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SUMMARY
Combining information across genes in the statistical analysis of microarray data is desirable because

of the relatively small number of data points obtained for each individual gene. Here we develop an
estimator of the error variance that can borrow information across genes using the James–Stein shrinkage
concept. A new test statistic (FS) is constructed using this estimator. The new statistic is compared with
other statistics used to test for differential expression: the gene-specificF test (F1), the pooled-variance
F statistic (F3), a hybrid statistic (F2) that uses the average of the individual and pooled variances, the
regularizedt-statistic, the posterior odds statisticB, and the SAMt-test. TheFS-test shows best or nearly
best power for detecting differentially expressed genes over a wide range of simulated data in which the
variance components associated with individual genes are either homogeneous or heterogeneous. ThusFS

provides a powerful and robust approach to test differential expression of genes that utilizes information
not available in individual gene testing approaches and does not suffer from biases of the pooled variance
approach.

Keywords: ANOVA model; F statistic; Linear mixed model; Permutation; Shrinkage estimator; Variance microarray.

1. INTRODUCTION

Microarray technology has become an important tool for simultaneously screening thousands of genes
for changes in their patterns of expression. In a two-color microarray experiment, a mixture of two cDNA
samples (targets) that are differentially labeled with fluorescent dyes is hybridized to thousands of DNA
sequences (probes) immobilized on a glass slide (Schenaet al., 1995). Sequences from the two targets can
hybridize to complementary probe sequences. The observed fluorescent signals at each spot are, therefore,
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60 X. CUI ET AL.

correlated with the mRNA concentrations in the RNA samples from which the cDNA targets were reverse-
transcribed. The ratio of the two fluorescent signals at each spot is commonly used to estimate the ratio of
the mRNA concentrations in the two RNA samples. In a one-color system, such as the Affymetrix arrays,
all samples are labeled with the same color and each cDNA sample is hybridized to a separated array
(Affymetrix, 1999). In this paper, we use examples from two-color arrays, but the results are applicable
to one-color arrays.

The large amount of data generated by microarray technology is due mainly to the large number of
genes represented on the array. For each gene the number of RNA samples assayed is typically small.
Therefore, the commonly used approach of testing for differential expression one gene at a time often
has low power (Callowet al., 2000). Assuming that all of the variances are equal and using a common
variance estimator for testing can substantially increase the power to detect differential expression (Kerr
et al., 2000) but at the risk of generating false positive and negative results when the common variance
assumption is not true.

Cui and Churchill (2003b) reviewed some methods for testing differential expression of genes in
microarray experiments. In addition, they defined three test statistics based on an analysis of variance
(ANOVA) model. The usual ANOVAF test compares an estimate of variation across conditions to an
estimate of error variance. Thet-test is a special case when the number of conditions is two. One test
statistic (F1) uses only data from individual genes and is in fact the classicalF statistic. Another test
statistic (F3) assumes a common error variance across genes and uses a pooled estimator of the common
variance. The third test statistic (F2) achieves a compromise by using an average of gene-specific and
pooled variance estimates. When applied to real or simulated data, theF2 test seems to work well;
however, we found it hard to justify taking the simple average of variance estimates.

The idea of modifying estimators of variance has been presented by others in similar contexts. The
SAM t-test (Storey and Tibshirani, 2003) adds a small constant to the gene-specific variance estimate
in order to stabilize the small variances. The regularizedt-test proposed by Baldi and Long (2001)
replaces the usual variance estimate with a Bayesian estimator based on a hierarchical prior distribution.
Lönnstedt and Speed (2002) proposed an Empirical Bayes approach that combines information across
genes. Kendziorskiet al. (2003) and Newtonet al. (2003) considered a hierarchical gamma-gamma model
to combine information across genes. Other information sharing methods have also been provided using
similar strategies (Wright and Simon, 2003; Smyth, 2004).

In this paper we propose a shrinkage estimator for gene-specific variance components based on the
James–Stein estimator (Lindley, 1962) and use it to construct a test statistic calledFS . The shrinkage
estimator makes no prior assumptions about the distribution of variances across genes. We show that the
test based onFS has the highest or nearly the highest power among variousF-like statistics and that it
compares well with other ‘information-sharing’ statistics. TheFS test is robust, performing well under
a wide range of assumptions about variance heterogeneity. It behaves well when the variances are truly
constant as well as when they vary extensively from gene to gene. Furthermore, theFS test is quite general.
It can be applied in the context of general experimental designs for microarray studies (Churchill, 2002)
and is not limited to the pairwise comparison of treatments.FS can be used to construct tests that account
for multiple sources of variation, both biological and technical, in microarray experiments.

In Section 2, we describe how to obtain a shrinkage estimator of variance components that provides
gene-specific variances but also uses information across all of the genes in the data to improve estimation.
In Section 3, we show how to use shrinkage estimators of variances to constructF-like statistics for
differential expression of genes in the context of the mixed model analysis of variance. In Section 4, we
validate the properties of the tests based on these statistics using simulations and real data. We simulate a
canonical case to consider the problem in its most general and abstracted form. We then look at simulations
of a simple microarray experiment comparing five samples and a more complex microarray experiment
with biological replicates.
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2. SHRINKING VARIANCE ESTIMATORS

In this section, we construct improved estimators of variance from an ensemble of individual variance
estimators by shrinking them toward their common corrected geometric mean. The amount of shrinkage
depends on the variability of the individual variance estimators. When individual variance estimates
are similar, indicating homogeneity, the shrinkage estimator effectively pools these estimates. When
individual variance estimates are widely dispersed, indicating heterogeneity, the shrinkage estimator gives
greater weight to the gene specific contributions. The key result of this section is the expression in equation
(2.3) below.

