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Improved Spread Spectrum: A New Modulation
Technique for Robust Watermarking
Henrique S. Malvar, Fellow, IEEE,and Dinei A. F. Florêncio, Member, IEEE

Abstract—This paper introduces a new watermarking modu-
lation technique, which we call improved spread spectrum(ISS).
When compared with traditional spread spectrum (SS), the signal
does not act as a noise source, leading to significant gains. In
some examples, performance improvements over SS are 20 dB in
signal-to-noise ratio (SNR) or ten or more orders of magnitude
in the error probability. The proposed method achieves roughly
the same noise robustness gain as quantization index modulation
(QIM) but without the amplitude scale sensitivity of QIM. Our
proposed ISS is as robust in practice as traditional SS.

Index Terms—Data hiding, information embedding, spread
spectrum, watermarking.

I. INTRODUCTION

WATERMARKING—or embedding information in a way
not immediately discernible but hard to reproduce—has

been used as a way of reducing counterfeiting. These techniques
have been used in documents, currency, and other applications
for centuries. With the widespread use of digital representation
for images, video, sounds, and other signals, copyright protec-
tion by using a “digital watermark” became a very active area of
research (see [1] for an extensive bibliography). Watermarking
in this new context is a complex problem, with issues that in-
volve not only watermarking techniques but involving systems
design, cryptography, and a series of economic and legal aspects
as well. While we do appreciate the complexity of the problem,
in this paper, we only deal with a single aspect of the problem:
that of “hiding” or transmitting information under a signal, by
adding or embedding an imperceptible signal (i.e., the water-
mark).

In many watermarking schemes, spread spectrum (SS) is the
modulation technique used to embed the watermark [2]–[4]. In
the simplest scheme, the bits composing the desired message
(e.g., the name of the copyright owner) are modulated by an SS
sequence and added to the signal. Since SS is robust to inter-
fering noise, the amount of energy (or distortion) that has to be
added to the watermarked signal to “erase” the watermark can
be made very high. In fact, the signal itself is a source of in-
terference. In more elaborate schemes, differences in the signal
may be explored in order to reduce subjective distortion intro-
duced by the watermark. Finally, other aspects of a complete
watermarking system deal with aspects such as secure key dis-
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tribution, resynching (to overcome malicious attacks to the wa-
termark), and computational complexity.

In schemes using SS as the embedding technique, the signal
itself is seen as a source of interference [2], [5]. In practical wa-
termarking applications, the signal is generally much stronger
than any interference the signal must endure, and therefore, the
interference from the signal itself dominates the process. In fact,
data hiding by low-bit(s) modulation (LBM) can be seen as an
SS, where the interference from the signal was removed, and the
SS sequence length can be reduced up to a single bit if channel
noise is not present. Nevertheless, due to the fragility of LBM
to attacks, other methods of reducing or eliminating the inter-
ference from the signal are necessary.

In [6], Chen and Wornell propose a new embedding method
called quantization index modulation (QIM). Their method
does reduce or eliminate the interference from the signal,
achieving a much higher robustness to additive noise than SS.
However, QIM obtains its gains from embedding the watermark
in a lattice, making the watermark very sensitive to scaling of
the signal, i.e., a simple change in the scale of the watermarked
signal will practically erase the watermark. Although scaling
may led to large mean-square errors, it is usually perceptually
acceptable. Therefore, QIM is not applicable to watermarking
signals whenever a malicious attack using scaling can take
place.

In [5], Cox et al. present a framework where they indicate
the need for removing the influence of the signal in the wa-
termark detection process, but they come short of presenting a
practical solution to the problem. More recently, three different
practical solutions based on that framework have been proposed
[8]. These solutions correspond to the cases of “maximizing cor-
relation coefficient,” “maximizing robustness,” and requiring
“constant robustness.” Still, they do not handle the important
case of how to insert the watermark to minimize the error rate at
a fixed energy level (or more precisely, at a given average dis-
tortion level). Furthermore, the solution presented there is based
on the assumption that detection is based on correlation coeffi-
cient. It is more common that simple correlation is used as the
detection criteria and in that case, all solutions presented in [8]
degenerate into traditional (i.e., blind) SS modulation.

