
Improved Skill of Northern Hemisphere Winter Surface Temperature Predictions
Based on Land–Atmosphere Fall Anomalies

JUDAH COHEN

Atmospheric and Environmental Research, Inc., Lexington, Massachusetts

CHRISTOPHER FLETCHER

Department of Physics, University of Toronto, Toronto, Ontario, Canada

(Manuscript received 20 June 2006, in final form 6 December 2006)

ABSTRACT

A statistical forecast model, referred to as the snow-cast (sCast) model, has been developed using

observed October mean snow cover and sea level pressure anomalies to predict upcoming winter land

surface temperatures for the extratropical Northern Hemisphere. In operational forecasts since 1999, snow

cover has been used for seven winters, and sea level pressure anomalies for three winters. Presented are skill

scores for these seven real-time forecasts and also for 33 winter hindcasts (1972/73–2004/05). The model

demonstrates positive skill over much of the eastern United States and northern Eurasia—regions that have

eluded skillful predictions among the existing major seasonal forecast centers. Comparison with three

leading dynamical forecast systems shows that the statistical model produces superior skill for the same

regions. Despite the increasing complexity of the dynamical models, they continue to derive their forecast

skill predominantly from tropical atmosphere–ocean coupling, in particular from ENSO. Therefore, in the

Northern Hemisphere extratropics, away from the influence of ENSO, the sCast model is expected to

outperform the dynamical models into the foreseeable future.

1. Introduction

It is estimated that about one-third, or 3–4 trillion

dollars (NOAA 2002; Dutton 2002), of the U.S.

economy is sensitive to the impacts of weather and cli-

mate. Mitigating hazards through advanced warnings

and improving the performance of climate-sensitive

economic sectors through seasonal prediction are thus

of interest to industry and government agencies. The

most important advance in understanding climate vari-

ability and its application to seasonal prediction has

been the linkage of the dominant tropical atmosphere

and ocean signal [El Niño–Southern Oscillation

(ENSO)] with surface temperatures and precipitation

patterns across the globe. However, predictive skill for

temperature forecasts outside of the Tropics, including

the United States, has been mixed (Barnston et al. 1999;

Spencer and Slingo 2003). For example, temperature

anomalies during the winter of 2002/03 were poorly

predicted by U.S. forecast centers, despite the occur-

rence of a moderate El Niño. Clearly, much room for

improvement remains in our understanding of winter-

time climate variability, in particular in the extratropics,

where the dominance of ENSO is more tenuous. Better

understanding of the dominant mode of Northern

Hemisphere (NH) winter climate variability, referred

to as the North Atlantic Oscillation (NAO) or the Arc-

tic Oscillation (AO), which could lead to improved pre-

dictability, is often recognized as the next most impor-

tant anticipated advance in seasonal climate forecasting

(Cohen 2003), especially for the eastern United States

and Europe, regions where temperature forecasts

based on ENSO have little or no skill.

The surface temperature and surface circulation sig-

natures of the NAO/AO are strongest in the North

Atlantic sector (Hurrell 1995; Thompson and Wallace

2001; Ambaum et al. 2001; Cohen and Saito 2002). The

winter NAO/AO has been linked with prior sea surface

temperature (SST) variability, sea ice variability, strato-

spheric forcing, subpolar air temperature, and aerosols

(Rodwell et al. 1999; Mysak and Venegas 1998; Bald-
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win and Dunkerton 1999; Fletcher and Saunders 2006;

Perlwitz and Graf 1995). Linking the NAO/AO to

slowly varying boundary conditions could therefore

provide predictability; however, recent articles on the

subject have emphasized the lack of understanding of

the underlying dynamics driving NAO/AO variability

and consequently its poor predictability (Hurrell et al.

2001).

During the period in which it has been extensively

monitored, snow cover has exhibited similar trends to

the NH climate cycles, peaking in the late 1970s and

collapsing to record minimum values in the late 1980s

and early 1990s, followed most recently by an increas-

ing trend. However over the entire satellite period no

significant trend in snow cover was found; this is in

contrast to NH land surface temperatures that have

been in a monotonic upward trend over the same pe-

riod (Cohen and Barlow 2005). In the NH, snow cover

is the most variable land surface condition in both time

and space (Cohen 1994), making it a viable candidate

for amplifying climate and atmospheric anomalies. Co-

hen and Entekhabi (1999) first demonstrated that the

time series of fall Eurasian snow cover is significantly

correlated with the winter AO. Bojariu and Gimeno

(2003), Saito and Cohen (2003), and Saunders et al.

(2003) further demonstrated that the significant rela-

tionship between Eurasian snow cover and the winter

AO is not limited to the fall but is evident in the sum-

mer as well. Therefore, snow cover is potentially useful

as a leading indicator of winter climate, especially those

land areas in the North Atlantic sector where the influ-

ence of the NAO/AO is strongest.