Let Xg be the residual sum of squared errors (SSE) andσ 2
g be the true variance of geneg. For g =

1, . . . , G genes, it is assumed thatXg/σ
2
g are independent, each having a Chi-squared distribution withν

degrees of freedom. Such random variable will be denoted asχ2
ν . Therefore, we have

Xg ∼ σ 2
g χ2

ν .

Wetake a natural logarithmic transformation onXg to obtain a common location problem as shown below.
We then have

ln
Xg

ν
∼ ln σ 2

g + ln
χ2

ν

ν
. (2.1)

Hence, if we denote the mean of lnχ2
ν

ν
as m, by subtractingm from both sides, we could write

equation (2.1) as

X ′
g ∼ ln σ 2

g + ε′
g

whereX ′
g = ln Xg

ν
− m andε′

g = ln χ2
ν

ν
− m. Let V be the variance ofε′

g. By using a first-order Taylor

expansion of the last term in equation (2.1), Var(ln χ2
ν

ν
) ≈ Var(χ2

ν

ν
) = 2

ν
. In Table 1, we give the ratio of

V to 2/ν, which eventually converges to one. When applied toX ′
g (1 � g � G) in estimating lnσ 2

g , the

positive part James–Stein estimator that shrinks toward the common meanX̄ ′ = ∑
X ′

g/G is

X̄ ′ +
(

1 − (G − 3)V∑
(X ′

g − X̄ ′)2

)
+

× (X ′
g − X̄ ′) (2.2)

where for any numbera, a+ denotes max(a, 0). The truncation enacted by the ‘+’ i s necessary to avoid
overshrinking.

Transformation back to the original scale gives the shrinkage estimator forσ 2
g ,

σ̃ 2
g =

(
G∏

g=1

(Xg/ν)1/G

)
B × exp

[(
1 − (G − 3)V∑

(ln Xg − ln Xg)2

)
+

× (ln Xg − ln Xg)

]
, (2.3)

whereln Xg = 1
G

∑
ln(Xg), andB = exp(−m) is a bias correction. Note that multiplying the geometric

mean(
∏G

g=1(Xg/ν))1/G by B gives an unbiased estimator ofσ 2 whenσ 2
g = σ 2 for all g.

The values ofB (and alsoV ) depend onν. They can be simulated easily and values are given in
Table 1. Note thatB is always larger than one, hence, the geometric mean withoutB underestimatesσ 2

when allσ 2
g are equal toσ 2.

Taylor expansion applied to the inverse log-transformed estimator in equation (2.3) demonstrates that
it is similar to Ghoshet al.’s estimator (Ghoshet al., 1984) (derivation not shown). If the collection of
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62 X. CUI ET AL.

Table 1.Values of B (bias correction) and V/(2/ν) as a function of ν. These values are used in equation
(2.3) to construct the estimates that shrink the unbiased estimators of variances to their corrected
geometric mean. When ν is greater than 50, B and V/(2/ν) are effectively 1

ν B V/(2/ν) ν B V/(2/ν)

1 3.53 2.45 13 1.08 1.08
2 1.77 1.64 14 1.08 1.08
3 1.44 1.39 15 1.07 1.07
4 1.31 1.27 16 1.07 1.06
5 1.24 1.22 17 1.06 1.06
6 1.19 1.18 18 1.06 1.06
7 1.16 1.15 19 1.06 1.05
8 1.14 1.13 20 1.05 1.05
9 1.12 1.12 25 1.04 1.04

10 1.11 1.11 30 1.04 1.03
11 1.10 1.10 40 1.03 1.03
12 1.09 1.09 50 1.02 1.02

all Xg (g = 1, . . . , G) is represented byX, it has been shown that Ghoshet al.’s estimator dominates
X/(ν + 2), which is better thanX/ν from the collection of individual variance estimators, according to
the sum of squared invariant losses (Ghoshet al., 1984). This provides a theoretical foundation that the
estimator in equation (2.3) may work well as an estimator of variance. Extensive comparisons among
several variations on this estimator show that the version (2.3) presented here behaves best in construction
of test statistics as described in Section 3. In particular, the estimators in (2.3) provide a test statistic with
better performance than similar statistics based on the Ghoshet al. (1984) estimator.

3. CONSTRUCTING F -LIKE STATISTICS

To illustrate how to constructF-like statistics using different variance estimators, we start with the
generalF statistic for a general linear mixed model and then introduce the statistics based on shrinkage
estimators.

A general linear mixed model (Searleet al., 1992) can be written as

Y = Xβ + Zu + ε (3.1)

whereY is the vector of observations, X is the design matrix of fixed effectsβ, Z is the design matrix of
random effectsu, andε is the vector of the residuals.

