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Abstract – We consider the problem of detecting a
source with a scalar intensity inside a two-dimensional
monitoring area using intensity sensor measurements in
presence of a background process. The sensor measure-
ments may be random due to the underlying nature of
the source and background as well as due to sensor er-
rors. The Sequential Probability Ratio Test (SPRT) can
be used to infer detections from measurements at the in-
dividual sensors. When a network of sensors is avail-
able, these detection results may be combined using a fu-
sion rule such as majority rule. We propose a detection
method that first utilizes a robust localization method to
estimate the source parameters and then employs an
adaptive SPRT based on estimates to infer detection.
Under Lipschitz conditions on the source and back-
ground parameters and minimum size of the packing
number of state-space, we show that this method pro-
vides better performance compared to: (a) any SPRT-
based single sensor detection with fixed threshold, and
(b) majority and certain general fusers of SPRT-based
single sensor detectors. We analyze the performance
of this method for the case of detecting point radiation
sources, and present simulation and testbed results.

Keywords: Sensor network, sequential probability ra-

tio test, radiation source, detection and localization.

1 Introduction
We consider the detection of a source, which is char-

acterized by its location and a scalar intensity, based

on sensor measurements against a background process.

The intensity of the source decays as one moves away

from it and may reach levels comparable to that of

the background. Sensor measurements contain random

components due to measurement errors, or inherent

randomness in the underlying source and background

processes (such as radiation), or both. The a priori dis-

tribution as well as the intensity and location of the

source are not known, but the functional form of sensor

measurement distribution is known. We consider the

problem of detecting the presence of a source within

the monitoring area by using measurements collected

at the sensors. This formulation is motivated by the

detection of point radiation sources, which has been

studied extensively using single sensors [8, 1, 11]. With

the advent of sensor network technologies, there has

been a renewed interest in this problem [2, 9, 12, 18, 19],

particularly motivated by ways to utilize measurements

from networked sensors to achieve performance exceed-

ing that of a single sensor.

For single sensors, the detection problem can be

solved using a number of well-known methods [20, 21],

and in particular the Sequential Probability Ratio Test

(SPRT) has been shown to be quite effective for radi-

ation sources [4, 6, 11]. The SPRT method relies on

computing thresholds for the likelihood ratio test to in-

fer the presence or absence of source or insufficiency

of measurements to make such decision. When a net-

work of sensors is available, SPRT can be used at the

sensors, and the individual decisions can be fused [21].

In this approach, however, the fuser has access only to

the Boolean detection information and not to the mea-

surements nor to the inter-relationship between them.

Such information, however, was found to be very useful

in solving a different problem, namely, localization that

estimates the location and intensity of source. But it is

unclear if such improvements are possible in detection,

even if only in certain cases. In this paper, we show

that a suitably robust localization method, if available,

can be utilized to improve detection to achieve perfor-

mances superior to single sensor SPRT detectors as well

as their majority and certain other fusers.

In the presence of a background process, the sensors

always yield measurements with or without the source

being present in the monitoring space. A localization

method executed without asserting the detection first

may lead to ”ghost” sources. For example, in the case

of detecting a point radiation source, the ghost source

is within the vicinity of the centroid of sensor loca-

tions [15]. Primarily due to this reason, the localiza-
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tion [3] is typically carried out post detection, that is

only after asserting the presence of a source, for exam-

ple using SPRT. However, it was recently shown that

ghost sources can be eliminated using a suitable SPRT,

somewhat surprisingly, more effectively than detecting

the source itself. Such approach provided improved de-

tection in simulations and testbed measurements, com-

pared to SPRT based on a priori chosen threshold [11].

In this paper, we provide an analytical justification for

this somewhat counter-intuitive approach that first es-

timates the source parameters and utilizes them in an

adaptive SPRT to conclude detection. Our result is

valid under the Lipschitz-separability condition on like-

lihood ratios and size of the packing number of the

state-space of the source, and the availability of a suit-

ably robust localization method. We show under these

conditions, the detection and false alarm rates of a net-

work of sensors can be made better using this approach

compared to:

(a) SPRT-based single sensor detection no matter how

sophisticated a priori computed thresholds are;

(b) majority fuser of SPRT-based detection of type (a)

at the individual sensors; and

(c) a generic class of fusers for detectors of type (a) that

require detection by at least one sensor to assert their

own detection.

