
plied to AES in [2]. These are based on detecting collisions in certain
positions of the internal state after the first AES round for different
executions of the algorithm. The attack needs about 40 measurements
and 512 MB precomputed values as well as requires the chosen-plaintext
possibility.

In this paper we show how to mount a collision attack on AES us-
ing only 6 measurements and about 237.15 offline computational steps
working with a probability of about 0.85. Another attack uses only 7
measurements and finds the full encryption key with an offline complex-
ity of about 234.74 with a probability of 0.99. All our attacks require
a negligible amount of memory only and work in the known-plaintext
model. This becomes possible by considering collisions in the S-box lay-
ers both for different AES executions and within the same AES run.
All the attacks work under the assumption that one-byte collisions are
detectable.

Keywords: AES, collision attacks, side-channel attacks, generalized col-
lisions, connected components, random graphs.

1 Introduction

An internal collision, as defined in [1] and [2], occurs, if a function f within
a cryptographic algorithm processes different input arguments, but returns an
equal output argument. As applied to AES, Schramm et al. [2] consider the
byte transforms of the MixColumn operation of the first AES round as the
colliding function f . To detect collisions, power consumption curves bytewise
corresponding to separate S-box operations in the second round at a certain
internal state position after the key addition are compared.

The key idea of our improved collision attacks on AES is that one can detect
equal inputs to various S-boxes by comparing the corresponding power consump-
tion curves. This turns out to be possible not only for the outputs of the same
function f : Using this technique, it can be possible to detect whether two in-
puts to the AES S-box are equal within the same AES execution as well as for
different AES runs.

C. Adams, A. Miri, and M. Wiener (Eds.): SAC 2007, LNCS 4876, pp. 84–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

abogdanov@crypto.rub.de
www.crypto.rub.de

Improved Side-Channel Collision Attacks on AES 85

We introduce the notion of a generalized internal collision for AES that occurs
within one or several AES runs, if there are two equal input bytes to the S-
box operation in some (possibly different) rounds at some (possibly different)
byte positions for one or several measurements. In other words, we take all
applications of the S-box transform within a number of AES executions and
compare them pairwise to each other. As the S-box operation is applied 16 times
in each of the 10 rounds (160 varied S-box operations), this gives us about 40
generalized collisions within a single AES run or about 710 generalized collisions
within just 6 AES executions.

Each of such collisions can be considered as a (generally) non-linear equa-
tion over GF (28). The set of all detected collisions corresponds to a system of
non-linear equations with respect to the key bytes. In this paper we explore the
question of how to solve this large number of equations linearly. To be able to
linearize, we restrict our consideration to the first two rounds. There are three
most efficient attacks in this class we found. The first one requires 7 measure-
ments and 234.74 offline operations on average with a probability of 0.99. The
second attack needs about 6 measurements and about 237.15 offline operations
with probability 0.854 or about 244.3 operations with probability 0.927. The
third one recovers the key with just 5 measurements and about 237.34 simple
offline operations with probability 0.372 or about 245.5 operations with proba-
bility 0.548. This is to be compared to about 40 measurements required in the
basic collision attack [2] on AES with some non-negligible post-processing, 29
measurements required for the AES-based Apha-MAC internal state recovery
in [3] with about 234 offline operations with a success probability > 0.5, and
typically several hundred measurements for a DPA (differential power analysis)
attack.

Our attacks work, as DPA and the collision attacks on Alpha-MAC in [3], in
the known-plaintext model, while the attack in [2] is applicable in the chosen-
plaintext scenario only. Moreover, as in [3], we do not need to know the output
of the cryptographic transformation for the side-channel attack itself. However,
our attacks mentioned above do need one plaintext-ciphertext pair for choosing
the correct key from a set of key candidates in the offline post-processing stage.
Note that this input-output pair does not have to be one of the those for which
the measurements have been performed.