The variances of the random effectsu and residualsε in equation (3.1) can be estimated using the
restricted maximum likelihood method (REML) (Searleet al., 1992). Estimation of the corresponding
fixed effects (̂β) and the prediction of the random effects (û) can be obtained through generalized least
squares using the estimated variance components (Searleet al., 1992; Witkovsky, 2002).

The variance covariance matrix ofβ̂ andû can be estimated as

Ĉ =
[

X ′ R̂−1X X ′ R̂−1Z
Z ′ R̂−1X Z ′ R̂−1Z + Ĝ−1

]−
, (3.2)

whereR̂ is a matrix with the estimates of residual variances on the diagonal and 0 elsewhere, andĜ is a
matrix with the variance components estimated for random effectsu on the diagonal and 0 elsewhere. The
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‘−’ sign represent the generalized inverse of the matrix. Linear combinations of the fixed effects (denoted
by L) in equation (3.1) can then be tested using anF statistic (Littellet al., 1996) constructed as

F = β̂ ′L ′(L ′Ĉ L)−1Lβ̂

rank(L)
. (3.3)

When a linear mixed model is fit to microarray data one gene at a time, the design matrices ofX and Z
are the same for all genes. Therefore, the general linear mixed model for geneg can be expressed as

Yg = Xβg + Zug + εg (3.4)

The statistic defined in equation (3.3) can then be used to test the fixed effectβg directly for each gene. We
refer to this as the gene-specificF test (F1) (Wolfingeret al., 2001). The variance components in this test
are estimated using data from only one gene and the power of this test is likely to be low in experiments
with only a few RNA samples. OtherF-like statistics,F2 andF3, defined by Cui and Churchill (2003b) can
borrow information across genes when estimating the variance components.F3 uses the pooled variance
estimatorσ̂ 2

pool for each variance component. For balanced designs,σ̂ 2
pool is an average across genes of

the individual variance estimates.F2 uses the average ofσ̂ 2
g andσ̂ 2

pool for each component. In this paper

we define a newF-like statistic,FS , which usesσ̃ 2
g from the shrinkage estimator in equation (2.3) as

the variance component estimator for each gene. The variance component estimators are then used in
equations (3.2) and (3.3) to compute the correspondingF statistics.

Consider a fixed effects ANOVA model in whichZ andu are empty. If we denote the sum of squares
of relative expression across samples for geneg as�g, then the fourF tests can be written as

F1 = �g/σ̂
2
g ,

F2 = �g/
1
2(σ̂ 2

g + σ̂ 2
pool),

F3 = �g/σ̂
2
pool,

FS = �g/σ̃
2
g .

(3.5)

This form highlights the intuition behind the construction of these statistics.
The justification for choosing one of these four statistics depends on our assumptions about the

variability of the variances across genes. If all variance components are constant across genes, thenF3 is
the right statistic. If the variance components are gene specific, thenF1 is the right statistic. However, a
statistic likeFS should be more efficient when there is limited information to estimate the gene specific
variance components. Comparisons of these tests in different situations are described in Section 4.

For simple microarray experiments, fixed effects ANOVA models, a special case of the general
linear mixed model with emptyZ andu in equation (3.1), can be used for modeling and computational
convenience. The error variance for each gene can be estimated using the residual mean square error
(MSE), which is the SSE divided by its degrees of freedom (ν). Thus, the denominators ofF1, F2, F3, and
FS can be estimated based on these MSEs across the genes in equation (3.5).

The null distributions of the modifiedF statistics are not readily available. TheF1 test for a fixed-
effect ANOVA model, which is used for small or simple experiments, has a standardF distribution and
critical values could be obtained from theF tables under typical distributional assumptions; however,
when mixed-effects ANOVA models are used for large and complicated experiments, theF1 in equation
(3.5) does not strictly follow theF distribution, although a conservative approximation can be obtained
(Littell et al., 1996). SinceF2, F3, and FS are not standardF statistics, their null distributions can be
approximated by permutation analysis (Wuet al., 2003). It may be prudent to establish all critical values
by permutation analysis because distributional assumptions are often questionable for microarray data.
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Permutation analysis is a nonparametric approach to establish the null distribution of a test statistic.
The key to developing a permutation strategy is to identify units in the experiment that are exchangeable
under the null hypothesis. In microarray experiments, if we allow for gene-specific variance heterogeneity,
then the unit must be whole arrays. Furthermore, the arrays that are to be shuffled will depend on the design
of the experiment and the factor(s) being tested. Two-color arrays are slightly more complex than single-
color systems as the pairing between the two channels of the array must be maintained in the permuted
units. To execute the permutation analysis we generate random shuffles (p = 1, . . . , P) of whole array
units and compute a new set of statisticsF (p)

g (g = 1, . . . , G). Due to the large computational demand,
we can typically perform only 100 permutations. For example, a 2000-gene experiment with 30 arrays
requires about an hour on our 32-node Beowulf cluster. To reduce the granularity of the gene-specific null
distribution, a common null distribution for each test statistic is established using the entire collection
of F (p)

g values over indicesp and g based on the assumption that the F statistics have common null
distributions across genes (Storey and Tibshirani, 2003).