The informal reasoning behind our result is as follows.

A fixed-threshold SPRT detection method optimizes

the detection performance within a certain neighbor-

hood of state-space. Whereas the localization facilitates

the adaptation of the threshold to each neighborhood of

the state-space but only with a certain error probabil-

ity. Then by trading-off the error probability of the lo-

calization method with the probability of ”uncovered”

regions of fixed-threshold SPRT, one can exceed the

performance of the latter. We apply this approach for

detecting point radiation sources, and derive detailed

performance bounds. We also provide simulation and

testbed results that illustrate our analytical results.

The rest of the paper is organized as follows. We

show our main result that establishes the relative per-

formance bounds on the detection and false alarm rates

of the proposed method compared to fixed-threshold

method in Section 2. We apply the general result to ra-

diation detection problem in Section 3. We present our

experimental results both using simulations and testbed

measurements in Section 4

2 Detection Problem

We consider a two-dimensional monitoring areaM⊆
�2, such as [0, D] × [0, D]-grid, for detecting the pres-

ence of a source S with unknown intensity AS ∈ A,

A = (0, A], A < ∞ located at an unknown location

(xS , yS) ∈ M. The source parameters (AS , xS , yS) ∈
�+ ×M constitute the state-space Z = A ×M, and

are distributed according to P(AS ,xS,yS). The source

appears inside M with a priori probability

PM =

∫
AS∈A;(xS,yS)∈M

dP(AS ,xS,yS),

Both distributions PM and P(AS ,xS,yS) are unknown.

There is a background noise process characterized by

the intensity parameter B(x,y) ∈ B, B = [0, B], B < ∞
that depends on the location (x, y) ∈ �2, and thus back-

ground noise process is parametrized by P(B(x,y),x,y).

Let Mi = (xi, yi) ∈ �2, i = 1, 2, . . . , N , be

the locations of sensors deployed to monitor the area

M; the sensors may not necessarily be located in-

side M. For any point P = (x, y) ∈ R2, we

have the distance d(P, Mi) =
√

(x− xi)2 + (y − yi)2,

for 1 ≤ i ≤ N . For two points in state-space

z1 = (a1, x1, y1), z2 = (a2, x2, y2) ∈ Z, we de-

fine d(z1, z2) =
√

(a1 − a2)2 + (x1 − x2)2 + (y1 − y2)2.

The sensor measurements are characterized as follows:

(a) Background Measurements: When there is no

source present, the “background” measurements of

Mi are distributed according to PBi
, Bi = B(xi,yi).

(b) Source Measurements: When the source is

present in M, the intensity at sensor loca-

tion (xi, yi) is Ai which is a function of AS

and d(S, Mi) = d((xS , yS), Mi)). We repre-

sent this dependence explicitly as a function

Ai = FS(AS , xS , yS , xi, yi). The measurements

of Ai collected at Mi are distributed according to

PAi+Bi
.

It is assumed that the underlying measurement distri-

butions PBi
and PAi+Bi

are known; for the example

for detecting point radiation sources, these distribu-

tions are approximated by Poisson process with pa-

rameters Bi and Ai + Bi, respectively [8, 1, 11]. Let

mi,1, mi,2, . . . , mi,n be the sequence of measurements

collected by sensor Mi over an observation time win-

dow W , such that mi,t, i = 1, 2, . . . , N , are collected at

the same time t at all sensors.

We consider the Detection Problem that deals with

inferring the presence of a source inside M based on

measurements collected at M1, M2, . . . , MN . We char-

acterize the solution of the detection problem by the (a)

false alarm probability P0,1, corresponding to the prob-

ability of declaring the presence of a source when none

exists, and (b) missed detection probability P1,0, corre-

sponding to the probability of declaring the presence of

only the background radiation when a source is present

in the monitoring area. The detection probability is

given by P1,1 = 1− P1,0.

