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Abstract

Zinc Finger Nucleases (ZFNs) made by Context-Dependent Assembly (CoDA) and Transcription Activator-Like Effector
Nucleases (TALENs) provide robust and user-friendly technologies for efficiently inactivating genes in zebrafish. These
designer nucleases bind to and cleave DNA at particular target sites, inducing error-prone repair that can result in insertion
or deletion mutations. Here, we assess the relative efficiencies of these technologies for inducing somatic DNA mutations in
mosaic zebrafish. We find that TALENs exhibited a higher success rate for obtaining active nucleases capable of inducing
mutations than compared with CoDA ZFNs. For example, all six TALENs tested induced DNA mutations at genomic target
sites while only a subset of CoDA ZFNs exhibited detectable rates of mutagenesis. TALENs also exhibited higher mutation
rates than CoDA ZFNs that had not been pre-screened using a bacterial two-hybrid assay, with DNA mutation rates ranging
from 20%–76.8% compared to 1.1%–3.3%. Furthermore, the broader targeting range of TALENs enabled us to induce
mutations at the methionine translation start site, sequences that were not targetable using the CoDA ZFN platform.
TALENs exhibited similar toxicity to CoDA ZFNs, with .50% of injected animals surviving to 3 days of life. Taken together,
our results suggest that TALEN technology provides a robust alternative to CoDA ZFNs for inducing targeted gene-
inactivation in zebrafish, making it a preferred technology for creating targeted knockout mutants in zebrafish.
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Introduction

Recent advances in genome engineering using Zinc Finger

Nucleases (ZFNs) and Transcription Activator-Like Effector

Nucleases (TALENs) have facilitated the creation of targeted gene

knockout mutations in zebrafish [1,2,3,4,5,6,7,8]. ZFNs consist of

an engineered array of zinc fingers fused to the non-specific FokI

nuclease domain and function as dimers to introduce targeted

DNA double-strand breaks (DSBs). Each zinc finger binds to

approximately three base pairs (bps) of DNA and a ZFN monomer

commonly utilizes three to six zinc finger motifs to bind 9–18 bp

target DNA. By contrast, TALENs bind to DNA through a highly

conserved 33–35 amino acid transcription activator-like (TAL)

effector repeat domain found in the plant pathogen Xanthomonas.

Each TAL effector repeat domain binds to a single bp of DNA

with specificity associated with the identity of two amino acids

within the repeat known as repeat variable di-residues (RVDs)

[9,10,11]. TAL effector repeats can be joined together into

extended arrays that can bind to longer DNA sequences. As with

zinc fingers, TAL effector repeats can be fused to the FokI

nuclease domain to create TALENs capable of cleaving DNA as a

dimer. DSBs induced by either ZFNs or TALENs can be repaired

by non-homologous end joining (NHEJ) – an error-prone process

that results in the creation of insertion or deletion mutations

(indels) that can shift the translational reading frame and

frequently lead to premature termination (Figure 1).

ZFNs have been successfully used to create targeted DNA

mutations within somatic cells of zebrafish and have led to the

production of heritable loss-of-function mutations [4,5,6,12,13].

For example, Foley et al. used Oligomerized Pool ENgineering

(OPEN) to create ZFN pairs that induce targeted insertions and

deletions into five endogenous zebrafish genes with high efficiency

[4]. The process of creating ZFNs by OPEN requires selection-

based methods to identify zinc finger arrays that bind to target

DNA sequences with high efficiency [14,15] - a process that is

labor intensive and thus far not adapted for large-scale production.

A simple alternative design-based method for assembling ZFNs

known as Context Dependent Assembly (CoDA) was recently

described. CoDA does not require selection and is therefore

simpler and easier to perform for most researchers. ZFNs made by

CoDA were successfully used to modify 12 endogenous zebrafish

genes [2]. However, the success rate and mutagenic activities of

CoDA ZFNs are generally lower than that of OPEN ZFNs.
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Moreover, using currently available reagents, sites for which

CoDA ZFNs can be made occur only once in every ,500 bps of

random DNA sequence, thereby limiting the ability of this

platform to precisely target mutations within a given gene [2].