In this paper, we propose a simple technique, which we call
improved spread spectrum (ISS). This technique, in practice, re-
moves the signal as source of interference, producing a dramatic
improvement in the quality of the watermarking process. The
gains for the ISS are similar to those obtained by QIM, but the
method proposed herein does not suffer from the same sensi-
tivity to amplitude scaling. ISS is essentially as insensitive to
amplitude scaling as traditional SS.
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Fig. 1. Watermarking system. (a) Embedding. (b) Detection.

Practically, any watermarking system currently using SS
would immediately profit from using the proposed scheme
as a direct replacement for SS. Gains will vary according to
signal-to-noise ratio (SNR) and operating error probability, but
improvements of 20 dB in SNR resistance or reduction in error
probabilities of 10 or more orders of magnitude are common.

In Section II, we present our framework and analyze tradi-
tional SS as it applies to watermarking. In Section III, we present
our basic ISS technique. In Section IV, we introduce a simpli-
fied (linear) version of ISS and analyze and compare the per-
formance in terms of noise immunity of our technique to that
of traditional SS and QIM. In Section V, we analyze the vari-
ance introduced by our method in the signal distortion and in-
troduce a few further enhancements, which control the variance,
including a limited distortion version of the linear approxima-
tion introduced in Section IV. In Section VI, we derive the op-
timum ISS, and in Section VII, we present some conclusions.

II. TRADITIONAL APPROACH FORSS-BASED WATERMARKING

A general system for SS-based watermarking is shown
in Fig. 1. Embedding is shown in Fig. 1(a) and detection in
Fig. 1(b). In these figures, the box “good transform” is intended
to represent a transform from the original signal domain to a
domain where the data is more equally sensitive to tampering.
Ideally, a “good transform” also removes any part of the data
that is not perceptually significant. In the case of images, for
example, the transform should be insensitive to translation,
small contrast manipulations, lowpass filtering, and other
common signal processing techniques. The idea is that after
the transform, anysignificant change in the signal would
significantly impair the image. Note that we include a box
with the inverse transform, but the transform does not need to
be strictly invertible since we can pass some side information
from the original signal to the inverse transform.

Even though we recognize the difficulties involved in de-
signing such a “good” transform, in this paper, we do not address
this problem. Instead, we focus only on the next step, which is to
actually insert the watermark after such transform. In our nota-
tion, the vector is considered to be the original signal already
in an appropriate transform domain to be marked. The vector

is the received vector, in the transform domain, after channel
distortions.

Fig. 2. Spread-spectrum-based watermarking.b is the bit to be embedded.

SS-based watermarking is shown in Fig. 2. A secret key
is used by a pseudo random number generator (PRN) to pro-
duce a “chip sequence” with zero mean and whose elements
are equal to or . The sequence is then added to or
subtracted from the signal according to the variable, where

assumes the values of1 or 1 according to the bit (or bits)
to be transmitted by the watermarking process. The signalis
the watermarked signal.

A simple analysis of SS-based watermarking leads to a simple
formula for the probability of error. First, consider the defini-
tions of inner product and norm:

and (1)

where is the length of the vectors, , , , and in Fig. 2.
Without loss of generality, we assume that we are embedding

one bit of information in a vectorof transform coefficients.
Then, the bit rate is bits/sample. That bit is represented by
the variable , whose value is either 1 or 1. Embedding is
performed by

(2)

The distortion in the embedded signal is defined by .
It is easy to see that for the embedding equation above, we have

(3)

The channel is modeled as additive noise:

(4)

Detection is performed by first computing the (normalized) suf-
ficient statistic :

(5)

and estimating the embedded bit by

sign (6)

where and .
We assume simple statistical models for the original signal

and the attack noise. Namely, we assume both to be samples
from uncorrelated white Gaussian random processes. Therefore

(7)
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Fig. 3. Error probability for SS-based watermarking.

Then, it is easy to show that the sufficient statisticis also
Gaussian, i.e.,

(8)

In particular, let us consider the case when . Then, an
error occurs when , and therefore, the error probability
is given by

erfc

erfc (9)

where erfc is the complementary error function. The same
error probability is obtained under the assumption that .
A plot of that probability as a function of the SNR is
shown in Fig. 3.