The main challenge of the detection arises due to the

underlying randomness of measurements. The source

intensity levels at sensor locations may only be slightly

above background levels for low-level sources when sen-

sors are located far away. Then the randomness in
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sensor measurements makes it difficult to distinguish

source signal amidst background noise. For example,

the high variance of the measurements due to radiation

sources makes this task particularly challenging.

2.1 SPRT Detection

Consider the measurements mi,1, mi,2, . . . , mi,n col-

lected by sensor Mi within a given time window and the

background radiation level Bi = B(xi,yi) at this sensor

location. Let HC , for C ∈ {Ai + Bi, Bi}, denote the

hypothesis that the measurements correspond to inten-

sity level C at the sensor Mi. Now consider the likeli-

hood function L(mi,1, mi,2, . . . , mi,n|HC) which repre-

sents the probability that the measurements were pro-

duced by the source if C = Ai + Bi and just the back-

ground if C = Bi. The ratio of these likelihood func-

tions can be utilized to decide between these hypothe-

ses. We now consider the following SPRT based on

sensor measurements at Mi

LAi,Bi,n =
L(mi,1, mi,2, . . . , mi,n|HAi+Bi

)

L(mi,1, mi,2, . . . , mi,n|HBi
)

which can be used for detecting the source with false

positive and missed detection probability parameters

P0,1 and P1,0 respectively as follows [7]:

(i) If LAi,Bi,n <
P0,1

1−P1,0
, then declare the background,

namely HBi
;

(ii) Else if LAi,Bi,n >
1−P0,1

P1,0
, then declare that a

source is present, that is HAi+Bi
;

(iii) Otherwise, declare that the measurements are not

sufficient to make a decision and continue collect-

ing additional measurements.

The following properties of the SPRT [7] make this

test suitable for the present detection problem: (a) The

expected false alarm and miss detection rates of SPRT

are given by P1,0 and P0,1, respectively. (b) Among

all tests to decide between HAi+Bi
and HBi

with the

given P1,0 and P0,1, SPRT minimizes E [n|HBi
] and

E [n|HAi+Bi
] (see Theorem 2.4, [22], for example).

This test can be compactly expressed as

P0,1

1− P1,0
≤ LAi,Bi;n ≤

1− P0,1

P1,0

Typically, LAi,Bi;n cannot be directly applied for our

detection problem since it depends on Ai which in turn

depends on source location and intensity both of which

are unknown. By utilizing the domain knowledge, this

test is often expressed in terms of measurements, and

we consider such a generic case. We define likelihood

ratio test to be separable if it can be expressed as

FL(P0,1, P1,0, Ai, Bi) <

n∑
j=1

mi,j

< FU (P0,1, P1,0, Ai, Bi),

for suitable lower and upper threshold function FL(.)
and FU (.), respectively. However, the test in this form

is also not exactly implementable since the upper and

lower threshold values now depend on the unknown

source parameters. In practice suitable scalar values

τL and τH are chosen for the upper and lower thresh-

olds respectively, based on domain-specific considera-

tions, Bayesian inference or other method (in addition

to choosing appropriate values for P1,0 and P0,1). In

particular, such approach has been quite extensively

used in the detection of radiation sources [11]. We de-

note the SPRT with such selected threshold by LτL,τH
,

which will be called fixed-threshold SPRT.

We define a separable SPRT to be Lipschitz-separable
if the threshold functions are Lipschitz in the following

sense: for any P0,1, P1,0, Bi, there exists scalars KL and

KU such that

|FL(., Ai, .)− FL(., Ai + γ, .)| ≤ KLγ, and

|FU (., Ai, .)− FU (., Ai + γ, .)| ≤ KUγ.

The Lipschitz parameters KL and KU denote the sen-

sitivity of the threshold functions to intensity value

at sensor Mi, which in turn depends both on source

location and intensity through the function Ai =

FS(AS , xS , yS , xi, yi).