In the remainder of the article we will present a

simple statistical model, which has been developed

making use of observed Eurasian snow cover and sea

level pressure (SLP) anomalies for winter climate pre-

diction of extratropical NH surface temperatures. We

will demonstrate that the skill of this model, tested both

in real time and in hindcasts, consistently outperforms

winter forecasts from the major governmental forecast

centers. This paper aims to further demonstrate the link

between fall snow cover and regional atmospheric

anomalies and the NH general circulation on seasonal

time scales and the potential societal benefit of incor-

porating snow cover variability in seasonal climate fore-

casts.

2. Data and methods

a. Data

All atmospheric data are taken from the National

Centers for Environmental Prediction–National Center

for Atmospheric Research (NCEP–NCAR) reanalysis

(Kalnay et al. 1996) for the years 1948 through 2006.

For snow cover data we used the weekly and monthly

datasets, produced by the National Oceanic and Atmo-

spheric Administration (NOAA), which cover the pe-

riod from 1972 through 2005 (Robinson et al. 1993).

These large-scale observations of the spatial extent of

NH continental snow cover are primarily based on vis-

ible-band satellite imagery; reliable satellite-derived es-

timates of snow cover extent have only been continu-

ously available since 1972.

We henceforth restrict our focus to the winter AO

mode of variability, rather than the NAO, because our

study concerns seasonal prediction for the entire NH

and not only the North Atlantic sector. Our version of

the AO index is derived from NCEP–NCAR reanalysis

data and is the first principal component of gridded

SLP poleward of 20°N for the winters 1972/73–2004/05,

as defined by Thompson and Wallace (1998). The sur-

face temperature trend is computed as the linear trend

for the individual grid points for the winters 1972/73–

2004/05 using a least squares regression fit.

Ensemble-mean seasonal hindcast data from general

circulation model (GCM) simulations are analyzed for

comparison. We assess the hindcast skill of the follow-

ing three GCMs or ensemble of GCMs: 1) the Climate

Prediction Center (CPC) Climate Forecast System

(CFS) retrospective hindcast project for the period

1983–2004 (Saha et al. 2006), 2) the Canadian Historical

Forecasting Project (HFP) for the period 1972–93 (De-

rome et al. 2001), and 3) four of the seven GCMs from

the European Centre for Medium-Range Weather

Forecasts (ECMWF) Development of a European Mul-

timodel Ensemble System for Seasonal to Interannual

Prediction (DEMETER) project from which data were

available for the period 1972–2001 (Palmer et al. 2004).

The original DEMETER seasonal hindcast system em-

ployed a correction to remove systematic biases from

the output of each GCM prior to computing the mul-

timodel ensemble climatology (e.g., Palmer et al. 2000).

However, in this study we did not perform this correc-

tion, which could have the effect of reducing the appar-

ent hindcast skill of the DEMETER system.

b. Derivation of SLP/snow index

The ENSO phenomenon is the universal lynchpin of

seasonal forecasts (Barnston et al. 1994; van Olden-

borgh et al. 2005a; Saha et al. 2006). The modern age of

seasonal forecasting is considered to have been born in

the winter of 1997/98 when the U.S. government suc-

cessfully forecasted temperatures and precipitation

across the United States. However repeat success has

remained elusive. Plotted in Fig. 1 is the correlation of

the Niño-3.4 index and NH extratropical surface tem-
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peratures. Little of the NH landmasses are highly cor-

related with ENSO with the exception of the immediate

west coast of North America and the Canadian prairies.

Based on this figure, accurate temperature forecasts

derived from ENSO would be the exception rather than

the rule given the scarcity of significant correlations.

However the figure only reflects the linear relationship

between ENSO and surface temperatures. It is plau-

sible that nonlinear linkages between ENSO and re-

mote temperatures exist that could improve forecast

skill beyond what is evident from Fig. 1, such as in a

dynamical model.

The fact that ENSO offers only limited predictability

for the extratropics motivates the need to find other,

more reliable, predictors to complement the use of

ENSO for climate prediction outside of the Tropics.

We now outline the development of a statistical fore-

cast model for the extratropics, based on Eurasian snow

cover, atmospheric precursors, and the AO index. We

performed an empirical orthogonal function (EOF)

analysis on observed surface temperatures (Ts) from

the NCEP–NCAR reanalysis data for years 1972–2004;

the dominant mode of variability for December, Janu-

ary, and February (DJF) accounts for 18% of the total

variance (not shown; pattern closely resembles Fig. 2a).

The first mode is often referred to as a quadrupole and

is associated with winter season NAO/AO variability

(Wallace and Gutzler 1981; Barnston and Livezey 1987;

Thompson and Wallace 1998).