We use both theoretical and experimental tools for estimating the efficiency
of our attacks. Linear systems of equations are rewritten in terms of associated
undirected graphs. As the resulting equation systems never possess the full rank,
combinatorial methods are applied to solve these systems. The complexity of
these methods can be analyzed through connected components of those graphs.
The expected number of edges in such a graph is computed theoretically. The
number of connected components, which defines the overall complexity of the
offline attack stage, is estimated using thorough computer simulations for the
numbers of edges obtained theoretically.

The remainder of the paper is organized as follows. Section 2 outlines the
basic collision attack on AES. Section 3 rigorously introduces the notion of

86 A. Bogdanov

a generalized internal collision for AES as well as specifies and analyzes our
enhanced collision attacks. In Section 4 we discuss the technical framework and
practical feasibility of our attacks. We conclude in Section 5.

2 Basic Collision Attack on AES

Side-channel collision attacks were proposed for the case of the DES in [1] and
enhanced in [4]. AES was attacked using collision techniques in [2]. This side-
channel collision attack on AES is based on detecting internal one-byte collisions
in the MixColumns transformation in the first AES round. The basic idea is
to identify pairs of plaintexts leading to the same byte value in an output byte
after the MixColumns transformation of the first round and to use these pairs
to deduce information about some key bytes involved into the transformation.

Let A = (aij) with i, j = 0, 3 and aij ∈ GF (28) be the internal state in the first
AES round after key addition, byte substitution and the ShiftRows operation.
Let B = (bij) with i, j = 0, 3 and bij ∈ GF (28) be the internal state after the
MixColumns transformation, B = MixColumns(A), where the MixColumns
transformation is defined for each column j as follows:

⎛
⎜⎜⎝

b0j

b1j

b2j

b3j

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠×

⎛
⎜⎜⎝

a0j

a1j

a2j

a3j

⎞
⎟⎟⎠ . (1)

Here all operations are performed over GF (28). Let P = (pij) with i, j = 0, 3,
pij ∈ GF (28), and K = (kij) with i, j = 0, 3, kij ∈ GF (28), denote the plaintext
block and the first subkey, respectively. Then b00 can be represented as:

b00 = 02 · a00 ⊕ 03 · a10 ⊕ 01 · a20 ⊕ 01 · a30 =
= 02 · S(p00 ⊕ k00) ⊕ 03 · S(p11 ⊕ k11)

⊕01 · S(p22 ⊕ k22) ⊕ 01 · S(p33 ⊕ k33).
(2)

For two plaintexts P and P ′ with p00 = p11 = p22 = p33 = δ and p′00 = p′11 =
p′22 = p′33 = ε, δ �= ε, one obtains the following, provided b00 = b′00:

02 · S(k00 ⊕ δ) ⊕ 03 · S(k11 ⊕ δ) ⊕ 01 · S(k22 ⊕ δ) ⊕ 01 · S(k33 ⊕ δ)
= 02 · S(k00 ⊕ ε) ⊕ 03 · S(k11 ⊕ ε) ⊕ 01 · S(k22 ⊕ ε) ⊕ 01 · S(k33 ⊕ ε) (3)

Let Cδ,ε be the set of all key bytes k00, k11, k22, k33 that lead to a collision (3) with
plaintexts (δ, ε). Such sets are pre-computed and stored for all 216 pairs (δ, ε).
Each set contains on average 224 candidates for the four key bytes. Actually,
every set Cε,δ can be computed from the set Cε⊕δ,0 using some relations between
the sets. Due to certain dependencies within the sets, this optimization reduces
the required disk space to about 540 megabytes.