We define the source to be Lipschitz if its intensity at

sensor location Ai = FS(AS , xS , yS , xi, yi) satisfies the

following condition: there exists scalars KA, Kx, and

Ky such that

(a) for any xS , yS , xi and yi, we have

|FS(AS , .)− FS(AS + γ, .)| ≤ KAγ

(b) for any AS , xi, yi, we have

|FS(., xS , .)− FS(., xS + γ, .)| ≤ Kxγ, and

|FS(., yS , .)− FS(., yS + γ, .)| ≤ Kyγ.

Thus for a Lipschitz source with Lipschitz-separable

SPRT the lower threshold function FL(.) is Lipschitz

with respect to the source parameters AS , xS and yS

with constants KLKA, KLKx and KLky , respectively;

similarly the upper threshold function FU (.) is Lipschitz

with constants KUKA, KUKx and KUky, respectively.

We will show in next section that these Lipschitz condi-

tions are satisfied in the case of point radiation sources.

2.2 Detection Using Localization

The localization problem 1 is concerned with estimat-

ing the location and strength of the source using mea-

surements mi,j , i = 1, 2, . . . , N, j = 1, , 2, . . . , T . The

1Localization is not addressed in this paper as a problem to
be solved; rather, localization is proposed as a means to solv-
ing the detection problem. In some formulations localization
refers to just estimating the source location, and the estimation
of the source strength is referred to as the identification prob-
lem. Here we refer to localization in the generic parameter space
{(AS , xS , yS) ∈ A×M}.

635



estimates of AS and (xS , yS) are denoted by ÂS and

(x̂S , ŷS), respectively.

To solve the detection problem using localization, we

first estimate the source parameters and use them in

the SPRT as follows:

FL(P0,1, P1,0, Âi, Bi) <
n∑

j=1

mi,j < FU (P0,1, P1,0, Âi, Bi)

such that Âi = F (ÂS , x̂S , ŷS , xi, yi). We denote the

SPRT as L
Ŝ
, and refer to as the localization-based

SPRT. When a localization algorithm is executed us-

ing “background” measurements, the estimated param-

eters correspond to ghost sources. We show in the next

section that the absence of ghost source and hence pres-

ence of real source (namely detection) can be asserted

more effectively than LτL,τH
executed on direct mea-

surements, thereby improving the detection rate. Also,

the presence of ghost source and hence the absence

of real source can be more effectively asserted com-

pared no-detection by LτL,τH
, thereby improving the

false alarm rate of the latter.

2.3 Comparison of LτL,τH
and LŜ

In this section, we provide analytical justification

and quantification of performance improvements of

L
Ŝ
. We define a localization method to be δ-robust

if the following condition can be ensured: there exits

δ(ε, n, N)), which is a non-increasing function of num-

ber of measurements n and number of sensors N and

non-decreasing function of precision ε such that

P
{
(x̂S , ŷS , ÂS) ∈ �S,ε

}
> δ(ε, n, N)

where �S,ε = {z ∈ �3|d(z, zS) ≤ ε; zS = (AS , xS , yS)}
called ε-precision region. This condition ensures that

the estimate is within ε of source parameter zS with

probability δ, which improves as more measurements

are collected and more sensors are deployed. Also,

smaller values of ε are achieved with lower probability.

This condition is a reasonable requirement and is sat-

isfied by algorithms used for localizing point radiation

sources [16, 14].

For a given SPRT L, we denote the detection and

false alarm probabilities by ED (L) and EF (L), respec-

tively. A spherical cell with center zk ∈ �3 and radius

ρ is defined as C(zk) = {z|d(z, zk) < ρ}. A ρ-packing of

state-space Z = A×M corresponds to disjoint spheri-

cal cells with cell centers at zk, k = 1, 2, . . . , K of radius

ρ all contained inside state-space Z. We define such a

packing to be translation invariant if all cells are still

inside Z when centers are translated as z + zk, for all

z ∈ Z. Letstate packing number N (Z, ρ) denote the

maximum size of translation invariant ρ-packing of the

state-space Z.