4. SIMULATION STUDIES

In order to compare the tests based on each of the fourF statistics in their ability to identify
differentially expressed genes, we first simulated an abstracted canonical form and then simulated data
based on real microarray experiments. For the latter we simulated data based on models using estimated
parameters from real data sets. We also used resampling methods based on real data. The first microarray
experiment that we considered is based on a five-sample comparison with no biological replicates and the
second is based on a three-sample comparison with biological replicates.

4.1 Canonical simulation

To evaluate the tests based on the fourF statistics in a general setting, we simulated data in a canonical
form and studied the successful detection rate (the percentage of true positives identified), which is
analogous but not identical to the average power in Dudoitet al. (2003), of each test at several levels
of variance heterogeneity, represented by coefficient of variation (CV ) of the variances and degrees of
freedom (ν).

Wedefine the canonical form of this problem asyg,t = θg,t +εg,t for geneg = 1, . . . , G and treatment
t = 1, . . . , T , whereθg,t represents the relative expression level of geneg under treatment conditiont ,
andεg,t is the gene-specific residual error (εg,t ∼ N (0, σ 2

g )) associated with estimatingθg,t .

In this simulation, the residual variances,σ 2
g , were drawn randomly from the 15 600 residual variance

estimates from the tumor data set described in Section 4.3. To vary theCV of these residual variances
while keeping their geometric means constant, we rescaled them using a tuning parameterτ :

Zg = σ 2τ
g

gm(σ 2τ
g )

∗ gm(σ 2
g ), (4.6)

wheregm stands for geometric mean. Whenτ = 0, CV = 0, corresponding to the homogeneous variance
case. We study four cases whereτ = 0, 0.78, 1.5 and 2.3, which correspond toCV = 0, 1, 4 and 20. The
two middle cases are typical of real microarray data.

The treatment effect for each gene can be estimated as

�̂g = 1

t − 1

T∑
t=1

(yg,t − yg.)
2. (4.7)
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This is also the common numerator for all fourF statistics in equation (3.5). In this case, the denominators
of all F statistics are obtained using residual MSEg in the place ofσ̂ 2

g in equation (3.5). The residual
MSEg for each gene was generated from a chi-square distribution and scaled by gene-specific residual
varianceZg, MSEg ∼ Zgχ

2
ν /ν, whereν are the degrees of freedom associated with MSEg. We studied

many degrees of freedom but only reportν = 2, 6, and 50 here to represent small, moderate and large
microarray experiments.

To establish the null distribution for theF tests, we setθg,t = 0 for all g = 1, . . . , 5000, t = 1, . . . , 5.
WecalculatedF1, F2, F3, andFS for each gene and then use the 95% quantiles as the critical values.

To calculate the successful detection rate for eachF test, we generated a number of non-zero
θg. Because the successful detection rate of a test depends on the magnitude of the effect (�g =

1
t−1

∑
(θg,t − θ g.)

2), we study it as a function of�g. Specifically, we letQg,t ∼ N (0, 12) and

θg,t = K Qg,t/

√∑5
t=1 Q2

g,t , consequently,K = √
�g(t − 1). By varying K , we can vary the treatment

effect. For eachK value we studied, we generated 5000 genes and recorded the percentage that were
identified by each test. Figure 1 shows the successful detection rate of the four tests as a function of√

�g(t − 1) for degrees of freedom,ν = 2, 6, 50, and heterogeneity,CV = 0, ≈ 1, ≈ 5, and≈ 20.
When all the treatments are identical,

√
�g(t − 1) = 0, the null hypothesisH0 holds. In general,F1

shows good power only whenν is large (ν > 6). F3 only has good power when variance heterogeneity
is low (CV < 1). F2 is similar to F3 but more robust. It still has good power whenCV is about 4. The
power of theF2 andF3 tests decrease when theCV increases. When theCV is larger than 10,F3 loses
power completely andF2 loses most of its power. Compared with the other tests,FS is the most robust
and is usually most powerful or nearly so.FS is more powerful than or as powerful asF1 and F3 in
all the situations. The improvement overF1 is quite substantial whenν is small. It also has a substantial
advantage overF2 andF3 when theCV is large. When theCV is small, the power ofFS is still comparable
to that ofF3.

4.2 Analysis and simulation of a microarray experiment:
Case I. Technical replication

To compare the fourF-like tests in a simple microarray experiment, we applied them to experimental data
and performed simulations based on the results of this experiment. The experiment compared two human
colon cancer cell lines, CACO2 and HCT116, and three human ovarian cancer cell lines, ES2, MDAH2774
and OV1063, using a design in which the samples were arranged in a loop and no reference sample
was used (Figure 2A). Fluorescent dye labeled cDNA targets were hybridized to cDNA microarrays
containing 9600 human cDNA clones from the Research Genetics sequence verified human cDNA
collection (Invitrogen, Carlsbad, CA) spotted in duplicate. Slides were scanned using the GenePix4000
microarray scanner and the median intensities of each spot were calculated using an image processing
software (Axon Instruments, Inc., Foster City, CA).

