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SUMMARY

Combining information across genes in the statistical analysis of microarray data is desirable because
of the relatively small number of data points obtained for each individual gene. Here we develop an
estimator of the error variance that can borrow information across genes using the James—Stein shrinkage
concept. A new test statisti¢-§) is constructed using this estimator. The new statistic is compared with
other statistics used to test for differential expression: the gene-spedést (F1), the pooled-variance
F statistic F3), a hybrid statistic [2) that uses the average of the individual and pooled variances, the
regularized-statistic, the posterior odds statisB¢ and the SAM -test. TheFs-test shows best or nearly
best power for detecting differentially expressed genes over a wide range of simulated data in which the
variance components associated with individual genes are either homogeneous or heterogenebys. Thus
provides a powerful and robust approach to test differential expression of genes that utilizes information
not available in individual gene testing approaches and does not suffer from biases of the pooled variance
approach.

Keywords: ANOVA model; F statistic; Linear mixed model; Permutation; Shrinkage estimator; Variance microarray.

1. INTRODUCTION

Microarray technology has become an important tool for simultaneously screening thousands of genes
for changes in their patterns of expression. In a two-color microarray experiment, a mixture of two cDNA
samples (targets) that are differentially labeled with fluorescent dyes is hybridized to thousands of DNA
sequences (probes) immobilized on a glass slide (Satiethal1995). Sequences from the two targets can
hybridize to complementary probe sequences. The observed fluorescent signals at each spot are, therefore,
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correlated with the mRNA concentrations in the RNA samples from which the cDNA targets were reverse-
transcribed. The ratio of the two fluorescent signals at each spot is commonly used to estimate the ratio of
the mMRNA concentrations in the two RNA samples. In a one-color system, such as the Affymetrix arrays,
all samples are labeled with the same color and each cDNA sample is hybridized to a separated array
(Affymetrix, 1999). In this paper, we use examples from two-color arrays, but the results are applicable
to one-color arrays.

The large amount of data generated by microarray technology is due mainly to the large number of
genes represented on the array. For each gene the number of RNA samples assayed is typically small.
Therefore, the commonly used approach of testing for differential expression one gene at a time often
has low power (Callovet al., 2000). Assuming that all of the variances are equal and using a common
variance estimator for testing can substantially increase the power to detect differential expression (Kerr
et al., 2000) but at the risk of generating false positive and negative results when the common variance
assumption is not true.

Cui and Churchill (2003b) reviewed some methods for testing differential expression of genes in
microarray experiments. In addition, they defined three test statistics based on an analysis of variance
(ANOVA) model. The usual ANOVAF test compares an estimate of variation across conditions to an
estimate of error variance. Thetest is a special case when the number of conditions is two. One test
statistic 1) uses only data from individual genes and is in fact the clas$tcalatistic. Another test
statistic {3) assumes a common error variance across genes and uses a pooled estimator of the common
variance. The third test statisti€£) achieves a compromise by using an average of gene-specific and
pooled variance estimates. When applied to real or simulated datd;,thest seems to work well;
however, we found it hard to justify taking the simple average of variance estimates.

The idea of modifying estimators of variance has been presented by others in similar contexts. The
SAM t-test (Storey and Tibshirani, 2003) adds a small constant to the gene-specific variance estimate
in order to stabilize the small variances. The regularizaest proposed by Baldi and Long (2001)
replaces the usual variance estimate with a Bayesian estimator based on a hierarchical prior distribution.
Lonnstedt and Speed (2002) proposed an Empirical Bayes approach that combines information across
genes. Kendziorskit al. (2003) and Newtoset al. (2003) considered a hierarchical gamma-gamma model
to combine information across genes. Other information sharing methods have also been provided using
similar strategies (Wright and Simon, 2003; Smyth, 2004).

In this paper we propose a shrinkage estimator for gene-specific variance components based on the
James-Stein estimator (Lindley, 1962) and use it to construct a test statistic [Egll@tie shrinkage
estimator makes no prior assumptions about the distribution of variances across genes. We show that the
test based orfrs has the highest or nearly the highest power among vaelike statistics and that it
compares well with other ‘information-sharing’ statistics. Thetest is robust, performing well under
awide range of assumptions about variance heterogeneity. It behaves well when the variances are truly
constant as well as when they vary extensively from gene to gene. Furthermdfeféiseis quite general.

It can be applied in the context of general experimental designs for microarray studies (Churchill, 2002)
and is not limited to the pairwise comparison of treatmelRgscan be used to construct tests that account
for multiple sources of variation, both biological and technical, in microarray experiments.