We define two sets that represent all possible sources

that correspond to the thresholds of LτL,τH
as follows:

SτL
= {z ∈ Z | τL = FL(P0,1, P1,0, Ai, Bi);

Ai = FS(AS , xS , yS , xi, yi)} and

SτH
= {z ∈ Z | τH = FH(P0,1, P1,0, Ai, Bi);

Ai = FS(AS , xS , yS, xi, yi)} .

The following theorem characterizes the relative per-

formance of the threshold-based SPRT LτL,τH
and

localization-based SPRT L
Ŝ
.

Theorem 2.1 Consider the detection of a Lipschitz
source with Lipschitz-separable SPRT. Then for SPRT
L

Ŝ
based on δ-robust localization method and any

threshold-based SPRT LτL,τH
, for sufficiently large n

and N :

(i) detection rates satisfy

ED

(
L

Ŝ

)
>

[ED (LτL,τH
) + (N (Z, κρD)− 1)] δ(ρD, n, N);

(ii) false alarm rates satisfy

EF

(
L

Ŝ

)
<

[EF (Lτl,τH
)− (N (Z, κρF )− 1)] δ(ρF , n, N)

where κ = KU max{KA, Kx, Ky}, ρD =

max
z1,z2∈SτH

d(z1, z2) and ρF = max
z1,z2∈SτL

d(z1, z2).

Proof: The outline of the proof is similar in both cases:

we compute a spherical cell for LτL,τH
in which it does

not make an error and utilize the Lipschitz property

to compute the underlying ρ value, ρD for detection

rate and ρF for false alarm rate. Then we utilize this

as ε value for the L
Ŝ

and exploit the monotonicity of

δ in n and N to ensure that Ŝ is within ρ-precision

region. Then we compute the ρ-packing of the state-

space and identify the cell corresponding to LτL,τH
, and

in all other cells L
Ŝ

does not make an error with prob-

ability δ and hence offers better performance than the

former. We now provide the details of the bound on

the detection rate in Part (i), which assumes that the

source is present. Let SτL
and SτH

denote the centroids

of SτL
and SτH

, respectively, and let CτL
and CτH

de-

note the spherical cells of radius ρD centered at them,

respectively. Now consider a κρD-packing of the state-

space (translated if needed) such that one of it spherical

cells CτH
aligns exactly with SτH

. For fixed τL and τH ,

LτL,τH
does not make an error if the source lies inside

CτH
; but it will make an error everywhere else, in par-

ticular on all the other spherical cells of κρD-packing of

the state-space. There are at least N (Z, κρD) spher-

ical cells inside state-space, and only one corresponds
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to SτH
over which it does not make an error. On the

other hand, L
Ŝ

does not make an error on any of the

spherical cell but with probability δ. Thus the detec-

tion probability of L
Ŝ

corresponding to these spheres

is at least [(N (Z, ρD)− 1)] δ(ρD, n, N). For the sphere

Cτ however detection by LτL,τH
is with probability 1

and that by L
Ŝ

is with δ, which leads to the inequality

in Part (i). �

This theorem shows that performance, in terms of

both ED and EF , of L
Ŝ

is better than LτL,τH
by the

factor proportional to the packing number N (Z, κρD)

and δ(.). The performance bounds are valid no mat-

ter how thresholds are chosen for LτL,τH
, for exam-

ple, using domain-specific knowledge as in radiation

source detection, Bayesian inference, and Dempster-

Shaefer theory Informally speaking, “larger” monitor-

ing space will have larger packing number, and hence

the L
Ŝ

will lead to more effective detection. In par-

ticular, performance of L
Ŝ

will be increasingly better

as one considers larger state-spaces, more sensors and

more measurements. The limiting case N (Z, κρD) = 1

corresponds to entire monitoring space being packed by

a single sphere; in this case any source estimate within

this sphere is just as accurate as L
Ŝ
.