The dominant temperature pattern is characterized

by two same-signed anomaly centers stretched across

northern Eurasia and the eastern United States and two

same-signed anomaly centers across the Mediterranean

and North Africa and northeastern Canada and Green-

land. So, for example, when the AO is negative, anoma-

lous high pressure over the continents advects a cold

flow of air over northern Eurasia and the eastern

United States, while North Africa, the Mediterranean,

FIG. 1. (a) Correlation of DJF Niño-3.4 index and DJF NH surface temperatures. (b) Correlation of

October Eurasian snow cover and DJF NH surface temperatures. Contour intervals are �0.30, 0.40, 0.50,

0.60, and 0.70, and the light, dark, and darkest color shading represents correlations that exceed 90%,

95%, and 99% confidence intervals, respectively, based on the Student’s t test. (c) Time series of the first

EOF of DJF NH surface temperatures (poleward of 20°N) and October Eurasian snow cover for

1972–2005; also included is the correlation value (r) between the two time series.
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northeastern Canada, and Greenland are warmed by an

anomalous southerly flow of air. Comparison of corre-

lation maps between the winter AO and winter Niño-

3.4 indices and NH extratropical winter Ts shows that a

correct prediction of the winter AO would provide as

much as 50% improvement in temperature variance ex-

plained over Eurasia and 30% improvement in tem-

perature variance explained over the eastern United

States compared with a correct prediction of the ENSO

state. Therefore, the motivation is to construct a pre-

dictive index that is highly correlated with the observed

winter AO in order to exploit the demonstrated

coupled variability between the AO index and NH win-

ter Ts to achieve improved winter climate prediction.

From the weekly snow cover data, a time series is

created for the areal extent of Eurasian snow cover for

the month of October (Cohen et al. 2001). Next, we

correlate the time series of October Eurasian snow

cover with the time series of the first EOF of Ts (Fig.

1c). The two time series are correlated at a value of

0.45, a value statistically significant at the 99% confi-

dence interval even though it explains less than a quar-

ter of the variance. Also shown in Fig. 1 is the correla-

tion of the Eurasian October snow cover time series

with the gridpoint time series of DJF Ts. The pattern of

temperature variability associated with interannual

snow cover anomalies is reminiscent of the pattern as-

sociated with the winter AO. Present is the quadrupole

pattern, albeit weaker, with a one-signed anomaly in

the eastern United States and across northern Asia and

an opposite-signed anomalies in northeastern Canada,

Greenland, and the western portion of North Africa

and the Mediterranean. The most notable difference

between the AO pattern of variability and that associ-

ated with snow cover is the lack of significant correla-

tions across Europe. Nonetheless, using snow cover

alone still provides greater skill than ENSO indices for

surface temperatures in the extratropical NH. How-

ever, the skill from using snow cover alone is still prob-

ably insufficient for reliable climate forecasts.

FIG. 2. (a) Correlation of DJF AO (based on SLP poleward of 20°N) index and DJF NH surface

temperatures. (b) Correlation of October SLP/snow index and DJF NH surface temperatures. Contour

and shading are the same as in Fig. 1. (c) Time series of the first EOF of DJF NH SLP (poleward of 20°N)

and October SLP/snow index for 1972–2005; also included is the correlation value between the two time

series.
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Cohen et al. (2001) were the first to attempt to in-

crease the correlation value of fall Eurasian snow cover

with the winter AO by combining it with observed si-

multaneous SLP. They derived a time series from ob-

served October snow cover and SLP anomalies from a

fixed grid point in Siberia, also from October, which

was more highly correlated with the winter AO than

using snow cover alone. Finally Cohen et al. (2002)

postulated that the winter AO, which is hemispheric in

scale, originates in the fall as a regional lower-tropo-

spheric anomaly that propagates and grows during the

course of the cold season. The associated SLP anomaly

was not fixed in space but rather could originate in

different regions of Eurasia and the North Atlantic.

A single index could then be derived that linearly

combined both the observed dominant SLP anomaly in

October and the observed October Eurasian snow

cover extent anomaly that was highly correlated with

the winter AO index. This index is referred to as the

SLP/snow index. The weighting for the two variables,

SLP and snow cover extent, is determined by the mul-

tiple regression of the October SLP and snow anoma-

lies with the observed winter AO index. This yields the

equation

SSi � �
SNOWi

�sn

� �
SLPi

�slp

� �,

where SS is the SLP/snow index, SNOW is the observed

October Eurasian snow cover extent anomaly in 106

km2, �sn is the standard deviation of October Eurasian

snow cover extent, SLP is the observed October SLP

anomaly in northern Eurasia in hPa, �slp is the standard

deviation of October SLP, and i is the year.

For example, in the hindcasts shown later in the pa-

per (see Figs. 7–9), the value of � � 0.25, � � 0.40, and

� � 0.0, as determined by the multiple regression. The

correlation value between the October SLP/snow index

and the winter AO is 0.9. However, it should be noted

that this index is based on forecaster interpretation as

the SLP anomaly chosen for the index is derived from

an analysis of hemispheric temperature anomalies,

Eliassen–Palm flux anomalies, and forecaster experi-

ence [techniques are described in Cohen et al. (2002)

and Cohen (2003)].