TALENs have recently been shown to provide an alternative to

ZFNs for introducing DNA mutations into zebrafish. For example,

Huang et al. used TALENs to successfully target two genes for

heritable gene inactivation [8]. Sander et al. also constructed four

TALENs designed to target DNA sites in two endogenous genes

[1]. This report showed that TALENs were capable of mutagen-

izing the same genomic regions as OPEN ZFNs with similar

overall efficiency [1]. However, OPEN ZFNs targeting these

regions also exhibited exceedingly high rates of mutation, ranging

from 26–29% in somatic zebrafish cells. To date, it is unknown

how efficiently TALENs induce DNA mutation at target genes for

which corresponding ZFN mutation rates are below 5%.

Moreover, each of these published reports focused only on

TALENs that could successfully induce somatic DNA mutations

when microinjected as RNA into one-cell stage zebrafish and did

not discuss if additional TALENs were screened that failed to

induce mutation, making it difficult to ascertain the overall success

rate of TALENs for inducing mutagenesis in zebrafish. Finally, it

has been suggested that TALENs exhibit an expanded targeting

range when compared to CoDA ZFNs; however, TALENs have

not been designed to target the methionine translation start site of

endogenous zebrafish genes nor has the technology been assessed

for inducing DNA mutations at sites that could not be targeted by

ZFNs.

Here, we compare the abilities of TALENs and CoDA ZFNs to

induce somatic mutations in zebrafish. TALENs possess higher

targeting ranges compared with CoDA ZFNs and therefore could

be designed to target specific regions of the genome including the

methionine translation start site in multiple target genes. We also

report higher success rates for TALENs at inducing mutations at

any given DNA target site when compared with CoDA ZFNs. In

addition, the efficiency of NHEJ-mediated mutagenesis within the

same target gene is significantly higher using TALENs compared

with CoDA ZFNs. We conclude that TALENs provide a superior

platform to CoDA ZFNs for inducing targeted DNA mutations in

zebrafish and that this platform will therefore play a major role in

engineering the next generation of knockout fish designed to

uncover important pathways in development, disease, and cancer.

Materials and Methods

Ethics Statement
This study was approved by the Massachusetts General Hospital

Subcommittee on Research Animal Care – OLAW Assurance #

A3596-01 under protocol #2011N000127.

Synthesis of TALEN and ZFN constructs
TALENs and ZFNs were designed using the ZiFiT Targeter

software (http://zifit.partners.org/) [16]. DNA fragments encod-

Figure 1. Genome engineering using ZFNs and TALENs. ZFNs utilize DNA binding domains that recognize ,3 bp sequences and are joined
together to create arrays that can target specific DNA sequences. TALENs bind DNA using TAL effector repeat domains derived from Xanthomonas
that recognize individual nucleotides. These TALE repeats are ligated together to create binding arrays that recognize extended DNA sequences. Each
ZFN or TALEN binds to a half-site with dimeric FokI nuclease domains cleaving the DNA within the intervening spacer region. The mechanism
responsible for inducing DNA mutations is identical using either methodology, where nuclease-induced double stranded DNA breaks are repaired by
error-prone non-homologous end joining (NHEJ) resulting in the creation of insertion or deletion mutations (indels).
doi:10.1371/journal.pone.0037877.g001

TALEN Mutagenesis in Zebrafish
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ing ZF arrays were synthesized by GenScript, cloned by BamHI/

XbaI digest into FokI expression vectors as previously reported

[17]. The FokI expression vectors encode previously described

FokI heterodimer mutants [18], either FokIQ486E/I499L;E490K/I538K

(EL/KK) or FokIQ486E/I499L/N496D;E490K/I538K/H537R (ELD/

KKR). DNA fragments encoding engineered TALE repeat arrays

were constructed using the FLASH assembly method [19]. All

TALENs were built on a previously described framework [2,20]

that has now been used to efficiently modify various endogenous

genes in C.elegans [21], rats [22], zebrafish [1], and human somatic

[19,20] and pluripotent stem cells [23]. Each TAL effector repeat

array was designed to target 16 or 17 bp DNA half-sites.