This approach of Theorem 2.1 can be used to de-

rive more general results. The source intensity could

be a finite dimensional vector and the source location

can be specified in higher dimensional space, for ex-

ample to include 3-D location and velocity. In this

theorem, single scalar parameters ρD and ρF charac-

terize the precision in AS-space as well as xS- and

yS-spaces. In general, different state-space parameters

may be specified at different scales, and in such case

it is direct to adapt the result by appropriately defin-

ing the spherical cells of the state-space packing. One

can utilize different distance type such as dmax(zS , z) =

max{|AS −A|, |xS − x|, |yS − y|} in the above result by

noting that dmax(zS , z) ≤ d(zS , z) ≤ 3dmax(zS , z) and

hence N (Z, 3dmax) ≤ N (Z, d) ≤ N (Z, dmax).

2.4 Comparison of LŜ and Fusers

When SPRT is executed at each of N sensors with

possibly different threshold limits, the individual de-

tection results may be combined at the fusion cen-

ter using methods such as majority fuser or Bayesian

fuser. Consider that the state-space is large enough

that N (Z, κρD) ≥ N . For the majority fuser, de-

noted by LM , a direct application of the proof method

in Theorem 1 shows that it makes a correct detection

on at most N spherical cells. But L
Ŝ

will make cor-

rect decision on all spherical cells, and thus we have

ED

(
L

Ŝ

)
> [ED (LM ) + (N (Z, κρD)−N)] δ(ρD, n, N),

for N (Z, ρD) ≥ N .

We now show that the same performance bound is

valid for a more general class of fusers. We consider a

broad class of fusers F1 such that fuser F1 ∈ F1 declares

a detection only if at least one sensor declares detection,

i.e, it does not declare a detection if none of the sen-

sors declare a detection. This fuser class excludes the

fusers that exploit the cases when the individual SPRTs

consistently under-perform (such as less than 50% accu-

racy) by simply flipping their outputs. While this class

does not include all possible fusers, it includes a wide

class where the fuser is effective when some of the in-

dividual SPRTs are effective. Any such fuser F1 makes

a correct detection on at most N sphere cells, but will

make a error on other cells that constitute the pack-

ing number, hence the above bound is satisfied for this

general class of fusers. Compared to LτL,τH
, the per-

formance improvements of L
Ŝ

over LM or LF1 require

a larger packing number. Intuitively, such stronger re-

quirement is expected since fusers in general perform

better than single sensors.

3 Radiation Source Detection
We consider the identification of a point radiation

source S of unknown strength AS expressed as Counts

Per Minute (CPM) called the source rate, and located

at an unknown location (xS , yS). The source gives

rise to a radiation intensity of Ai = AS/d2
i at sen-

sor location (xi, yi), where di = d((xS , yS), Mi). This

radiation source is Lipschitz with constants KA, Kx

and Ky estimated by using the partial derivatives of

Ai = FS(AS , xS , yS , xi, yi) as follow:

KA =
∂FS

∂AS

= 1/d2
i

Kx =
∂FS

∂xS

=
AS |xS − xi|

d3
i

Ky =
∂FS

∂yS

=
AS |yS − yi|

d3
i

.

The radiation count mi,j observed at Mi at time j
is a Poisson random variable with parameter λ = Bi =

B(xi,yi)) when there is no source present, and with λ =

Ai + Bi, when source is present [8, 10]. In either case,

the measurements are statistically independent across

time, and exhibit significant variations shown in Figure

1. The likelihood function in this case is:

L(mi,1, mi,2, . . . , mi,n|HC) =
ni∏

j=1

C
mi,j e−C

mi,j !

where C ∈ {Bi, Ai + Bi}.
The SPRT for detecting a radiation source can be

expressed in terms of the sum of measurements as:

ln
h

P0,1
1−P1,0

i
+nAi

ln
h

Ai+Bi
Bi

i ≤
n∑

j=1

mi,j ≤
ln

h
1−P0,1

P1,0

i
+nAi

ln
h

Ai+Bi
Bi

i

which shows that it is separable. In addition, this SPRT

is Lipschitz-separable with constants KL and KU given

by:

KL =
∂FL

∂Ai

<
n

ln
(

Ai+Bi

Bi

) ; KU =
∂FU

∂Ai

<
n

ln
(

Ai+Bi

Bi

) .
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(a) Measurements from RFTrax radiation sensors.