The SLP/snow index is the basis of a simple statistical

model employed in real-time winter forecasts for the

United States, Europe, and Asia. The current forecast

model uses October snow cover and SLP anomalies,

plus the recent trend in DJF surface temperatures, as

predictors for surface temperatures. This set of predic-

tors has been used operationally for the past three win-

ter forecasts. However, in some of the earlier real-time

forecasts, summer snow cover and ENSO were also

used as predictors in the model; the motivation for the

different predictors will be presented in section 3. In the

remainder of this paper, we will refer to this statistical

model as the snow-cast model or sCast model for short.

c. Forecast/hindcast verification

The accuracy of seasonal forecasts and hindcasts is

referred to as the prediction “skill.” In this study, we

assess skill using two skill measures. First, we employ

the Pearson product-moment correlation coefficient

between the observed and predicted values. Hence-

forth, this measure is referred to as the anomaly corre-

lation coefficient (ACC) or simply the anomaly corre-

lation. Second, we employ the percentage improvement

in root-mean-square skill score (RMSS) over a simple

forecast of climatology,

RMSS �
100

n �
i�1

n �1 	�
T̂i 	 Ti�
2


T 	 Ti�
2 �,

where T̂ is the model predicted temperature, T is the

observed temperature, T is the climatological value of

observed temperature, i is the year, and n is the total

number of years.

Climatology in this study is the long-term mean for

the assessment period 1972/73–2004/05; we have found

this climatology to provide the best unbiased climatol-

ogy with respect to the hindcast period. Alternative

climatologies could be used such as a fixed 30-yr prior

climatology or a rolling prior climatology. The sensitiv-

ity of the skill values to the chosen climatology was

examined by recomputing the model skill score with a

rolling 30-yr prior climatology. This was found to in-

flate RMSS (not shown) because the rolling prior cli-

matology introduces a cold bias as temperatures have

been trending upward since the 1950s, when the rolling

climatology begins. This cold bias in the climatology

increases the mean-square errors of the climatological

hindcasts, thus inflating the RMSS for the hindcast

model with respect to climatology.

The mean-square skill score is the preferred skill

measure of the World Meteorological Organization

(WMO) for deterministic seasonal forecasts (WMO

2002) because, as opposed to the anomaly correlation,

it penalizes bias in prediction models. However for con-

sistency between forecasts (where we analyze their av-

erage root-mean-square error) and hindcasts, we use

the closely related RMSS.

The statistical significance of the anomaly correlation

is estimated using the Student’s t test against the null

hypothesis of zero correlation. Serial correlation in the

temperature data could cause spurious inflation of the
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prediction skill. We correct for this using the method of

Davis (1976) to reduce the number of available degrees

of freedom in the hypothesis test. Since the RMSS has

no lower bound, a probability density function of

RMSS values exhibits significant positive skewness.

Therefore, no significance test is carried out for the

RMSS skill values. We also assess the spatial accuracy

of our hindcast model. This is achieved using pattern

correlations, where forecasts and observations are com-

pared at each grid point, and the average gridpoint

root-mean-square errors (RMSEs) in the domain

(Wilks 1995). Both of these metrics are calculated using

data area-weighted by the square root of the cosine of

latitude.

3. Evaluation of model skill

The focus of the remainder of the paper is to verify

the skill of the real-time winter (DJF) forecasts for

the past seven years and cross-validated hindcasts.

Hindcasts have been produced for the winters 1972/73–

2004/05, which complement the full set of available

hindcasts from the three dynamical models described in

section 2a.

a. Real-time forecasts

The sCast model has been used operationally for

seven consecutive winters (1999–2005). The model pro-

duces a temperature anomaly forecast for the entire

extratropical NH. Forecasts are issued by the 10th busi-

ness day of the month for the following three months

(i.e., the forecast for DJF 2005/06 was issued on or

before 15 November 2005). The model is a statistical

model based on a variable number of predictors. For

each forecast the model linearly combines one to three

of the following four predictors: recent trend, predicted

seasonal value of the Niño-3.4 index, Eurasian snow

cover extent, and the SLP/snow index.

The model has evolved over time in response to the

latest research results; hindcasts and forecaster experi-

ence and the inputs or predictors have not remained

constant. Following Cohen and Entekhabi (1999), the

initial predictor employed in the forecast model for the

winter of 1999/2000 was October snow cover extent.

The first forecast also included trend, since hindcasts

showed that including recent trend improved skill over

using October snow cover alone. The forecasts for the

winters 2000/01 through 2002/03 used the alternating

predictors of July and October snow cover extent de-

termined by atmospheric conditions in the fall, follow-

ing Cohen and Saito (2003). The combined index of

July and October snow cover was found to be more

skillful than October snow and trend. In 2002 El Niño

was included as a predictor given the moderate El Niño

predicted for that season. For the last three years of the

forecast, the October SLP/snow index was used as the

main predictor, following Cohen et al. (2002). Hind-

casts showed that including the trend contributed some

additional skill for predicting winter surface tempera-

tures, especially in the western United States. Though

the skill of the SLP/snow is comparable or even less

than that of the July/October snow index, July snow

cover extent is experiencing a strong decreasing trend,

which may be inflating the skill derived from this index.