Fragments encoding TAL effector repeat arrays were cloned into

wild-type FokI expression vectors (available from Addgene:

http://www.addgene.org/talengineering/expressionvectors/) as

previously described [1]. The C-terminal 0.5 TALE repeat

domain varies in these different expression vectors. All TALEN

expression vectors were verified by sequencing (Eurofins Operon).

RNA transcription and injection
RNA was synthesized using the Ambion mMACHINE T7 kit as

described [17]. Briefly, ZFN or TALEN DNA was linearized with

PmeI (NEB), purified by Qiagen QiaQuick kit. 500 ng of purified

linearized ZFN or TALEN DNA was transcribed according to the

manufacturer’s instructions. RNA encoding each TALEN arm

were combined and resuspended in nuclease free water at a

concentration of 250 ng/ml. One pl (125 pg RNA of each of the

two ZFN or TALEN arms, 250 pg total RNA) was injected into

the single cell zebrafish embryo. For some injections 46

concentration of RNA was used (1 ng total RNA).

Calculating mutation rates in somatic cells of
microinjected fish
Mutation rates were determined as described (Figure S1) [17].

Microinjected zebrafish embryos were raised to 3 dpf. Genomic

DNA was extracted from 12 larvae and treated with SDS lysis

buffer (10 mM Tris, 10 mM EDTA, 200 mM NaCl, 0.5% SDS,

100 mg/ml proteinase K) for 2 h at 50uC. Genomic DNA was

purified using phenol-chloroform extraction and PCR was

performed using primers that span the target site of interest

(Table S1). Genomic PCR products were purified by Qiagen

MinElute kit, cloned into TOPO vector (Invitrogen TOPO TA

kit), and transformed into Mach1 bacterial cells. Plasmid

purification and sequencing by T3 primer were performed by

the MGH DNA core facility. DNA sequence alignments were

performed using LaserGene DNAStar SeqMan program and

DNA mutation rate calculated as the number of mutant sequences

divided by the total number of sequences that covered the target

region multiplied by 100. Single insertions, deletions, or substitu-

tions were not considered mutations in this analysis as these could

result from PCR or sequencing artifact. Sequences that failed to

include both sides of the targeting region were excluded from our

analysis.

Zebrafish husbandry and toxicity estimates
Zebrafish were raised according to standard procedures [24].

Specifically, microinjected zebrafish embryos and uninjected

control fish from the same clutch were analyzed for dead and

deformed embryos at 24 hpf and 3 dpf [17,25]. Tu/AB mixed

strain was used for all injections, however, these fish exhibited a

single-nucleotide polymorphism (SNP) within the jak3 targeting

site. Thus, jak3 ZFNs or TALENs were also microinjected into

AB-strain fish that lacked this SNP.

Statistics
DNA mutation rates are shown as mean percentages +/2

standard error. For comparing CoDA ZFNs to our TALEN

results, the highest reported mutation rates for each ZFN pair were

used, providing a conservative analysis of differences between

mutation rates between CoDA ZFNs with TALENs. Fisher’s

Exact test was used in comparing the numbers of clones that

contained wild-type or mutant sequences between TALEN and

ZFN pairs for a given gene of interest.

A Fisher’s exact test was also performed to assess the difference

in number of successes between CoDA ZFNs and TALENs. To

account for the possibility of false negatives in our analysis, we

established a detection limit of 3.5%. At this threshold, $84

sequences would be required to identify a .3.5% mutation rate

with.95% confidence. Based on these criteria, 5 data points were

eliminated from subsequent analysis. The remaining 44 data

points, 38 ZFNs and 6 TALENs, were binned into two categories,

‘‘Positives’’ (indel mutations detected) and ‘‘Negatives’’ (indel

mutations not detected and rates can be confidently predicted to

be below 3.5%), to generate a 262 contingency table. The null

hypothesis that the distribution of data points within this table is

random was assessed using the Fisher’s exact test.