To simplify the analysis, the two spots for the same gene on each array were averaged at the original
signal level. The data were then intensity LOWESS transformed (Cuiet al., 2003) and normalized before
fitting the following ANOVA model to each gene:

yi j = µ + Ai + D j + Sk(i, j) + εi j . (4.8)

In this model,µ is the gene mean;Ai (i = 1, . . . , 10) is the array effect;D j ( j = 1, 2) is the dye effect;
Sk(i, j) (k = 1, . . . , 5) is the sample effect. The sample indexk is determined by the array and channel
indicesi and j . Hereεi j is the residual, termsµ, D j and Sk(i, j) are treated as fixed while termAi is
treated as random. To put this model in the context of the general linear mixed model (equation 3.4),µ,
D j andSk(i, j) belong toβ and Ai belongs tou. The dimension of theX matrix is 20× 8 with rank of 6
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Fig. 1. Successful detection rate comparison among the fourF tests using the canonical simulations. In each panel,
the successful detection rate of eachF test is plotted against the treatment effect,

√
�(t − 1). The variability of the

individual variances is controlled byτ shown on the top and is reflected by the coefficient of variation (CV ) shown
at the upper left corner of each panel. The degrees of freedom (ν = 2, 6, and 50) are noted in each panel at the upper
left corner. The nominal type I error rate of 0.05 is indicated by a solid blue line.

and the dimension of theZ matrix is 20× 10 with rank of 9. The variance components ofAi andεi j were
estimated (Searleet al., 1992) for each gene and their distributions were compared (Figure 3A). The array
variance is substantially larger than the residual variance but it has similar heterogeneity (CV = 1.34) to
the residual variance (CV = 1.79). We note that array variance has little impact on theF tests because
of the experimental design (Cui and Churchill, 2003a); thus in simple experiments like this one treating
array as a fixed effect simplifies the computation with little impact on the results.

The four F test statistics were constructed under model (4.8) and their null distributions were
established by permutation analysis (Kerret al., 2000; Wuet al., 2003; Cui and Churchill, 2003b). The
permutation unit in this case is one array. At a nominal significance level of 0.01,F1, F2, FS and F3
detected 1588, 2012, 1896 and 981 significant genes, respectively. The volcano plot (Figure 3B) illustrates
the differences among the fourF tests. The significant genes forF1 are located above the horizontal line
and those forF3 are located right of the vertical line. The significant genes identified byFS and F2 are
indicated by yellow and red coloring respectively and are generally in the upper right corner.

To study the false positive and the successful detection rates of eachF test, we simulated 10 data
sets based on this design, each with 1000 constant genes and 1000 differentially expressed genes. The
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S1

S2

S3

S5

S4

A

T1 T2 T3

B

Fig. 2. Illustration of the microarray designs used in the paper. Panel A is a double-loop design comparing five
samples (S1–S5). Panel B is a reference design used in the tumor experiment to compare three treatments (T1, T2,
and T3) with five mice in each treatment group and one pair of arrays for each mouse. Arrows represent arrays with
head pointing to the sample with Cy3 labeling and tail pointing to the sample with Cy5 labeling. R denotes reference
sample.

individual treatment effectsSk(i, j) were drawn randomly from distributionN (0, 0.32). The µ and D j

were generated from normal distributionsN (0, 0.652) andN (0, 0.352), respectively. These fixed effects
parameter values were held constant across all simulations. For each simulation,Ai was generated
randomly from a normal distributionN (0, 0.62) and the residuals (εi j ) were drawn randomly from normal
distribution N (0, σ 2

g ), where the gene specific varianceσ 2
g was sampled randomly without replacement

from the 9600 estimates of residual variance of the loop data set. The variability of the residual variances
was controlled byτ in the same fashion as for the canonical simulation, but the value ofτ wasset to be
0.8, 1, and 1.5 to only cover the ranges of variability that we have seen in real data sets. Corresponding
CV s are about 1.2, 1.8, and 3.7.

The averaged results of the 10 simulations at nominal significance level of 0.05 are shown in Table 2.
Among the 1000 null model genes, fewer than 50 false positives were detected by eachF test, which
indicates that the actual average type I error rate is somewhat lower than the expectation in each case.
Among the 1000 differentially expressed genes, the majority were identified by all fourF tests, but the
number of identified true positives decrease asCV increases.F1 andFS are less affected by heterogeneity
than F2 and F3. FS identifies fewer true positives thanF2 when theCV is around 1.2 and 1.8, but it
identifies more thanF2 when theCV is around 3.7.FS identifies more true positives thanF1 and F3
regardless of the degree of heterogeneity. The successful detection rate of theseF tests plotted against
the sample effect is shown in Figure 4 (A–C). The relationship among all fourF tests are similar to
those obtained in the canonical simulation. The volcano plots from one simulation (Figure 5) illustrate the
false positives and false negatives from eachF test. The results of all individual simulations are shown in
supplemental Tables 1A–C.