However, October snow cover is experiencing no such

decreasing trend. Table 1 lists the predictors used for

each real-time winter forecast. The current version of

the forecast model linearly combines the October SLP/

snow index and recent temperature trend. ENSO is not

included as a predictor, as hindcasts showed that it did

not improve forecast skill. The hindcasts produced for

this study are therefore fixed with just these two pre-

dictors.

In Fig. 3, we plot both the anomaly correlation and

the RMSS for all seven real-time winter forecasts. The

anomaly correlations show large regions of positive cor-

relations across North America, northern Eurasia, cen-

tral Asia, and North Africa. Evident are positive cor-

relations in all four centers of the quadrupole region of

temperature variability associated with the AO. Espe-

cially high correlations of greater than 0.6 are observed

in the eastern United States, along the west coast of

North America, northern Europe, and eastern Siberia.

However, when plotting the RMSS, only the eastern

United States and eastern Siberia have demonstrable

skill over climatology. This discrepancy between the

correlation and RMSS usually occurs when the forecast

is correct in its sign of the predicted anomaly but not in

magnitude. We have found that, over the United States,

the correct anomaly sign is predicted in 59% of cases.

Often forecasts are not useful or intended for a single

location but are more valuable when they closely match

the large-scale pattern of temperature anomalies. The

TABLE 1. List of predictors used for each real-time

winter forecast.

Winter Predictors

1999/2000 October snow and trend

2000/01 October snow

2001/02 July snow

2002/03 October snow and predicted DJF Niño-3.4 value

2003/04 October SLP/snow index and trend

2004/05 October SLP/snow index and trend

2005/06 October SLP/snow index and trend
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two skill measures shown in Fig. 3 display the skill

achieved at individual grid points, but not the cumula-

tive skill among many grid points or the accuracy of the

predicted large-scale pattern of temperature anomalies.

Therefore, in Fig. 4 we plot the pattern correlations

between the predicted and the observed temperature

anomalies for three specific regions and for all seven

real-time forecasts. The pattern correlations for the

sCast model are shown in darker gray. For comparison

we have also included a forecast based on a standard

climatology in lighter gray. Correlations for the U.S.

real-time forecasts have always been positive, and all

years except for 2001/02 equal or exceed 0.6. The high-

est correlation was achieved in the winter of 2004/05

with a value approaching 0.9. In comparison, a forecast

based on recent climatology yields negative scores for

the pattern correlations. Also shown are the area-

weighted RMSEs for the same regions. In addition to

the pattern correlations that are consistently high, the

model gives RMSEs that are consistently low, with

most years averaging close to 1°C of error or less and

on average less than the RMSEs using climatology.

Again the winter forecast of 2004/05 scored best among

the real-time forecasts.

Included in Fig. 4 are the pattern correlations and the

area-weighted RMSEs for Europe and the NH. The

model scored positive correlations for all years except

one, with a maximum value of greater than 0.7 in the

winter of 2001/02 for Europe and 0.5 in the winter of

2002/03 for the NH. Again the model handily scores

higher than a forecast based on a standard climatology.

Compared to the U.S. forecasts, the correlation values

for Europe and the NH are generally lower. The mag-

nitude of the average RMSE is greater than those for

the United States and on average close to those derived

from using climatology, with values in the range of 1°–

2°C. Interestingly, the model performed best for the

United States in the winter of 2004/05 but poorest for

Europe and the NH that same year. The model was

most consistent in the winter of 2002/03, performing

well in all three regions. This coincides with the second

largest observed value of October Eurasian snow cover

extent in 2002.

In Table 2 we list the time-mean and standard devia-

tion over the seven real-time forecasts for the pattern

correlation and the RMSEs for the United States, Eu-

rope, and the NH. All three regions show positive pat-

tern correlations, though the value for the United

States is double that of Europe and the NH. Similarly

the mean RMSE is �1.5°C for Europe and the NH but

�0.9°C for the United States.

b. Cross-validated hindcasts

1) HINDCASTS WITH THE SCAST MODEL

Cross-validated hindcasts were produced using the

SLP/snow index, described in section 2, for the winters

of 1972/73 through 2004/05. This predictor index is de-

rived using the same method as that employed in the

operational real-time forecasts, which means that it

FIG. 3. (a) Root-mean skill score values between real-time predicted and observed DJF NH surface

temperatures anomalies for the winters 1999/2000–2005/06 (only positive values shown). (b) Anomaly

correlation values between real-time predicted and observed DJF NH surface temperatures anomalies

for the winters 1999/2000–2005/06.
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contains subjectivity introduced by forecaster interpre-

tation. In our cross-validation scheme, the observed

value of the SLP/snow index and the observed trend are

removed when the regression is computed for the tem-

perature forecast. Reliable satellite-derived estimates

of snow cover extent have only been available since

1972. In Fig. 5 we plot the 33-yr mean RMSS on the left

and the anomaly correlation on the right. Contoured

regions represent those areas where the model values

are statistically significant based on the Student’s t test.