Results

The use of modified heterodimeric FokI nuclease
domains does not enhance the mutagenic activities of
CoDA ZFNs
In a previously published study [2], zebrafish genes were

modified by CoDA ZFNs that harbored heterodimeric FokI

variants bearing mutations at positions Q486E/I499L and

E490K/I538K (hereafter referred to as EL/KK) [18]. However,

more recent work has suggested that the activities of ZFNs can be

enhanced by using another pair of heterodimeric FokI variants

bearing mutations at Q486E/I499L/N496D;E490K/I538K/

H537R (hereafter referred to as ELD/KKR) [26]. These ELD/

KKR variants were reported to increase target DNA cleavage

rates in vitro and in human cells due to the introduction of

additional mutations that strengthen the dimerization of the FokI

subunits [26].

To directly address if the ELD/KKR heterodimers could result

in higher mutation rates in zebrafish, we sought to test these

variants using ZFNs made by CoDA. To perform this comparison,

we chose nine CoDA ZFNs that had been previously tested using

the EL/KK FokI variant. Six of these nine had previously

exhibited detectable mutagenesis at their intended endogenous

gene target (range of ,0.9 to 16.6%) and three had failed to show

detectable mutagenesis activities as assessed by low-throughput

Sanger sequencing approaches (Figure S2 and Table S2) [2]. Use

of the ELD/KKR FokI domains did not enhance the activities of

the CoDA ZFNs we tested. ZFNs that had higher mutagenic

activity levels as EL/KK ZFNs still showed comparable levels as

ELD/KKR ZFNs (rag2b and actinin in Figure S2 and Table S2).

Interestingly, our re-testing of these nine CoDA ZFNs bearing the

EL/KK variant using the same low-throughput Sanger sequenc-

ing method as the original report did not consistently detect the

mutagenic activities of ZFNs. One ZFN pair, tp53, induced

mutations with the ELD/KKR FokI but not EL/KK FokI.

However, the level of this tp53-targeted ZFN was low (2.5%),

consistent with the lack of a significant difference in activity

relative to the EL/KK ZFNs (Figure S2 and Table S2). We

conclude that use of the modified ELD/KKR FokI variants does

not appear to substantially improve mutation rates of CoDA ZFNs

in somatic cells of zebrafish.

TALEN Mutagenesis in Zebrafish
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CoDA ZFNs that induce DNA target site mutations can be
identified without pre-screening by the bacterial two-
hybrid assay
In a previous report, zinc finger arrays made by CoDA were

first pre-screened using a bacterial two-hybrid (B2H) reporter

assay before being used as ZFNs [2]. Finger arrays that activated

transcription by $ three-fold in the B2H reporter assay were

shown to have a ,50% success rate at inducing DNA mutations

when incorporated into ZFN pairs and assessed for mutagenic

capability in mosaic zebrafish. Assuming that 75% of monomeric

CoDA zinc finger arrays activate $ three-fold in the B2H system,

one would expect that ,56% (= 75%675%) of pairs would meet

this criterion. Of these pairs, one would expect that ,28%

( = 56%650%) of the resulting CoDA ZFN pairs would show

detectable mutagenesis activity. Given these theoretical success

rates, it was suggested that pre-screening with the B2H might not

be necessary if one was willing to accept a lower success rate in

identifying active ZFN pairs that cleave with efficiencies of $1%

[2]. To test this possibility, we designed 17 CoDA ZFN pairs using

the ZiFiT Targeter software and cloned DNA encoding these zinc

finger arrays into vectors that contained the ELD/KKR FokI

variants. Three of 17 (,18%) non-selected CoDA ZFN pairs

induced indels at the target site within the population of the clones

we sequenced, with rates ranging from 1.1–3.3% (Figure S2 and

Table S3). We conclude that, as previously predicted, ZFNs

designed by CoDA that are not pre-screened using the B2H

reporter assay can efficiently induce DNA mutations in mosaic

animals.