For example, from Fig. 3, we see that if we want an error
probability better than 10 , then we need

(10)

or more generally, to achieve an error probability, we need

erfc (11)

The equation above shows that we can trade the length of the
chip sequence with the energy of the sequence. It allows
us to easily compute either or , given the other variables
involved.

III. N EW APPROACH VIA ISS

The main idea behind the ISS is that by using the encoder
knowledge about the signal(or more precisely, , the projec-
tion of on the watermark), we can enhance performance by
modulating the energy of the inserted watermark to compensate
for the signal interference. The new embedding approach is de-
fined by a slight modification to the SS embedding (2), i.e., we

vary the amplitude of the inserted chip sequence by a function
:

(12)

where, as before, . Note that the traditional SS
is a particular case of ISS. In our notation, SS is a case of the
ISS in which the function is made independent of.

We now analyze a few small variations of the ISS approach.
In particular, Section IV presents more detailed analysis of a
linear approximation to , as this allows for a simpler mathe-
matical analysis. Nevertheless, this linear approximation has a
clear disadvantage in that the maximum distortion introduced
by the watermark is not limited. In Section V, we propose a few
ways in which the maximum distortion can be analyzed and con-
trolled. Finally, in Section VI, we go back to the general problem
of finding the optimum .

IV. L INEAR APPROXIMATION

A simpler version of the ISS is to restrictto be a linear func-
tion. Not only is this much simpler to analyze, it also provides a
significant part of the gains in relation to traditional SS. In this
case and due to the symmetry of the problem in relation toand

, we have

(13)

The parameters and control the distortion level and the re-
moval of the carrier distortion on the detection statistic. Tradi-
tional SS is obtained by setting and .

With the same channel noise model as before, the receiver
sufficient statistic is

(14)

Therefore, the closer we maketo 1, the more the influence of
is removed from . The detector is the same as in SS, i.e., the

detected bit is sign .
The expected distortion of the new system is given by

(15)

To make the average distortion of the new system to equal that
of traditional SS, we force , and therefore

(16)

To compute the error probability, all we need is the mean and
variance of the sufficient statistic. They are given by

and

(17)
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Fig. 4. Error probability as a function of�. Solid lines represent a 10-dB SNR,
and dashed lines represent a 7-dB SNR. The three lines correspond to values of
equal to 5, 10, and 20 (with higher values having smaller error probability).

We can therefore compute the error probabilityby

erfc

erfc (18)

We can also rewrite as a function of the relative power of the
SS sequence and the SNR

erfc (19)

In Fig. 4, we plot as a function of for various values of
SNR and . Remember that corresponds to SS.
Note that by proper selection of the parameter, the error prob-
ability in the proposed method can be made several orders of
magnitude better than using traditional SS. For example, with
a signal-to-interference ratio of 10 (i.e., 10 dB), we get a re-
duction in the error rate from for traditional SS to

for the proposed method, which is a reduction
of over 37 orders of magnitude in the error probability. Higher
SNR values, which can happen in practical applications, lead to
even higher gains.

As it can be inferred from Fig. 4, the error probability varies
with , with the optimum value usually close to one. The ex-
pression for the optimum value forcan be computed from the
error probability by setting and is given by

(20)

In addition, note from this expression that forlarge enough,
as SNR .

A. Improvement in Noise Immunity Over Traditional SS

Until now, we considered the improvement in the error proba-
bility when using the ISS. We now try to answer the question of
how much more noise (for the same error probability) can ISS
stand compared with SS. For simplicity, we restrict our analysis
to the linear ISS. Let us call the noise level in our new im-
proved SS system and the noise system in the original SS
system. Our goal now is to compute how much larger can
be compared with for the same average distortion and same
probability of error. Since we have the same error probabilities
for the same SNR

(21)

or

(22)

For traditional SS, we have , and thus, , as
expected.

The optimal design for our improved SS system is obtained
when we chose the parametersuch that is maximized, i.e.,
the improved system can tolerate the maximum amount of noise.
Let us call the optimal value of . Then, it is easy to show
that

(23)

For the optimal design, then, the allowable noise level can be
written as

(24)

If and the channel SNR is high, then we have
.