4.3 Analysis and simulation of a microarray experiment:
Case II. Biological replication

A promising trend in microarray experiments is to include biological replicates of samples in order to
account for inherent biological variation. To accommodate this trend, mixed linear models with biological

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/6/1/59/379501 by guest on 20 August 2022



68 X. CUI ET AL.

Fig. 3. Variance component plots and volcano plots of the loop and tumor data sets. Panel A shows smoothed
histograms of the variance components of the loop data withAi treated as random (equation 4.8). Panel B shows
the volcano plot from the loop experiment. Panel C shows the smoothed histograms of the variance components from
the tumor data set. Panel D shows the volcano plot of the tumor data. In the volcano plots, the -log10 p values based on
permutation analysis of theF1 statistic are plotted against the treatment effect. Horizontal and vertical lines represent
the 0.01 nominal significance level forF1 andF3 respectively. Yellow square,FS significant; Red ‘+’,F2 significant.

replicates treated as random effects are required. Here we analyze a representative data set and perform
simulations based on these data to compare the properties of the fourF-like tests in this experimental
setting.

The granulosa cell tumor microarray experiment was performed using eight week old SWXJ-9 mice.
The effects of dietary androgenic supplementation (DHEA, testosterone and control) were assessed.
RNA samples from each mouse were compared to the Stratagene reference RNA using two microarrays
with dye labeling reversed (Figure 2B). Fluorescent dye labeled cDNA targets were hybridized to DNA
microarrays printed with the 15 000 NIA clone set spotted in duplicate. Slides were scanned and the
mean intensities of each spot calculated using the GenePix4400 microarray scanner and image processing
software.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/6/1/59/379501 by guest on 20 August 2022



Shrinking variance components 69

Table 2.Average number of true and false positives identified by each F test in 10 simulations of model
(4.8). Significance level is nominal 0.05. The total number of genes is 2000, with 1000 constant genes
and 1000 differentially expressed genes. CVr , average CV of the residual variance; TP, true positives; FP,
false positives. The results from individual simulations are shown in Supplemental Tables 1A–C

CVr = 1.2 CVr = 1.8 CVr = 3.7
TP FP TP FP TP FP

F1 766 44 746 44 713 41
F2 866 33 829 31 688 30
FS 857 35 824 39 762 40
F3 806 37 752 46 434 50
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Fig. 4. The average successful detection rate of fourF tests from 10 microarray simulations. The data were simulated
with the fixed-effect ANOVA model (A–C) or mixed-effects ANOVA model with two variance components (D–F).
The values of variance components in A–C and D–E were randomly drawn from the loop and tumor data, respectively.
The variability of the variances across genes are controlled byτ (0.8, 1, 1.5) and reflected byCVr andCVm . CVr ,
CV of the residual variance component;CVm , CV of the mouse variance component.

The raw data were preprocessed as described above before fitting the following mixed ANOVA model
(Wolfingeret al., 2001) for each gene,

yi j = µ + Ai + D j + Tk(i, j) + Ml(i, j) + Rh(i, j) + εi j , (4.9)

with µ for the gene mean,Ai for array effect (i = 1, . . . , 30), D j ( j = 1, 2) for the dye effect,Tk(i, j)

(k = 1, 2, 3) for the treatment effect, andMl(i, j) (l = 1, . . . , 15) for mouse effect.Rh(i, j) is an indicator
of reference(h = 1) versus tissue sample(h = 2). The indices of treatment, mouse and reference are
determined by the combination of array and dye. We treatµ, D j , Tk(i, j) andRh(i, j) as fixed effects. The
biological replicate,mouse (Ml(i, j)), effect is treated as a random effect. Therefore, the mouse variance is

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/6/1/59/379501 by guest on 20 August 2022



70 X. CUI ET AL.

0 0.2 0.4 0.6 0.8 1

B
0 0.2 0.4 0.6 0.8 1

C
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

A

-l
o

g
10
(P

va
lp

g
.p

o
o

l)

Σ S2

Differential Genes All GenesNon-differential Genes

Σ S2 Σ S2

Fig. 5. Representative volcano plots of the simulations based on the loop data set using a fixed-effect ANOVA
model (equation (4.8)) withCV = 2.2. Panels A, B and C correspond to non-differential, differential, and all genes,
respectively. The selected genes in panel A are false positive and the unselected genes in panel B are false negative
results. Horizontal and vertical lines indicate the 0.01 nominal significance level forF1 andF3, respectively. Red ‘+’,
F2 significant; orange diamond,FS significant.

included with the error variance in tests that compare treatments (Tk(i, j)) (McLeanet al., 1991; Churchill,
2002; Cui and Churchill, 2003b). The array effect (Ai ) is treated as random effect but it has little impact
on theF statistics.

The variance componentsmouse, array, andresidual in this model were estimated using REML
(Searleet al., 1992). Their distributions are shown in Figure 3C. The array variance is the largest
component and has only moderate heterogeneity (CV = 1.5). The mouse variance is the smallest, but
it has greatest heterogeneity (CV = 3.4). Most of the genes have small mouse variance, but a small
proportion of genes show large variation across individual mice. The residual variances are intermediate,
between array and mouse components, in size and have only moderate heterogeneity (CV = 1.7).

The fourF statistics were computed for each gene and their null distributions were established using
permutation analysis. The permutation unit in this case is mouse, which consists of a pair of arrays
measuring the same RNA samples with the dye labels reversed, because mouse is a nested factor within
treatment (Figure 2B). At a nominal significance level of 0.01, theF1, F2, FS and F3 tests detect 295,
348, 333, and 252 genes respectively. The volcano plot of theseF tests is shown in Figure 3D.