The attack on the single internal state byte b00 works as follows. The attacker
generates random values (ε, δ) and inputs them to the AES module as described

Improved Side-Channel Collision Attacks on AES 87

above. The power consumption curve for the time period, where b00 is processed,
is stored. Then the attacker proceeds with other random values (ε′, δ′), measures
the power profile, stores it and correlates it with all stored power curves. And so
on. One needs about 4 collisions (one in each output byte of a column) to recover
the four bytes involved into the MixColumns transformation. The probability
that after N operations at least one collision b00 = b′00 occurs in a single byte is:

pN = 1 −
N−1∏
l=0

(1 − l/28). (4)

Actually, the attack can be parallelized to search for collisions in all four columns
of B in parallel. In this case the attacker needs at least 16 collisions, 4 for each
column of B, so p16

N ≥ 1/2 and N ≈ 40. Once the required number of collisions
was detected, he uses the pre-computed tables Cε⊕δ,0 to recover all four key
bytes for each column by intersecting the pre-computed key sets corresponding
to the collisions (ε, δ) detected. Thus, on average one has to perform about 40
measurements to obtain all 16 collisions needed and to determine all 16 key
bytes. Note that since the cardinality of the intersections for the sets Cε,δ is
not always 1, there are a number of key candidates to be tested using a known
plaintext-ciphertext pair.

AddRoundKey

SubBytes

AddRoundKey

SubBytes

α

α

β

β

k
(1)
03

p1
03

k
(1)
22 p3

22

k
(1)
03 ⊕ k

(1)
22 = p1

03 ⊕ p3
22

Fig. 1. Generalized internal collision within the first round of two AES runs

88 A. Bogdanov

3 Our Improved Collision Attacks on AES

3.1 Generalized Internal Collisions

In round i = 1, 10, AES performs the SubSytes operation (16 parallel S-box
applications) on the output bytes of the previous round XORed with the i-th
round subkey K(i). A generalized internal AES collision occurs, if there are two
S-boxes within the same AES execution or within several AES runs accepting
the same byte value as their input.

In Figure 1 a collision within the first round of two different AES executions
(number 1 and 3) is illustrated. pj

v,u, v, u = 0, 3, are plaintext bytes for the jth
measurement. k

(1)
v,u, v, u = 0, 3, are the first subkey bytes remaining constant for

the both executions. In the example of Figure 1, byte 03 in the first execution
and byte 22 in the third execution collide.

A detected collision in the S-box layer of the first round in bytes (i1, j1) and
(i2, j2) with i1, j1, i2, j2 = 0, 3 corresponds to the following linear equation:

S(k(1)
i1,j1

⊕ px
i1,j1) = S(k(1)

i2,j2
⊕ py

i2,j2
), (5)

k
(1)
i1,j1

⊕ k
(1)
i2,j2

= Δ
(1)
(i1,j1),(i2,j2) = px

i1,j1 ⊕ py
i2,j2

(6)

for some known plaintext bytes px
i1,j1

and py
i2,j2

with some positive integers x, y
indicating measurement numbers. In the same way, one can rewrite equations
resulting from collisions within some other round i = 2, 10. In this case we
have some unknown key- and plaintext-dependent byte variables instead of the
plaintext bytes px

i1,j1 and py
i2,j2

.

3.2 Systems of Equations and Associated Graphs

First, we consider the structure of a random system of m linear equations of
type (6) resulting from a number of collisions detected within the S-box layer in
the first round:

Sm :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k
(1)
i1,j1

⊕ k
(1)
i2,j2

= Δ
(1)
(i1,j1),(i2,j2)

k
(1)
i3,j3

⊕ k
(1)
i4,j4

= Δ
(1)
(i3,j3),(i4,j4)

. . .

k
(1)
i2m−1,j2m−1

⊕ k
(1)
i2m,j2m

= Δ
(1)
(i2m−1,j2m−1),(i2m,j2m).

(7)

Note that this system has 16 variables (bytes of the first round subkey). In
system (7) the key byte numbers and the variables are not necessarily pairwise
distinct.

The following straightforward proposition holds for Sm:

Proposition 1. The maximal rank of Sm is 15, rank(Sm) ≤ 15.