As seen in Figs. 5a,b, the model has positive skill in the

eastern United States, parts of southern Canada, the

North American Arctic, northern Eurasia, and the

Mediterranean region. The regions where the sCast

model demonstrates positive skill closely overlap the

quadrupole regions most strongly influenced by vari-

ability in the AO and are highlighted in Fig. 2. There-

fore the model appears to successfully capture a signifi-

cant fraction of the temperature variability associated

with annual variations in the winter AO as did the real-

time forecasts. And by comparing Figs. 5a,b with Fig. 3,

the skill demonstrated by the hindcasts is broadly con-

sistent with the skill demonstrated by the model in the

real-time forecasts.

In Table 2 we include the mean value and the stan-

dard deviation for both the pattern correlation and the

RMSE for the United States, Europe, and the NH for

the hindcasts. All three regions show positive pattern

correlations, though in contrast to the forecasts, Europe

has the highest pattern correlation and the United

TABLE 2. The area-weighted pattern correlations and RMSEs (°C) for forecasts and hindcasts of the United States, Europe, and the

Northern Hemisphere. Standard deviations for pattern correlations and RMSEs are included in parentheses.

Region

Forecasts (1999–2005)

Hindcasts (1972–2004)

sCast Simplified sCast

Pattern correlations RMSE Pattern correlations RMSE Pattern correlations RMSE

United States 0.68 (0.17) 0.89 (0.42) 0.33 (0.46) 1.02 (0.76) 0.19 (0.46) 1.12 (0.81)

Europe 0.33 (0.32) 1.41 (0.36) 0.45 (0.32) 1.18 (0.90) 0.24 (0.43) 1.29 (0.98)

Northern Hemisphere 0.35 (0.25) 1.56 (0.34) 0.33 (0.25) 1.33 (1.02) 0.20 (0.32) 1.40 (1.08)

FIG. 4. Real-time DJF surface temperature forecast skill for the sCast system (darker gray) and

a climatological forecast using the prior 30-yr mean (lighter gray) averaged over the extratropical

Northern Hemisphere (N), United States (U), and Europe (E). (a) Area-weighted pattern cor-

relations and (b) area-weighted RMSE between forecasted and observed temperatures for 1999–

2005.
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States is lower and equal to that of the NH. The average

RMSE for all three regions is between 1.0° and 1.4°C

with the U.S. region scoring the lowest RMSE values.

The pattern correlations for the hindcasts are mostly

consistent with the forecasts. The favorable comparison

between the hindcasts and the forecasts suggests that

the positive skill of the forecasts is sustainable over the

long term.

One limitation of the SLP/snow index is its depen-

dence on forecaster interpretation; the SLP anomaly

chosen for the index is derived from an analysis of

hemispheric atmospheric anomalies and forecaster ex-

perience. Therefore, it is not appropriate to compare

the hindcasts of the operational sCast model with hind-

casts from dynamical models, which are independent of

forecaster bias. To address this problem, we have de-

rived an alternate SLP/snow index, which produced a

unique and reproducible value for all years of the hind-

casts and is independent of forecaster bias. Henceforth,

this alternate model is referred to as the simplified

sCast model; its development and hindcast verification

are described below.

2) HINDCASTS WITH THE SIMPLIFIED SCAST

MODEL

We have constructed an alternate SLP/snow index

that is independent of forecaster interpretation in its

derivation. Gridded monthly mean October SLP

anomalies for northern Eurasia are analyzed over the

domain 50°–80°N, 0°–180°. If a single SLP anomaly

center is observed over this region, then its central

maximum denotes the value for the SLP anomaly for

the index. If multiple SLP centers are observed, then

the chosen SLP value depends on the sign of the con-

FIG. 5. (a) Root-mean skill score values between hindcasts of sCast model and observed DJF NH surface temperatures anomalies for

the winters 1972/73–2004/05 (only positive values shown). (b) Anomaly correlation values between hindcasts of sCast model and

observed DJF NH surface temperatures anomalies for the winters 1972/73–2004/05. (c) Same as in (a) and (d) same as in (b) except

for the simplified sCast model. See text for differences between sCast and simplified sCast models. Those values exceeding 90%, 95%,

and 99% confidence intervals based on the Student’s t test are contoured by thin, thick, and thickest lines, respectively.
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temporaneous October Eurasian snow cover anomaly.

If the snow cover is above normal, a positive anomaly is

chosen, and if the snow cover is equal to or below nor-

mal, a negative anomaly is chosen. Normal is the mean

October value, defined as 9.7 million km2 as deter-

mined by NOAA’s Climate Prediction Center. For the

hindcasts, this algorithm produced a unique solution for

the SLP anomaly and therefore a unique value of the

SLP/snow index for each year of the hindcast.

In Fig. 2 we plot the SLP/snow index and the corre-

lation value with the winter AO, which is equal to 0.61.