The proposed method improves the error ratio (and/or noise
immunity) for any level of channel (attack) noise and for any
level of desired error probability. We now select a more specific
example to give an idea of the level of improvements that can
be achieved with the proposed method. We recall that for the
traditional SS system to work with a low probability of error,
e.g., , then we need . That means

. In additon, let us call the signal-to-channel-
noise ratio, i.e.,

(25)

and let us call the noise tolerance gain of our system when
compared to traditional SS:

(26)

Then, it is easy to show that the noise tolerance gain for our new
system is given by

(27)

Therefore, for large , the improvement in noise tolerance is
quite significant since it is approximately equal to 0.9. In
Fig. 5, we plot as a function of , all in decibels.
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Fig. 5. Improvement in noise robustness of our new ISS over traditional SS, in
decibels, as a function of the channel SNR. For a typical scenario of a channel
SNR of 20 dB, the improvement is about 20 dB, i.e., our ISS system can tolerate
100 more times channel noise power than traditional SS.

We note that the performance of our new ISS system is quite
close to that of QIM [6]. The noise tolerance improvement of
QIM over SS is slightly above , whereas in our system, it is
slightly below . However, our ISS system is not sensitive to
amplitude scaling of the received signal, like QIM. Therefore,
ISS can be more robust in practical applications.

B. Comparison of Required Watermark Energy

In many applications, a desired error probability and a certain
SNR are specified. In such cases, the objective is to minimize
the energy of the watermark, i.e., the signal distortion. We now
use this situation to compare the linear ISS to traditional SS to
STDM and to a theoretical bound.

For a given signal and noise energy and a desired error prob-
ability, (11) gives us the necessary energy in the watermark for
traditional SS. A similar equation for the linear ISS can be ob-
tained by inverting (18). The objective of ISS is to reduce the
influence of the signal as a source of interference. A natural per-
formance bound is therefore the result that could be achieved if
the decoder had knowledge of the signal (and therefore could re-
move any influence from the detection statistic). This is equiv-
alent to the problem of communication in presence of noise,
where it is shown in [9] that if the encoder knows the channel
noise (which, in our case, is the signal to be marked), then
the achievable capacity is the same as if the decoder knew the
channel noise. In other words, the encoder can precompensate
for the channel noise. That is exactly what we are attempting to
achieve with ISS.

In [6], Chen and Wornel show that the performance of STDM
is only 1.25 dB above this bound. Fig. 6 shows a plot of these
numbers for attacks corresponding to 5 , 10, and 20 dB SNR. In
each figure, the solid line represents the theoretical bound, the
dash-doted line represents the performance of traditional SS, the
dashed line represents the performance of STDM, and the two
dotted lines represent two versions of linear ISS: the simplest
one ( ) and with optimized according to (20). Note that
in each case, traditional SS requires around the same extra en-
ergy in the watermark as the attack SNR. For error probabilities
below 10 with attacks over 10 dB, the ISS performance is
within 2 dB of the theoretical bound, and it even outperforms
STDM for error probabilities below 10 (below 10 for a

(a)

(b)

(c)

Fig. 6. Error probability as a function of watermark energy. Error probability
for ISS (dotted lines) compared with SS (dash-dot lines), STDM (dashed line),
and a theoretical bound (solid line). The SNR is 5, 10, and 20 dB.

5-dB attack). We note that other QIM methods that are more
elaborate than STDM would help reduce the gap to the theoret-
ical bound. Nevertheless, all QIM methods suffer from the scale
sensitivity problem. In summary, ISS is much simpler, robust to
scaling attacks, and does not require modifying the decoder, and
its performance is similar to that of QIM.