(b) Simulated Poisson variables with λ = 10.

Figure 1: Background radiation shows high variance.

Thus the Lipschitz constants of FU (.) with respect to

AS , xS and yS are given as follows, respectively:

KUKA = ln

(
Ai + Bi

Bi

)
/di

KUKx = ln

(
Ai + Bi

Bi

)
AS |xS − xi|

d3
i

KLKy = ln

(
Ai + Bi

Bi

)
AS |yS − yi|

d3
i

.

Lipschitz constants of FL(.) can be similarly computed.

We now compute a lower bound on N (Z, ρ), ρ =

κρD, for the monitoring region [Amin, A]×[0, D]×[0, D].

A minimum number of 1-dimensional spherical cells

of radius ρ that can be packed along A-axis is nA =
A
α

(
di

ρ

)
, where α = ln

(
Ai+Bi

Bi

)
. Similarly, such number

along x and y axes is given by nx = ny = D
α

(
di

AS

)(
di

ρ

)
.

Thus, we have

N (Z, ρ) ≥ min di

ρD

{
A/α, D/α

(
di

AS

)}
.

This bound increases as larger monitoring spaces

(larger D) are considered, and larger separation be-

tween the source and sensors (larger di) is considered.

Under these conditions, the relative performance of L
Ŝ

gets increasingly better compared any fixed threshold

method Lτl,τH
.

There are several localization algorithms proposed for

radiation sources, including adapting Gaussian model

in [5], geometric method called the Difference Time Of

Arrival (DTOA) method [17, 15], mean of estimates

method [16], and iterative pruning method [3]. The
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Figure 2: Equipment setup in the radiation test-bed.

Performance of Sensors and Majority Fuser

false alarm

Majority

Sensor 3

Sensor 2

Sensor 1

Sensor/Majority

3.0
2.5

2.0
1.5

1.0
0.5

0.1

threshold
 multiple of B

 0

 0.2

 0.4

 0.6

 0.8

 1

false alarm

Figure 3: False alarm rate for different thresholds.

DTOA method to estimate (x̂u, ŷu) is shown to to be

δ-robust in (x, y)-space [17, 16], and we will present

experimental results using this and iterative pruning

method in the next section.

4 Experimental Results

4.1 Simulation Results

We simulated radiation sources to be located uni-

formly inside [0, 1000] × [0, 1000] spatial grid with A
chosen from [1, 1012] with B(x,y) = 10. Sensors M1

and M2 are located at (0, 0) and (0, 1000) on the grid

and M3 is such that y3 = 1000 and x3 is uniformly

chosen from [0, 1000]. The simulation programs are im-

plemented in C using random number generators from

Numerical Recipes [13] and executed on a Redhat Linux

workstation with a 2.8 GHz Intel processor.

We first present two illustrative cases, with and with-

out the source present. We first consider the case of

background only. The false alarms rate is plotted for

each sensor and majority fuser as a function of thresh-

old, which is chosen to from B/10 to 3B in steps of

B/10, in Figure 3. The false alarm rate is 100% when

threshold is at or below 1.1B, and zero above that for all

P0,1 = P1,0 values of 0.1, 0.01 and 0.001. The DTOA

method correctly concluded no detection in this case

with 298, 649, 965 measurements for P0,1 = P1,0 values

of 0.1, 0.01 and 0.001, respectively.

The performance results for a source of strength

AS = 106 is present are shown in Figure 4 and row 3 of

Table I. This source results in an average radiation level

of 1.17 times over the background level of B(x,y) = 10.