Comparisons of CoDA ZFNs and TALENs for targeting
endogenous zebrafish genes
We initially compared the targeting ranges of CoDA ZFNs and

TALENs for inducing mutations in five endogenous zebrafish

genes: B lymphoma Mo-MLV insertion region 1 homolog Polycomb RING

finger protein (bmi1), Ikaros Family Zinc Finger (ikzf1), Plant Homeodomain

Finger 6 (phf6),Myoblast determination protein 1 (myoD), and Janus Kinase

3 (jak3). Using the publicly available ZiFiT Targeter software

program, we identified an average of 3.8 potential CoDA ZFN

sites per gene (Figure 2), an average target site frequency of 1 in

387 bp within the coding sequence is consistent with the

previously reported CoDA targeting range of one site in every

400 bps in the zebrafish exome [2]. Of these various targets,

CoDA ZFN sites were chosen to avoid pyrimidine-rich sites and to

target as early in the 59 open reading frame as possible. CoDA

ZFNs were designed to DNA target sites ranging from 18% to

57% into the amino acid coding sequence for the genes analyzed

(Figure 2). By contrast, TALENs could be designed to the

methionine translation start site for all five genes using targeting

parameters developed by the Joung lab (Figure 2 and data not

shown) [19].

To compare success rates of CoDA ZFNs and TALENs for

mutagenizing target sites, we assessed the activities of nucleases

targeted to both the same and different regions of endogenous

zebrafish genes. For the bmi1, ikzf1, and phf6 genes, we designed

TALENs targeting the translation start site (Figure 2). An

additional TALEN pair for phf6 was designed to target a site in

the second exon of this gene. For jak3 and myoD, we designed

TALENs to target similar genomic sequence as CoDA ZFNs

(Figure 2) to ensure that differences in ZFN and TALEN mutation

rates did not result from altered chromatin structure or DNA

methylation status at the target site of interest. Of the five CoDA

ZFNs tested, only the ZFN targeted to the myoD locus showed

evidence of somatic mutation at 3 dpf (Figure 3 and Figure S2).

The CoDA ZFN pair designed to the jak3 gene showed mutagenic

activity in a previously published report [2] but was not detected in

our current analysis. This failure to detect mutagenic activity for

the jak3 CoDA ZFNs is likely due to the sampling limitation of our

Sanger sequencing assay (Table S2 and Discussion). By contrast,

all TALENs designed to these same genes led to highly efficient

somatic mutation within embryos, ranging from 20%–77%

(Figure 3 and Figure 4).

To more broadly compare success rates of CoDA ZFNs and

TALENs for mutagenesis of a given target in zebrafish, we

performed an analysis of results of CoDA ZFNs obtained among

data presented here and within multiple research groups in the

community, including ZFNs that were and were not pre-screened

by B2H-assay, and compared to our data for TALENs [1,2,8]. We

find that TALENs are significantly more likely to induce

detectable DNA mutations than CoDA ZFNs with 17 of 38 ZFNs

inducing DNA mutations at the target site of interest compared to

6 of 6 TALENs reported here (p = 0.02, Fisher’s Exact test, Table

S4 and Materials and Methods). Our results suggest that the

success rate for inducing mutations at a given target site is higher

for TALENs than for CoDA ZFNs.

TALENs also induce higher rates of mutagenesis at their

endogenous gene targets than CoDA ZFNs. All TALEN pairs

exhibited significantly higher mutation rates when compared with

CoDA ZFNs to the same five genes, albeit at different DNA target

sites (Fisher’s Exact Test, p,0.001 for individual comparisons

between genes, Figure 3A). When compared to published results,

there is also a difference between CoDA ZFNs and TALENs with

CoDA ZFN mutation rates being 4.5+/21.3% (n= 17) compared

to the TALEN mutation efficiency of 29.5+/26.4% (n= 12,

Figure 3B and Table S4) [1,2,8]. Thus, on average, TALENs are

more than six-fold more efficient at inducing targeted DNA

mutations in developing zebrafish.