Improved Side-Channel Collision Attacks on AES 89

Proof. The maximal rank of 15 is attained, for instance, for
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k
(1)
0,0 ⊕ k

(1)
0,1 = Δ

(1)
(0,0),(0,1)

k
(1)
0,1 ⊕ k

(1)
0,2 = Δ

(1)
(0,1),(0,2)

. . .

k
(1)
3,1 ⊕ k

(1)
3,2 = Δ

(1)
(3,1),(3,2)

k
(1)
3,2 ⊕ k

(1)
3,3 = Δ

(1)
(3,2),(3,3).

(8)

It is easy to see that the XOR of any other pair of variables can be obtained as
a sum of two of the 15 equations in (8). Thus, 15 is the maximal rank for Sm �

We use the graph representation of Sm for our analysis.

Definition 1. A random graph Gm = 〈V, E〉 is associated with the random
system Sm of linear equations, where V = {k(1)

0,0, k
(1)
0,1, . . . , k

(1)
3,3} is the set of

16 vertices of Gm and the edge (k(1)
i1,j1

, k
(1)
i2,j2

) belongs to the edge set E iff the
binomial equation

k
(1)
i1,j1

⊕ k
(1)
i2,j2

= Δ(i1,j1),(i2,j2)

belongs to the system Sm, |E| = m.

Among others, the associated graph possesses the following obvious properties:

Proposition 2. The system Sm is of the maximal rank 15 iff its associated
graph Gm is connected.

Proposition 3. Let G = 〈V, E〉 be a non-directed graph with n vertices, |V | = n.
If

|E| >

(
n − 1

2

)
,

the graph G is connected.

For Gm Proposition 3 implies that if |E| > 105, Gm is necessarily connected and,
thus, Sm has the maximal rank of 15. A system of type (7) having the maximal
rank can be solved by assigning a byte value to some variable k

(1)
i,j (which is

equivalent to adding a further, linearly non-dependent equation k
(1)
i,j = Δ

(1)
i,j to

the system) and uniquely solving the system

Sm ∪
{
k

(1)
i,j = Δ

(1)
i,j

}

of rank 16. Then another byte value is assigned to that variable. The correct key
is identified on the basis of a known plaintext-ciphertext pair.

Generally speaking, it is not necessary for Sm to have the maximal rank.
If there are several isolated subsystems within Sm, then each of them can be
solved independently as described above. If there are q independent subsystems
SS1

m, . . . , SSq
m in Sm, then Sm can be represented as a union of these subsystems:

Sm = SS1
m ∪ · · · ∪ SSq

m, SSi
m ∩ SSj

m = ∅, i �= j.

90 A. Bogdanov

To solve Sm in this case, one has to assign q byte values to some q variables in
the subsystems {SSi

m}q
i=1. At the end there are 28q key candidates. The correct

key is identified using a known plaintext-ciphertext pair as outlined above.
It is clear that the independent subsystems {SSi

m}q
i=1 of Sm correspond to

the q connected components of the associated graph Gm.
The number of connected components of a random graph has the following

asymptotic behaviour:

Proposition 4. Let G be a random graph with n labeled vertices and N =
� 1

2n log n + cn
 for some constant c. Let q = qn,N be the number of connected
components in G. Then:

lim
n→∞Pr {q = i + 1} =

(e−2c)i

i!
exp

{−e−2c
}

.

Proof. See Theorem 2.3 in [5] �

Unfortunately, the estimate of Proposition 4 for the number of connected com-
ponents cannot be directly applied for Sm, since its associated graph has only
16 vertices.

3.3 Expected Number of Random Binomial Equations

The number of edges in the associated graph Gm can be estimated using the
following

Proposition 5. If generalized byte collision in AES are always detectable, the
expected number E(m) of edges in Gm (equivalently, the expected number of
binomial equations in Sm) for the first round of AES after t ≥ 1 measurements is

E(m) = 120 ·
(

1 −
(

119
120

)16t−256+256·exp{16t·ln 255
256})

.