Also shown in Fig. 2 is the correlation of the October

SLP/snow index with NH Ts. Again the quadrupole pat-

tern of temperature variability is noted with the same-

signed anomaly across northern Eurasia and the east-

ern United States and opposite-signed anomalies in

northeastern Canada, Greenland, North Africa, and

the Mediterranean. In comparison to the correlation

map for October snow cover alone (Fig. 1b), the cor-

relations are higher and parts of Europe are now in-

cluded in the region of significant correlations. The plot

closely resembles that of the AO correlated with Ts.

Shown in Figs. 5c,d are the RMSS and anomaly cor-

relations from the hindcasts of the simplified sCast

model. The model demonstrates positive skill in the

same regions as the operational sCast model and where

the SLP/snow index is significantly correlated with NH

surface temperatures, though the values are more mod-

est. As seen from Table 2, the simplified sCast model

shows positive pattern correlations for the United

States, Europe, and the NH, with values more closely

resembling the hindcasts of the operational sCast

model rather than the forecasts. The average RMSE for

all three regions is between 1.2° and 1.5°C, with the

U.S. region once again scoring the lowest RMSE val-

ues. Though the skill for the hindcasts using the simpli-

fied sCast is more modest, it still represents a large

improvement over other operational forecast models in

the mid- to high latitudes of the NH, as will be shown in

section 3d.

c. Trend versus SLP/snow index

Besides the SLP/snow index, the other predictor in

the model is linear trend. Significant regional trends are

observed in NH air temperatures, but little or no trend

is observed in the time series of October Eurasian snow

cover, October Eurasian SLP anomalies, and the winter

AO over the hindcast period (Cohen and Barlow 2005).

This suggests that linear trends should not contribute

significantly to the derived skill in predicting NH air

temperature from the SLP/snow index. However, it is

important to quantify the proportion of hindcast skill

that comes from linear trend. In Fig. 6 we plot the

relative contribution of trend to the overall model skill

for the extratropical NH. Based on the anomaly corre-

lation, the trend contributes no discernible skill to the

forecast. However, for the RMSS, the trend contributes

positive skill in regions where the SLP/snow index is

not significantly correlated with Ts, parts of the western

United States, and central Eurasia. In fact over some of

the regions where the model has its highest skill, such as

in the eastern United States and northern Europe, the

FIG. 6. Relative contribution of trend to (a) root-mean skill score values between hindcasts and

observed DJF NH surface temperatures anomalies and (b) anomaly correlation values between hind-

casts and observed DJF NH surface temperatures anomalies for the winters of 1972/73–2004/05.
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trend contributes negative skill. The skill from trend

appears to extend the spatial extent, or complement,

the skill derived from the SLP/snow index rather than

contribute significantly to or overlap those regions

where the SLP/snow index has skill.

d. Comparison with dynamical models

We now compare the hindcast skill achieved using

the simplified sCast model with that of three GCMs

employed for seasonal forecasting at leading world

forecast centers (listed in section 2a). These highly

complex dynamical models represent many of the ma-

jor processes in the ocean–land–atmosphere climate

system; however, nearly all of their seasonal forecast

skill can be attributed to variability in ENSO (van Old-

enborgh et al. 2005a,b; Quan et al. 2006; Saha et al.

2006). As discussed in section 2b, ENSO variability of-

fers only limited atmospheric predictability away from

the Tropics. Therefore, given the completely different

emphasis of the sCast model, it is a worthwhile exercise

to compare between the skill derived from hindcasts

performed using sCast and the dynamical forecast sys-

tems.

In Figs. 7a,b we plot the anomaly correlation and the

RMSS for the CFS, which is the GCM used by NOAA’s

CPC for seasonal forecasting. Positive model skill is

shaded in red. The CFS model shows little consistent

skill for North America with the exception of the north

slope of western Canada and Alaska. In Figs. 7c,d, we

plot the difference in skill between the simplified sCast

model and the CFS model; blue shading indicates that

the CFS model has greater skill and red shading that

the simplified sCast model has greater skill. The supe-

rior skill demonstrated by the simplified sCast model is

especially large in the eastern United States, a region

not well correlated with ENSO variability but highly

correlated with AO variability. For both skill metrics,

the simplified sCast model demonstrates greater skill

for most of the United States, especially when compar-

ing the RMSS. In Fig. 8 we show the same plot as Fig.

7, but now for the entire extratropics of the NH. The

superior skill of the simplified sCast model is not lim-

ited to the United States but is widespread across the

NH extratropics, including most of Europe and Asia.