TALENs can induce large mutations that produce early
frame shift mutations and/or protein termination
TALENs induce mutations with a diverse range of lengths

(Figure 4 and 5). TALEN mutant sequences included indels

ranging from two to 78 bps (Figure 5). We find that TALENs

induce 11.5+/21.4 bp indels on average (n = 76 independent

mutations from all six TALENs). More than half of all mutant

sequences were unique across TALEN targets (data not shown),

suggesting that TALENs are able to cleave genomic DNA during

late stages of development and in multiple cell types within

animals. In our dataset, induced mutations would presumably

create LOF alleles 66% of the time, eliminating the ATG start site

or inducing early frameshift followed by stop codons within 50

amino acids of the DNA target site. Finally, high mutation rates

would not be useful if the cost were high toxicity. Overall,

TALENs had largely similar toxicity profiles when compared with

CoDA ZFNs with more than half of all embryos injected with

TALEN RNA surviving to 3 days post-fertilization (Figure 6).

Discussion

One major advantage of TALENs is their higher targeting

range relative to CoDA ZFNs. For example, the DNA targeting

range for CoDA ZFNs is limited by the availability of pre-selected

zinc finger units that can bind to each of the possible 3 bp

sequences. CoDA ZFNs have been reported to target 1 in 400 bp

of sequence in the zebrafish exome [2]. By contrast, TALENs

utilize a simpler ‘‘code’’ of binding where each TALE repeat

recognizes one nucleotide. Recent work has shown that TALENs

exhibit a conservative targeting range of three TALEN pairs for

TALEN Mutagenesis in Zebrafish
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every bp of random DNA sequence [19] and can therefore in

nearly all cases be easily designed to essentially any region of a

gene including the translational start site. Building on these recent

findings, we utilized TALENs to specifically ablate the methionine

start site in three endogenous zebrafish genes and induced DNA

mutations within the coding sequence of three genes. Such

flexibility in target design will likely facilitate the creation of

knockout zebrafish and the production of allelic deletion mutations

to assess complex structure-function relationships in live animals.

Our results also suggest that TALENs possess a higher success

rate for targeting a given gene for mutation than CoDA ZFNs. For

example, all six TALENs tested in our study exhibited high rates of

DNA mutagenesis at the target site of interest while fewer than half

of all CoDA ZFNs induced indels within the population of

Figure 2. CoDA ZFN and TALEN targeting sites used for assessing mutation rates across platforms. A) Schematic comparing target sites
for ZFNs generated using CoDA compared with TALENs. Peptide sequence is represented by brown bar. Arrowheads denote sites used to target ZFNs
(blue) compared to TALENs (open white). All potential CoDA sites are shown as blue hashes within the coding sequence. B) Target sequences for
ZFNs and TALENs. Blue text indicates DNA binding site of ZFN or TALEN, red text indicates spacer region. The jak3 and myoD targeting sites are
overlapping for both ZFNs and TALENs, shown by boxed text within the TALEN sequence. Start codons are shown in boxed text for TALENs designed
to bmi1, ikzf1, and phf6. Target sites are denoted by their percentage distance within the coding region (% coding=% peptide sequence).
doi:10.1371/journal.pone.0037877.g002

TALEN Mutagenesis in Zebrafish
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sequenced clones. These data also suggest that TALENs are more

likely to successfully target a given DNA target for mutagenesis

than CoDA ZFNs, irrespective of whether the ZFN pairs were pre-

screened by B2H assay.

The average efficiency with which TALENs induce somatic

mutations is also higher than that of CoDA ZFNs. In combining

data from our work and those previously reported by Sander et al.,

2011, we find that CoDA ZFNs exhibit an average mutation rate

of 4.5+/21.2% at the target DNA sequence (n = 17, data includes

both pre-selected and non-selected ZFNs that exhibited detectable

mutation rates as assessed by Sanger sequencing, Table S4). By

contrast, an average somatic mutation frequency of 29.5+/26.4%

could be achieved using TALENs [1,8]. Most importantly, all

TALEN pairs tested in our study exhibited significantly higher

mutation rates than compared with CoDA ZFNs designed to the

same five genes, albeit at different DNA target sites. We note that

the difference we observe may be partly attributable to the use of

the wild-type homodimeric FokI cleavage domain within the

TALENs while CoDA ZFNs used one of two different heterodi-

meric FokI domains [18,26]. Although the TALENs used here

may have higher off-target mutation events due to the use of

homodimeric FokI, it is likely that founders can be outcrossed to

reduce the mutation load at other alleles. Such approaches are

currently used to eliminate off-target ENU induced mutations in

zebrafish isolated from genetic screens and TILLING. Future

studies will be required to assess rates of off-target TALEN

mutations in zebrafish and the ability to curb these effects using

heterodimeric FokI cleavage domains.