To study the false positive rate and successful detection rate of the four tests in this experimental
setting, we performed 10 simulations each having 1000 constant genes and 1000 differentially expressed
genes based on the design and variance components estimates of this experiment. The simulations were
similar to those in the previous section. The settings for the fixed effectsµ, Tk andD j were the same as
the corresponding fixed effects of model (4.8). The settings ofAi andεi j were the same as before except
thatσ 2

g was drawn randomly from the 15 600 estimates of residual variance of this data set. The settings
for the random effect mouse,Ml , were sampled from mouse variance component estimates. The reference
Rh(i, j) effect was drawn randomly from distributionN (0, 0.32).

The average numbers of true and false positives over 10 simulations by eachF test at nominal
significance level of 0.05 are shown in Table 3. The numbers of false positives are all close to expectation
(50), indicating that average type I error is controlled at the specified level. The successful detection rate
of eachF test decreases asCV increases, especially forF2 andF3. Again, FS shows an advantage over
F1. More importantly, it shows more advantage overF2 and F3 at largeCV s than observed from the
microarray simulation without biological replication in Table 2, indicating that when biological variation
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Table 3.Average number of true and false positives identified by each F test in 10 simulations of model
(4.9). Significance level is nominal 0.05. The total number of genes is 2000, with 1000 constant and
1000 differentially expressed. CVr , average CV of the residual variance; CVm, average CV of the mouse
variances; TP, true positives; FP, false positives

CVr = 1.0 CVr = 1.6 CVr = 4.7
CVm = 2.2 CVm = 3.3 CVm = 7.9
TP FP TP FP TP FP

F1 789 41 758 43 666 38
F2 806 40 751 37 493 42
FS 796 41 764 43 671 38
F3 742 39 658 41 282 48

Table 4.Average number of true and false positives identified by each Fs, B, Regularized-t and SAM
tests in 10 simulations as described in Section 4.4. Significance level is nominal 0.05. The total number
of genes is 2000, with 1000 constant and 1000 differentially expressed. CVr , average CV of the residual
variance; CVm, average CV of the mouse variances; TP, true positives; FP, false positives

CVr = 1.0 CVr = 1.7 CVr = 4.5
CVm = 2.2 CVm = 3.2 CVm = 7.8
TP FP TP FP TP FP

FS 591 42 563 41 500 41
B 619 51 574 54 527 92

R-t 583 46 553 45 493 44
SAM 212 0.2 157 0.7 203 2.5

is included in the computation of the error variance,FS could be advantageous. The successful detection
rate comparison among all fourF tests against the treatment effect is shown in Figure 4 (D to F). The
results from each of the 10 simulations are shown in Supplemental Table 1D–F.

4.4 Comparison between FS and some other information-sharing statistics

In order to evaluateFS against other information-sharing statistics, we comparedFS with SAM (Storey
and Tibshirani, 2003; L̈onnstedt and Speed, 2002), and regularizedt-statistics (Baldi and Long, 2001)
using the simulations described in the microarray simulation case II. BecauseB and regularizedt-
statistics are not applicable to multiple group comparisons, we restricted the simulations to two groups.
The SAM,B, and regularizedt-source codes were incorporated into our analysis from their current imple-
mentations insiggenes athttp://www.bioconductor.org/, SMA athttp://cran.r-project.org/
src/contrib/PACKAGES, andhdarray athttp://visitor.ics.uci.edu/genex/cybert/hdarray,
respectively. Significance levels for each statistic were established by permutation analysis as discussed in
Section 3. The average number of true and false positives identified by each test is shown in Table 4. The
individual simulation results are shown in supplemental Table 2. Figure 6 shows the comparison of the
successful detection rates of these four statistics as the size of the treatment effect changes. The successful
detection rates ofFS , B and regularizedt are similar in most of the cases. TheB statistic shows a slightly
higher false positive rate than expected when the heterogeneity of variances is high (CVr = 4.47 and
CVm = 7.76). The SAM statistic is conservative compared to the other three in identifying differentially
expressed genes regardless of the heterogeneity of the variance components.

In order to relax the normality assumptions in the simulation model (4.9), we conducted 10 additional
simulations with all parameters drawn from the estimates of the tumor microarray experiment. For each

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/6/1/59/379501 by guest on 20 August 2022

http://www.bioconductor.org/
http://cran.r-project.org/
http://visitor.ics.uci.edu/genex/cybert/hdarray


72 X. CUI ET AL.

 S
uc

ce
ss

fu
l d

et
ec

tio
n 

ra
te

τ = 0.8

CVr =1.02

CVm =2.18

A

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1
τ = 1

CVr =1.67

CVm =3.2

B

0 0.2 0.4 0.6 0.8

τ = 1.5

CVr =4.47

CVm =7.76

C

B
t

Sam
Fs
gene#

0 0.2 0.4 0.6 0.8

Σ Trt2Σ Trt2 Σ Trt2

Fig. 6. The average successful detection rate ofFS , B, SAM, and regularizedt (R-t) from 10 microarray simulations.
Data were simulated according to model (4.9) with two variance components and normal effects as described in the
text. Variance components were randomly drawn from the tumor data. Significance level is nominal 0.05 type I error
rate. The variability of the variances across genes was controlled byτ (0.8, 1, 1.5) and is reflected byCVr andCVm .
CVr , CV of the residual variance component;CVm , CV of the mouse variance component.