Proof. The expected number of generalized collisions within the first round after
t measurements can be estimated as:

N1R = 16t − 256 + 256 ·
(

255
256

)16t

, (9)

where 16t is the number of S-box operations in one AES round within t mea-
surements. This equation is a reformulation of the birthday paradox.

The expected number of edges in a random graph with n labeled vertices
after N1R random selections of edges (after N1R generalized collisions) can be
interpreted as the expected number of filled boxes after N1R random shots in
the classical shot problem, which was studied e.g. in Chapter 1 of [6]. In the case

of a graph,one deals with
(

n
2

)
boxes (possible graph edges) and the expected

number of edges after N1R collisions is

Improved Side-Channel Collision Attacks on AES 91

Table 1. Number of collisions and edges in Gm according to Proposition 5

Measurements, t 4 5 6 7 8 9 11 29

1R collisions, N1R 7.27 11.18 15.82 21.14 28.12 33.70 48.55 249.64

Edges, E(m) 7.09 10.72 14.88 19.46 24.36 29.49 40.07 105.14

E(m) =
(

n
2

)
⎛
⎜⎜⎝1 −

⎛
⎜⎜⎝1 − 1(

n
2

)

⎞
⎟⎟⎠

N1R
⎞
⎟⎟⎠ . (10)

As n = 16 for the case of AES, one obtains the claim of the proposition by
combining (9) and (10) �

Table 1 contains theoretical estimations for the numbers of 1R-collisions N1R and
edges E(m) depending on the number of measurements t for some interesting t’s.

Note that according to Proposition 3, it is expected that after 29 measure-
ments one obtains 105 edges which provide the maximal rank of Sm. However,
on average a lower number of edges are sufficient for the Gm to be connected
with a high probability (see Section 3.4).

3.4 Number of Connected Components in Associated Graphs

In order to estimate the number q of connected components for Gm accounting
for the offline complexity, statistical simulation was applied consisting of gener-
ating a random graph on 16 vertices corresponding to t measurements as well as
counting the number of connected components q using a variation of Karp and
Tarjan’s algorithm [7] for finding connected components of a graph. Note that
the expected complexity of this algorithm in O(n), that is, linear in the number
of vertices. For each number of measurement we performed 216 simulations with
random graphs.

The results of our simulations are shown in Table 2. The first and second
rows of the table represent measurement numbers and average numbers of edges
in Gm according to Proposition 5 (see also Table 1), respectively. The offline

Table 2. Offline complexity and success probabilities

Measurements, t 4 5 6 7 8 9 11 29

Number of edges in Gm, m 7.09 10.72 14.88 19.46 24.36 29.49 40.07 105.14

Connected components of Gm, q 8.81 5.88 3.74 2.20 1.43 1.15 1.04 1.00

Offline complexity ≤ 40 bit 34.70 37.34 37.15 34.74 30.32 21.36 12.11 8

Success probability ≤ 40 bit 0.037 0.372 0.854 0.991 0.999 1.000 1.000 1.000

Offline complexity ≤ 48 bit 43.90 45.50 44.30 41.14 30.32 21.36 12.11 8

Success probability ≤ 48 bit 0.092 0.548 0.927 0.997 0.999 1.000 1.000 1.000

92 A. Bogdanov

k
(1)
0,0 k

(1)
0,1 k

(1)
0,2 k

(1)
0,3

k
(1)
1,0 k

(1)
1,1 k

(1)
1,2 k

(1)
1,3

k
(1)
2,0 k

(1)
2,1 k

(1)
2,2 k

(1)
2,3

k
(1)
3,0 k

(1)
3,1 k

(1)
3,2 k

(1)
3,3

Fig. 2. Typical random graph with 13 edges and 4 components

complexity is given for two cases: ≤ 40 bit and ≤ 48 bit. In the first case, only
offline complexities ≤ 240 are considered in the computation of the average offline
complexity value. For each number of measurements the probability is provided
that the overall offline complexity is ≤ 240. In the second case, the upper bound
for the offline complexities taken into account is 248. The corresponding success
probabilities are also provided in the table.