Based on the results above, to avoid high false alarm,
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A1 = 1.17B(x,y).

ave rad level M1 majority DTOA

at M1 det (%) det (%) det (%)

1.02 B(x,y) 1 0 65

1.09 B(x,y) 16 10 100

1.17 B(x,y) 51 96 100

2.09 B(x,y) 99 100 100

2.84 B(x,y) 99 100 100

100.0 B(x,y) 100 100 100

Table 1: Summary of simulation results

the threshold τH must chosen above 1.1B(x,y). For

threshold τH = 1.1B(x,y), the detection rates for M1,

M2 and M3 are 0.99, 0.92 and 0.97, respectively; for

threshold τH = 1.2B(x,y), these rates are 0.81, 0 and

0.11. For thresholds τH = 1.5B(x,y) and higher only

one sensor was able to detect the source. The DTOA

method correctly concluded the detection in this case

with 26, 100, 133 measurements for P0,1 = P1,0 values

of 0.1, 0.01 and 0.001, respectively.

We now summarize the results based on batches of

100 randomly generated sources in Table I for differ-

ent source strengths; average levels of radiation lev-

els at the sensor M1 are shown in the first column

of Table I. We show the detection rates of M1, ma-

jority fuser for threshold τH = 1.1B(x,y), and DTOA

method in columns 2, 3 and 4 of Table I, respectively,

for P0,1 = P1,0 = 0.01. The threshold is about 10%

higher than the average background level, which is

the suggested threshold level for radiation detection in

practical scenarios [11]. While this threshold achieved

zero false alarm rate, its detection rate depends on the

source strength: it achieved close to 100% detection at

M1 and majority fuser for higher source strengths that

resulted in doubling of radiation levels at M1. However

for source straights that lead to about 17% increase in

the average radiation levels, M1 was only about 51%

accurate although the majority fuser achieved 96% de-

tection. DTOA method achieved 100% detection when

average increase in radiation at M1 was at least 9% or

higher above the background level.

4.2 Test-bed Results

Three radiation detection test-beds are set up at Oak

Ridge National Laboratory, Purdue University, Uni-
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Figure 5: Localization results of a Cs-137 radiation

source [15]. The triangle denotes sensors, filled circle

denotes source location, and non-filled circle denotes

estimated location. Different color denotes a different

measurement set.

(a)background (b) source present

Figure 6: Testbed results for different thresholds.

versity of Illinois at Urbana-Champaign, all with the

same configuration shown in Figure 2. A Cs-137 radia-

tion source of strength 0.95 μ-Curies is used on a table

top with RFTrax RAD-CZT sensors to collect measure-

ments. Typically, detection and localization algorithms

show almost identical performance on measurement sets

collected on these testbeds.

For the testbed measurements we tested SPRT with

τH ranging from B̂ to 3B̂, where B̂ is the estimate of

average background radiation level at M1. In Figure

6(a), we show false alarm rate which is about 6% for

τH ≤ 1.4B̂ and drops off to 4% for higher values. But

when source is present, the detection rate is below 94%

for τH ≤ 1.4B̂, and 97% detection rate is achieved only

for τH ≥ 2.7B̂. DTOA achieved 100% detection with no

false alarms on such measurement sets. In Figure 5(a),

we show example cases with different source locations

and their estimates using DTOA method [15]. When

no source is present, the localization method returns

ghost sources, as shown in the two examples in Figure 7,

which were rejected by L
Ŝ
.

5 Conclusions
We considered the detection problem of a source

with scalar intensity inside a two-dimensional monitor-

ing area using random sensor measurements in pres-

ence of a background process. We proposed a detection

method that utilizes a robust localization method fol-

lowed by an adaptive SPRT. Under Lipschitz smooth-

ness and packing conditions on state-space, we showed

that this method provides better performance com-
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DTOA [15].

pared to SPRT-based single sensor detectors, and also

their majority and certain other fusers. Simulation and

testbed results show the effectiveness of the proposed

method for detecting point radiation sources.

There are several avenues for future work, includ-

ing further simulation and test-bed experimentation.

It would be of future interest to investigate the number

of measurements needed by SPRT at sensors and fuser

to reach a decision. It would be interesting to investi-

gate SPRT detectors with multiple thresholds that can

cover several spherical cells of the state-space. The idea

of packing can be extended to different scales for dif-

ferent parameters and different thresholds at different

sensors. It would also be interesting to pursue other

methods that achieve superior performance compared

to SPRT-based detection at the sensors.
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