V. ANALYSIS AND CONTROL OFMAXIMUM DISTORTION

The choice of and we have used in our computations guar-
antees the same level of average distortionas in SS. Neverthe-
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less, with the proposed method, the distortion is not constant, as
in SS. Indeed, in the linear approximation described until now,

is not even limited, and that may be a problem in some ap-
plications. In particular, up to now, we have consideredto be
a constant. While this has allowed a simplified mathematical
analysis, it has introduced the undesired effect that the distor-
tion is not limited. In this section, we propose a slightly different
version of the ISS, which limits the distortion to a desired max-
imum, but still gets most of the gains of the ISS. We first show
in Section V-A that by introducing a limit on the distortion, we
can actually obtain further improvements in the results we have
shown. A disadvantage of this limit is that it is not under our
control. In Section V-B, we address the case of applications that
need a more strict control on the maximum distortion.

A. Maximum Useful Distortion for ISS

Looking at the extremes of the distortion in the ISS, we realize
that large values of distortion occur in two different situations:
In one of them, the sign of is the same of . For this case, it
is easy to note that if , then the effect of is, in
fact, to reduce the strength of the watermark. In other words,
by setting whenever , we can make
the distortion zero and obtain even better error rates since the
watermark will in fact be stronger.

The above procedure takes cares of limiting the distortion to
one side, i.e., the side whereand have the same sign. When

and have opposite signs, the presence of the signal is, in fact,
reducing the energy of the watermark. In this case,is helping
restore the watermark to an ideal level. In fact, if , the
watermark would always be present at exactly the same energy
level, regardless of the value of. Nevertheless, as we have
shown before, the choice of is not the optimum choice.
For any value , there is a value of above (below) which
the watermark is not correctly detected, even in the absence of
noise. More precisely, if

(28)

then we would have erroneous detection even in the absence of
noise. Yet, these are large values of, which therefore imply in
large values of distortion. Since this watermark is not going to
be detected anyway, again setting (i.e., setting
distortion to zero) is the most reasonable choice.

We have therefore shown that even though we assumed an
unbounded distortion model to simplify our mathematical anal-
ysis, a more natural choice of bounds forin the ISS leads to
a limited distortion algorithm. We can summarize the choice of

for this algorithm as
if,

otherwise
(29)

where is the precomputed value foras optimized by the pre-
viously described methods. Again, note that this second choice
for for when is outside the given interval implies zero dis-
tortion.

B. ISS With Limited Distortion

In the previous section, we showed that limiting the distortion
does not necessarily affect the detection error rate. This modi-

fication can be seen as “giving up” wheneveris too large in
the opposite direction of and allowing a stronger watermark
whenever is too strong but in the same direction as. In these
cases, we do not transmit the watermark as the distortion nec-
essary to allow reception would be too high. The only problem
with this way of limiting the distortion is that we have no con-
trol over what that limit is: The limit depends only on the values
established for and . However, using the same general prin-
ciples, we could limit distortion to whatever level we want. One
way of expressing this would be to introduce a window function

, which limits the region where we introduce the watermark.
We can express this by

(30)

where

if
if
otherwise

(31)

where is the “give up” parameter. Note that the first 0 is for
the case where the watermark would be correctly detected even
without inserting any additional signal (and therefore there is no
need to increase distortion). The second 0 is for the “give up”
case: If is too strong and in the wrong direction, we just give
up (and allow an error to occur). This allows us to guarantee a
maximum distortion.

We can compute the new expected distortion as

(32)

Therefore, to have the same as traditional SS, we need to
make the last integral equal to one. A simpler approach is to
obtain an upper bound by extending the integrals to infinity.
This is then the same as we had for the original ISS, i.e., we
can guarantee , by making

(33)

In this case, the error probabilityis

(34)

The analysis can be somewhat simplified if we make , and
in this case, we have

(35)

while for SS, we would have

(36)

In other words, we provide the same gains as before by removing
the influence of from the detection, except that now, we only
do that for a predefined range of.
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VI. OPTIMUM ISS

We now analyze the more generic case, where the function
is not restricted to be linear. We then expressas

(37)

We can then find the optimum solution for . We first note
that since , and are independent, is odd symmetric
in the sense that . For simplicity and
without loss of generality, we assume from now on that
and write simply , i.e.,

(38)

The distortion for a certain value of is

(39)

and, as before, our sufficient statistic, which is computed from
, is

(40)

We want to find the function that minimizes the ex-
pected detection error probability for a given
expected distortion . We can compute as

erfc (41)

To be optimum, must be such that it satisfies

(42)

for some constant . Therefore, an optimum solution has
to satisfy

or (43)

Since is simply the (scaled) square of , the first con-
dition is satisfied only for . The second condition can
be rewritten as

erfc
(44)

(45)

where is another constant. Unfortunately, there is no
closed-form solution for , but we can solve the above
equation numerically.