We note that the high success rates and mutagenesis frequencies

we observed in this report were obtained using TALENs built on a

specific architecture of TAL effector repeats and N- and C-

terminal extensions of TAL effector sequence beyond the repeats.

This particular architecture was also used in a previous study in

which TALENs induced high rates of mutagenesis in zebrafish [1]

and in other studies where endogenous genes from C.elegans [21],

rats [22], human somatic [19,20] and pluripotent stem cells [23]

were efficiently modified with TALENs. Interestingly, another

earlier report that used TALENs to modify zebrafish genes [8]

found lower frequencies of mutagenesis using a different amino

acid framework for the TAL effector repeats (Figure 3, Table S4).

A variety of different architectures for making TALENs have been

described in the literature [27,28,29,30,31,32] and an important

question for future investigation will be to determine if TALENs

built using these other approaches will also exhibit the same high

success rates and mutation frequencies that we observed in this

report.

Our findings also suggest limitations to low-throughput Sanger

sequencing assays to assess targeted nuclease activities. The small

numbers of sequences sampled with this assay limit the reliable

detection of nucleases that induce low-frequency DNA mutations.

For example, using this assay, we did not detect somatic DNA

mutations in animals injected with CoDA ZFNs to three different

genes (jak3, bmpr2a, and grip1) that had previously been reported to

induce mutations at rates ranging from 0.9% to 3.3%. Conversely,

we were able to detect mutations induced by CoDA ZFNs targeted

to tp53 that had tested negative in previous experiments. These

results demonstrate that assessing mutation rate by Sanger

sequencing is prone to sampling artifact and that this method

may overestimate failure rates. This finding is not entirely

surprising given that sequencing of 84 samples can only detect

mutation frequencies of .3.5% with 95% confidence and

sequencing of 300 samples would be required to reliably detect

mutation frequencies of 1%. High-throughput next-generation

sequencing may therefore provide a more sensitive assay for

assessing true mutation rates where somatic DNA mutation rates

have been reported as low as 0.01% for a subset of ZFNs [6].

Moreover, nucleases that induce low somatic mutation rates are

likely to still be of value to investigators because heritable germ line

mutations have been observed with ZFN pairs that have somatic

mutation rates as low as 0.1% as assessed by next generation

sequencing [6]. Despite the limitations of Sanger sequencing in

detecting low level mutation rates for CoDA ZFNs and the likely

underestimation of the number of ZFNs that can induce mutations

in somatic cells of zebrafish, it is clear that such approaches

identified significantly high mutation frequencies at genomic DNA

target sites modified by TALENs. Taken together, these data

strongly argue that TALENs induce mutations more efficiently

than CoDA ZFNs and will likely require fewer animals to be

screened to identify founder fish containing mutations of interest.

Looking to the future, it is likely that TALEN technology will

revolutionize reverse genetics in zebrafish and will be used to

create a much-needed library of loss-of-function alleles for the

community. In the experiments outlined in this report, we were

able to construct TALEN expression vectors within two weeks and

establish somatic mutation rates for each pair within another week.

Further, because TALENs cleave endogenous target DNA with

high efficiencies, it is possible that TALENs may play a critical role

in the development of strategies for performing efficient homol-

Figure 3. TALENs exhibit high mutation rates. A) Table showing
somatic mutation rates of ZFNs and TALENs for five genes. Mutation
rate was calculated as number of mutant sequences divided by the
total number of sequences analyzed for a given target region. Raw
sequence scores are shown in parentheses. Each TALEN had a
significantly different mutation rate compared to ZFNs as assessed by
Fisher Exact Test (p,0.001 denoted by asterisks). B) Plot of somatic
mutation rates of CoDA ZFNs and TALENs in zebrafish [1,2,8]. The
average mutation rate of all TALENs was higher than that of CoDA ZFNs.
ZFNs with mutation rates of 0% were excluded from this analysis.
Datum points of TALENs from different research groups are distin-
guished by color.
doi:10.1371/journal.pone.0037877.g003
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ogous recombination in zebrafish. Such approaches would allow