In Fig. 9 we plot the difference between the Canadian

seasonal forecast GCM and the simplified sCast model

in the top panels and the difference between the

DEMETER ensemble of seasonal forecast models

and the simplified sCast model in the bottom panels

for both the anomaly correlation (left) and the RMSS

FIG. 7. (a) Anomaly correlation values between hindcasts and observed DJF U.S. surface

temperature anomalies for NOAA’s CFS GCM and (b) root-mean skill score values between

hindcasts and observed DJF U.S. surface temperature anomalies for the winters of 1981/82–2003/

04. Difference between the simplified sCast model and CFS GCM for overlapping hindcast

winters of 1981/82–2003/04 for (c) anomaly correlations and (d) root-mean skill score values. In

(c) and (d), red shading indicates where simplified sCast model has greater skill and blue shading

indicates where CFS model has greater skill. RMSS values are in percent.
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(right) for the extratropical NH. Again, the simpli-

fied sCast compares favorably with the two dynami-

cal forecast systems. The simplified sCast model

performed with higher skill across the eastern

United States and northern Eurasia. The skill from the

DEMETER ensemble hindcasts is greater than those

from the CFS and HFP models. The simplified sCast

model only performed marginally better when com-

pared to DEMETER across the United States and

northern Eurasia and slightly worse across the remain-

der of Asia, however the DEMETER ensembles are

not run operationally; skill scores from the operational

ECMWF forecasts are lower than those presented from

DEMETER and the simplified sCast model (not

shown).

4. Discussion and conclusions

Seasonal forecasts have traditionally relied on vari-

ability in SSTs in general and ENSO variability in par-

ticular to generate skillful forecasts. Though the ENSO

pattern of variability is one of the dominant global pat-

terns of variability, its greatest impacts are focused in

the Tropics, with a much more damped signal in the

extratropics. The AO is also one of the dominant pat-

terns of variability in the NH but most of its related

variability is focused in the extratropics, with less of a

signal in the Tropics. The sCast model, a statistical

model, attempts to predict the sign and magnitude of

the upcoming winter AO, which is then utilized as a

predictor of DJF surface temperatures.

The early sCast climate forecast model used ob-

served Siberian snow cover extent and recent tempera-

ture trends to predict winter surface temperatures.

However, statistical analysis demonstrates that by com-

bining the anomaly in October Eurasian snow cover

extent with a second variable, the anomaly in October

monthly mean SLP, the hindcast skill of extratropical

NH DJF surface temperatures is improved. The corre-

FIG. 8. Same as in Fig. 7, but now for the entire extratropics of the NH.
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lation of this combined October SLP/snow index with

DJF surface temperatures yields a region of statistically

significant correlation comparable in extent, though

slightly reduced, to the contemporaneous correlation of

the DJF AO with DJF surface temperatures. Favorable

comparison of the October SLP/snow index with the

DJF AO is an important advance for climate prediction

given that the DJF AO is the single variable with the

highest observed correlations with extratropical DJF

NH surface temperatures (Thompson and Wallace

1998).

Real-time forecasts using the sCast statistical model

demonstrate positive skill for parts of the eastern and

western United States, northern Eurasia, and the Medi-

terranean and Middle East, as measured by the RMSS

and anomaly correlations. Similar skill was found for

33 yr of hindcasts for the sCast model, providing con-

fidence that the skill of the model is sustainable over

the long term. For comparison with hindcasts from

three major operational forecast centers, we derived an

alternate model, which we refer to as the simplified

sCast model. For the simplified sCast model we chose a

more simple and objective index where the highest skill

was sacrificed in order to facilitate reproducibility.

Hindcast skill was found to be higher for the opera-

tional sCast model than the simplified sCast model, es-

pecially for the United States, which can be attributed

to the difference in the SLP/snow index employed by

these two models. Nonetheless, the more modest skill

demonstrated by the simplified sCast model for the

eastern United States, Europe, and Asia is still an ad-

vance over current operational forecast models, as

FIG. 9. Difference between the simplified sCast and Canadian HFP GCM for overlapping hindcast

winters of 1972/73–1992/93 for (a) anomaly correlations and (b) root-mean skill score values. Red

shading indicates where the simplified sCast model has greater skill and blue shading indicates where

HFP GCM has greater skill. (c) Same as in (a) and (d) same as in (b), except for the DEMETER

ensemble of GCMs and for the winters of 1972/73–2000/01.

4130 J O U R N A L O F C L I M A T E VOLUME 20



these regions have eluded skillful forecasts among the

large operational forecast centers. Comparison be-

tween hindcasts of the simplified sCast model and the

dynamical models of CPC, Environment Canada, and

ECMWF demonstrate the superior skill of the sCast

model in these same regions, often by a wide margin.

Furthermore, the higher forecast and hindcast skill of

the operational sCast model compared with the simpli-

fied sCast model suggests that forecast skill can poten-

tially be further improved by the knowledge and expe-

rience of a forecaster.

Many of the largest cities among the industrialized

nations lie within the boundaries of skillful prediction

of the sCast model and accurate winter forecasts would

be of great economic and social benefit. The state-

of-the-art dynamical models, heavily relied upon for

seasonal forecasting, are still strongly dependent on

ocean–atmosphere coupling associated with ENSO for

much of their skill. However, given the impact regions

of ENSO, there is little reason to believe that these

models are capable of the accuracy required to produce

a forecast of benefit to society in the important regions

of the eastern United States and Europe. Until dynami-

cal models can correctly simulate the dynamic forcing

and response associated with the AO, the sCast model

should continue to outperform the dynamical models

for wintertime temperature forecasts for the extratrop-

ical NH.
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