A low-complexity offline stage of the attack becomes probable after 5 measure-
ments (245.5 simple steps with a probability of 0.548). Practically all instances of
linear systems resulting from 7 measurements are easily solvable with an average
complexity of 234.74 steps (with a probability of 0.99). After 11 measurements
the expected offline attack complexity is about 212.11.

Figure 2 shows a typical random graphGm associatedwith a randomsystem Sm

of linear equations with m = 13 and 4 independent subsystems (4 connected com-
ponents): {k(1)

0,0, k
(1)
2,3, k

(1)
0,1, k

(1)
0,2, k

(1)
0,3, k

(1)
1,3, k

(1)
2,0}, {k(1)

2,2, k
(1)
3,0, k

(1)
3,1, k

(1)
3,2, k

(1)
1,0, k

(1)
1,2},

{k(1)
1,1, k

(1)
2,1}, {k(1)

3,3}.

3.5 Optimization of the Attack

In this subsection we propose an optimization of the attack described in the
previous subsections. It consists in generating additional collisions for the first
round by considering the second round and key schedule.

The basis of this optimization is the fact that there are also generalized byte
collisions within the second AES round as well as between the first and the
second AES rounds. However, as opposed to those in the first round, the values
of inputs to the second round are not known and depend on the key and plaintext
bytes in a non-linear way.

Improved Side-Channel Collision Attacks on AES 93

Suppose after N1R collisions have been detected, the graph Gm consists of q
connected components, but their number is too high to allow for an efficient so-
lution of the corresponding system (e.g. q = 7). Let 2 or 3 connected components
of this graph contain at least two diagonals of the first subkey K(1). Then we
can test all 216 or 224, respectively, possible candidates for these diagonals. Each
subkey diagonal in the first round corresponds to a column in the second round.
Thus, at least two columns of the input to the second round can be considered
as known. Now we assume that a number of other bytes of the first round subkey
also lie in the same 2 or 3 connected components of Gm. This can allow for the
recovery of some of the second round subkey bytes corresponding to the known
input columns. Thus, the corresponding inputs to the S-box layer of the second
round can be assumed as known.

Now we have a number of variables in the second round virtually belonging
to the 2 or 3 connected components of Gm. Note that adding the vertices cor-
responding to the second round subkey bytes described above does not increase
the number of connected components. These can be seen as further reference
points for the recovery of the remainder of the first subkey bytes by reducing
the number of connected components in the new, larger graph.

Our thorough simulations show that such methods do increase the expected
number of edges in the original graph Gm. Note that this improvement of our
attack is not enough to decrease the number of measurements needed, though
it increases the success probability of all our attacks for a fixed number of mea-
surements.

4 Practical Feasibility

To make the detection of byte collisions during the S-box applications within
AES possible, the AES implementation has to satisfy the property that all in-
stances of the AES S-box are implemented in a similar way. The requirement is
not necessary for [2] or [3]. This is the only difference of our technical framework
with respect to that in [2] or [3]. Note that this requirement is very likely to
be fulfilled in low-end real-world embedded systems, which are the main target
of such attacks, since AES implementations in these systems are deliberately
simplified by reducing diversity in order to save code size in software and area
in hardware. On constrained 8-bit microcontrollers, the implementation of the
AES S-box transform is likely to be a separate routine, thus, being exactly the
same for all S-box applications.

As in standard collision attacks on AES, the attacker has to precisely know
the times when the S-boxes leak. Note that this is not the case for DPA or
similar differential techniques. Another advantage of the DPA method is that
it works for the absolute majority of AES implementations including software
and hardware ones. At the same time, the collision attacks on AES are mainly
constrained to 8-bit software implementations on simple controllers.

However, the practical feasibility of collision attacks for AES was shown in [3]
for a PIC16F687 microcontroller and in [2] for an i8051-type controller. To detect

94 A. Bogdanov

a collision, the attacker compares the corresponding power curves using such
basic techniques as correlation functions or more advanced wavelet methods [2].