precise mutations to be targeted to a gene of interest while Cre/lox

technologies could provide temporal and spatial control of gene

inactivation during development. In summary, our results provide

support for the use of TALENs as a robust platform for

engineering DNA mutations into zebrafish and suggest that

TALEN technology will fast become the preferred technology for

creating knockout mutants in zebrafish.

Figure 4. Sequences of somatic zebrafish gene mutations induced by TALENs. Mutant sequences were aligned to the wild-type sequence.
The length and frequency of indels are noted to the right. The target site is shown at top with each TALEN half-site highlighted in yellow and the
spacer sequence highlighted in gray. Deletions (D) are shown in red with gray highlight, insertions (+) are shown in blue.
doi:10.1371/journal.pone.0037877.g004

Figure 5. TALENs cause a wide diversity of DNA mutations. Indels were classified according to length. The frequency of different length
mutations is shown as a percentage of all sequences.
doi:10.1371/journal.pone.0037877.g005
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Supporting Information

Figure S1 Schematic illustrating methodology used to assess

somatic mutation rates of TALENs. DNA fragments encoding

TAL effector repeat arrays were cloned into TALEN expression

vectors. Each construct contained a single TALEN and was

transcribed into RNA. Pairs of TALEN-encoding RNAs were

microinjected into the single cell stage zebrafish embryos (250 pg

total RNA injected into each embryo). TALENs induce double

strand breaks (DSB) at the DNA target site. Non-homologous end

joining repairs the DSB, often resulting in insertion or deletion

mutations (indels) at the target site. Genomic DNA was extracted

from 12 microinjected zebrafish at 3 dpf and genomic DNA

fragments spanning the target site were amplified using PCR.

Fragments were resolved on a gel, purified, and cloned into a

TOPO vector. Clones were sequenced to assess mutation

frequencies within the target region of interest. Mutation rates

were defined as the number of mutant sequences divided by the

number of sequences analyzed multiplied by 100.

(TIF)

Figure S2 Sequences of somatic zebrafish gene mutations

induced by CoDA ZFNs. Mutant sequences were aligned to the

wild-type sequence. The length and frequency of indels are noted

on the right side. The target site is shown at top with each CoDA

ZFN half-site highlighted in yellow and the spacer sequence

highlighted in gray. Deletions (D) are shown in red with gray

highlight, insertions (+) are shown in blue.

(TIF)

Table S1 PCR primers used to amplify genomic DNA in target

regions to determine mutation rate.

(XLSX)

Table S2 The use of a modified FokI heterodimer does not alter

ZFN mutation rates in zebrafish. Heterodimeric FokIQ486E/

I499L;E490K/I538K (EL/KK) cleavage domains [18] were compared

to the modified heterodimeric FokIQ486E/I499L/N496D;E490K/I538K/

H537R (ELD/KKR) cleavage domains [26]. Previous work used

the EL/KK FokI domains [2].

(TIF)

Table S3 Mutation rates for ZFNs designed by CoDA. Raw

sequence scores are shown in parentheses. For some ZFNs, more

than one RNA dose was injected, 16=250 pg total RNA,

46=1 ng total RNA.

(TIF)

Table S4 Compilation of mutation rates for ZFNs and

TALENs. In the case of multiple injections, the highest rate of

mutagenesis is shown for a given ZFN. Data is plotted in Figure 3B

[1,2,8].

(XLS)
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Figure 6. TALENs and ZFNs exhibit similar toxicity profiles. The cumulative percentage of embryos that were dead or deformed by 3 days
post-fertilization is denoted. CoDA ZFNs from the same genes are shown on the right. The number of fish examined for toxicity is shown below; the
mutation rate is derived from a pool of 12 embryos.
doi:10.1371/journal.pone.0037877.g006
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