Table 5.Average number of true and false positives identified by FS, B, Regularized-t and SAM under
per gene type I error or FDR control at 0.05. Ten simulations were conducted with all parameter drawn
from the estimates of the tumor data. The total number of genes is 2000, with 1000 constant and 1000
differentially expressed. Average CV of the residual variance CVr = 2.3; Average CV of the mouse
variances CVm = 3.6. TP, true positives; FP, false positives

Type I error 0.05 FDR 0.05
TP FP TP FP

FS 338 45 159 2.2
B 310 46 111 2.2

R-t 354 52 195 4.9
SAM 185 6.3 42 0.0

simulation,µ and R were randomly drawn from the estimates of these two parameters. The values of
D at geneg were set to be the estimates of a randomly picked gene. TheA, T , M , andε were set in
the same way asD except that only two of the three treatments were sampled. The sampled data depart
dramatically from normal assumptions. The comparison ofFS with B, regularizedt , and SAM is shown
in Figure 7A, Table 5, and supplemental Table 3. Results from this simulation are similar to those obtained
from previous simulations except that SAM appears to be slightly less conservative than before.

False discovery rate (FDR) is often used to address the multiple testing issues in microarray data
analysis. FDR is the expected proportion of false positives among the rejected null hypotheses (Benjamini
and Hochberg, 1995; Storey, 2002). When the average nominal is controlled at a specified level, a total
number of false positives are controlled. A more powerful test will detect more true positive genes.
Therefore, the FDR of the detected gene list is usually smaller for a more powerful test. On the other
hand, if we control FDR at fixed level, a more powerful test will generally give a longer significant gene
list. To compareFS with B, SAM and regularizedt-statistics we controlled FDR using Benjamini and
Hochberg’s adaptive control procedure (Benjamini and Hochberg, 2000), which is similar to Storey’s
positive FDR (Storey, 2002). Figure 7B and Table 5 show the comparison ofFS with B, regularized
t , and SAM when FDR is controlled at 0.05.FS and regularizedt perform well. TheB statistic is less
powerful when the treatment effect is small but recovers quickly when the effect increases. SAM identifies
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Fig. 7. Comparison betweenFS , B, SAM, and regularizedt (R-t) using data-based resampling simulations. Data
were simulated according to model (4.9) where all parameters were drawn from the estimated values of the tumor
data set. The average number of true positives of 10 simulations identified by each test is plotted.CVr , CV of the
residual variance component;CVm , CV of the mouse variance component. A, nominal type I error is controlled at
0.05 for each gene. B, FDR is controlled at 0.05.

the smallest number of genes among the four statistics regardless of the size of the treatment effect. We
also performed a larger simulation with 1000 differential genes and 9000 constant genes. The successful
detection rates of the four tests are lower than those shown in Figure 7B but the relative comparison among
methods is the same.

5. DISCUSSION

Variance components in microarray experiments display varying degrees of heterogeneity, across
experiments, across variance components, and across genes within a variance component (Cui and
Churchill, 2003a). Assumptions of variance heterogeneity lead to the use of individual gene-specific tests,
such asF1, but these tests can suffer from low power due to small sample size per gene. On the other hand,
the assumption of common variance leads to powerful tests, such asF3, but at the risk of generating false
positive and negative in the event that the common variance assumption is not true. A better approach is
to use the tests based on variance estimates that are gene specific but combine information across many
genes. We gain power by utilizing more information in the data but can also avoid bias.

In this paper, we apply James–Stein shrinkage to improve estimated variance components in a linear
mixed model. We show that the resulting test statisticFS performs better than the standard gene-specific
test F1 and that the improvement in successful detection rate can be substantial when the degrees
of freedom are small, a common situation for microarray experiments. Compared with some other
information-sharing statistics, such asB, SAM, and regularizedt , FS has comparable or better power
in identifying differentially expressed genes. Moreover,FS is more general as it can be applied to a
wider range of experimental designs, i.e. not restricted to two-sample comparisons with single variance
component.

By taking a shrinkage approach to improve variance estimation, we make only weak prior assumptions
about the distribution of the variance components. Although the James–Stein shrinkage estimator was
developed in the context of a normal model, it is the sampling distribution of the logarithm of the variance
estimators, not the values of the variance themselves, that are assumed to be normal. Parametric Empirical
Bayes methods require explicit distributional assumption on the true variances. In some simple settings,
such as estimating a normal mean which has a normal prior, the Empirical Bayes approach and the
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shrinkage approach lead to exactly the same estimator (Efron and Morris, 1973). But in this setting,
the Empirical Bayes approach is complicated (Wright and Simon, 2003). Our proposed statistic,FS , has
an explicit expression and is computationally simple.

In summary, we have proposed a variation on the general mixed model testing strategy using shrinkage
estimates of variance components to construct test statistics that are powerful and robust in respect to
variance heterogeneity in gene expression data.

Supplemental tables, software and data sets cited in this paper are available athttp://www.jax.
org/staff/churchill/labsite/pubs/index.html.
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