The expected error probability depends on the variance of the
noise and on the constant. We can, therefore look at as a
parameter that determines the final balance between distortion
and error probability. Depending on the values of, , and ,
the equation has one, two, or three solutions. We illustrate this
in Fig. 7, where we have plotted the right side of the equation (a
straight line) for a certain and the left side (a normal curve)
for four different values of (i.e., 0, 3, 6, and 9). For pos-
itive values of , the peak of curve is even more to the left. The
solution is one of the points where the normal curve intersects
the line. It is clear that for positive values of, we must choose
the only intersection point. As the value ofbecomes more and
more negative (i.e., as the normal curve goes more and more to
the right), there will be two extra intersection points, both to the

Fig. 7. Solving the equation for the optimum�. Each normal curve
corresponds to a different value ofx. Intersection points are “candidates” to
optimum solutions of�(x).

Fig. 8. Optimal�(x) for several SNRs. From left to right, SNR is 10, 7, 3, and
0 dB. In all cases, distortion is 20 dB below the signal, andN = 100.

left of the peak. Reasoning about the increase in distortion and
the increase in error probability, we can discard the middle in-
tersection point. To decide between the first and third point, we
should compute the ratio between the difference in error proba-
bility and the difference in distortion at each point. Graphically,
this can be interpreted in Fig. 7 as balancing the areas between
the straight and the normal curves. In other words, we select the
point closest to the origin whenever the area between the curves
from this point to the second intersection point (i.e., the area in
which the normal is below the straight line) is higher than the
area between the curves from the second to the third intersection
points (i.e., the area in which the normal is above the straight
line). Otherwise, we select the third intersection point.

Fig. 8 shows a plot of the optimum for some different
situations. In particular, we vary the SNR ratio while keeping
the average distortion constant. As it can be noted in the figure,
the approximation of by a straight line segment is a rea-
sonable approximation for a large number of situations. In par-
ticular, the higher the SNR (or the stronger the watermark), the
more appropriate the approximation. Again, remember that all
previous analyses refer to the case where . The case where

behaves in the same way becauseis odd symmetric,
as we mentioned before.

Fig. 9 compares the performance (in terms of error proba-
bility) for several of the ISS variations we have discussed so
far. The particular data in this plot is for a SNR of 20 dB. The
continuous line represents the error rate for traditional SS. The
dash-dot line refers to the linear ISS and the dashed line to the
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Fig. 9. Error probability for the SS and several versions of ISS. The SNR is
20 dB. The continuous line refers to traditional SS. The dash-dot line refers to
the linear ISS and the dashed line to the limited distortion version of the linear
ISS. The dotted line represents the fully optimized ISS.

limited distortion version of the linear ISS. The dotted line rep-
resents the fully optimized ISS. We can note that for most of
the values of , the limited distortion linear approxi-
mation performs practically as well as the optimum choice of

. Yet, if operating in the knee region, where the curve dif-
fers most, the difference of 0.6 in means that the error
probability is four times higher. Note also how adding the limi-
tation on the distortion (or using the optimum solution) reduces
the error probability by almost two orders of magnitude.

VII. CONCLUSION

In this paper, we have proposed a new spread spectrum (SS)
technique, which we refer to as improved spread spectrum (ISS),
for use in watermarking applications. We have shown that the
ISS provides an exceptional improvement over traditional SS,
with improvements in the error probability of several orders
of magnitude for most typical scenarios. SS is currently used
by many watermarking schemes as the information embedding
(or modulation) technology. The proposed ISS technique can
be readily applied to practically any watermarking technique
currently using SS, taking immediate advantage of the gains.
Furthermore, ISS does not require any change in the detection
scheme, and in some cases, it could be applied even to systems
that are already deployed, as far as we still have access to the
encoders (this is often the case in media distribution schemes).
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