Measurements of high accuracy are required to detect byte collisions. The
usage of averaging techniques can improve the probability of correct collision
detection in the cases where the implementation and the measurement setup
do not allow for a reliable byte collision detection using a single power curve
for each input. In this case, one cannot speak of a known-plaintext model any
more, since the same plaintexts have to be input several times to increase the
signal-to-noise ratio.

Note that our collision attack, as any other power analysis attack, can be sig-
nificantly hampered or even made impossible by minimizing the signal-to-noise
ratio, using sound masking techniques [8], [9] or advanced clock randomizing
methods [10]. However, the collision attack is likely to break through basic time
randomization countermeasures such as simple random wait states, which can
be detected using SPA or alignment techniques.

5 Conclusions

In this paper we proposed and analyzed several improved side-channel collision
attacks on AES. The first one requires 7 measurements and 234.74 offline op-
erations on average with a probability of 0.99. The second attack needs about
6 measurements and about 237.15 offline operations with probability 0.854 or
about 244.3 operations with probability 0.927. The third one recovers the key
with just 5 measurements and about 237.34 simple offline operations with prob-
ability 0.372 or about 245.5 operations with probability 0.548. This is to be
compared to about 40 measurements required in the basic collision attack [2]
on AES with some non-negligible post-processing, 29 measurements required
for the AES-based Apha-MAC internal state recovery in [3] with about 234 of-
fline operations with a success probability > 0.5, and typically several hundred
measurements for a classical DPA attack.

Acknowledgements. The author would like to thank Oxana Radetskaya for
fruitful discussions during the work on this paper, Timo Kasper for providing
some technical background about collision detection while working on another
paper about collision attacks, the Horst-Görtz Institute for IT Security at the
Ruhr-University of Bochum for financial support, and the anonymous referees
for their comments that helped him to improve the paper.

References

1. Schramm, K., Wollinger, T.J., Paar, C.: A new class of collision attacks and its
application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–
222. Springer, Heidelberg (2003)

2. Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES: com-
bining side channel- and differential-attack. In: Joye, M., Quisquater, J.-J. (eds.)
CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)

Improved Side-Channel Collision Attacks on AES 95

3. Biryukov, A., Bogdanov, A., Khovratovich, D., Kasper, T.: Collision Attacks on
Alpha-MAC and Other AES-based MACs. In: Paillier, P., Verbauwhede, I. (eds.)
CHES 2007. LNCS, vol. 4727. Springer, Heidelberg (2007)

4. Ledig, H., Muller, F., Valette, F.: Enhancing collision attacks. In: Joye, M.,
Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 176–190. Springer, Hei-
delberg (2004)

5. Sachkov, V.N.: Probabilistic Methods in Combinatorial Analysis. Encyclopedia of
Mathematics and Its Applications, vol. 56. Cambridge University Press, Cambridge
(1997)

6. Kolchin, V.F., Sevastyanov, B., Chistyakov, V.P.: Random Allocations. V. H. Win-
ston & Sons (1978)

7. Karp, R.M., Tarjan, R.E.: Linear extected-time algorithms for connectivity prob-
lems. J. Algorithms 1 (1980)

8. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis
resistant description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, Springer, Heidelberg (2005)

9. Oswald, E., Schramm, K.: An Efficient Masking Scheme for AES Software Imple-
mentations. In: Song, J., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786,
Springer, Heidelberg (2006)

10. Herbst, C., Oswald, E., Mangard, S.: An AES implementation resistant to power
analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, Springer, Heidelberg (2006)

	Improved Side-Channel Collision Attacks on AES
	Introduction
	Basic Collision Attack on AES
	Our Improved Collision Attacks on AES
	Generalized Internal Collisions
	Systems of Equations and Associated Graphs
	Expected Number of Random Binomial Equations
	Number of Connected Components in Associated Graphs
	Optimization of the Attack

	Practical Feasibility
	Conclusions