In Section 2, we describe how to obtain a shrinkage estimator of variance components that provides
gene-specific variances but also uses information across all of the genes in the data to improve estimation.
In Section 3, we show how to use shrinkage estimators of variances to coristfiket statistics for
differential expression of genes in the context of the mixed model analysis of variance. In Section 4, we
validate the properties of the tests based on these statistics using simulations and real data. We simulate a
canonical case to consider the problemin its most general and abstracted form. We then look at simulations
of a simple microarray experiment comparing five samples and a more complex microarray experiment
with biological replicates.
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2. SHRINKING VARIANCE ESTIMATORS

In this section, we construct improved estimators of variance from an ensemble of individual variance
estimators by shrinking them toward their common corrected geometric mean. The amount of shrinkage
depends on the variability of the individual variance estimators. When individual variance estimates
are similar, indicating homogeneity, the shrinkage estimator effectively pools these estimates. When
individual variance estimates are widely dispersed, indicating heterogeneity, the shrinkage estimator gives
greater weight to the gene specific contributions. The key result of this section is the expression in equation
(2.3) below.

Let Xg be the residual sum of squared errors (SSE)@é"]be the true variance of geme Forg =

1,...,Ggenes,itisassumed th)esig]/crg2 are independent, each having a Chi-squared distributionwith
degrees of freedom. Such random variable will be denoted a§herefore, we have
Xg ~ 05)(”2.

Wetake a natural logarithmic transformation &g to obtain a common location problem as shown below.
Wethen have

X 2
In 29 ~ o2 +In XL, 2.1)
Vv Y
2
Hence, if we denote the mean off{ﬁ as m, by subtractingm from both sides, we could write
equation (2.1) as

’o 2 /
Xg |nag +€q

2
whereXg = In % —mandeg = In L — m. Let V be the variance ofg. By using a first-order Taylor

2 2
expansion of the last term in equation (2.1), N’ar%) ~ Var(XTV) = % In Table 1, we give the ratio of
V to 2/v, which eventually converges to one. When applied(go(l < g < G) in estimating Imgz, the
positive part James—Stein estimator that shrinks toward the common)ﬁﬁea@ Xé /G is

s _ (G-3V g
X' + (1 S0 = X X/)2)+ x (X — X) (2.2)

where for any numbea, a; denotes maga, 0). The truncation enacted by the-*is necessary to avoid
overshrinking.
Transformation back to the original scale gives the shrinkage estimat@g-,for

G
5= ( (xg/u)l/G) B x exp|:<1 ___(G-9¥ ) x (InXg —1In xg)} , (2.3)
g=1 +

> (In Xg — In Xy)?

Wherem = é > In(Xy), andB = exp(—m) is a bias correction. Note that multiplying the geometric
mean(]_[éf:l(Xg,/v))l/G by B gives an unbiased estimator®f whenoZ = o2 for all g.

The values ofB (and alsoV) depend orv. They can be simulated easily and values are given in
Table 1. Note thaB is always larger than one, hence, the geometric mean withautderestimates2
when alloZ are equal tar2.

Taylor expansion applied to the inverse log-transformed estimator in equation (2.3) demonstrates that
it is similar to Ghostet al.'s estimator (Ghoslet al., 1984) (derivation not shown). If the collection of
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Table 1.Values of B (bias correction) and V /(2/v) as a function of v. These values are used in equation
(2.3) to construct the estimates that shrink the unbiased estimators of variances to their corrected
geometric mean. When v is greater than 50, B and V /(2/v) are effectively 1

B V/2/v) v B V/2/v)
353 245 13 108 108
177 164 14 108 108
144 139 15 107 107
131 127 16 107 106
124 122 17 106 106
119 118 18 106 106
116 115 19 106 105
114 113 20 105 105
112 112 25 104 104
10 111 111 30 104 103
11 110 110 40 103 103
12 109 109 50 102 102

<

O©CoOoO~NOOOTh,WNEPE

all Xg (g = 1,...,G) isrepresented b¥, it has been shown that Ghoshal.’s estimator dominates

X/(v + 2), which is better tharX /v from the collection of individual variance estimators, according to

the sum of squared invariant losses (Ghethl., 1984). This provides a theoretical foundation that the
estimator in equation (2.3) may work well as an estimator of variance. Extensive comparisons among
several variations on this estimator show that the version (2.3) presented here behaves best in construction
of test statistics as described in Section 3. In particular, the estimators in (2.3) provide a test statistic with
better performance than similar statistics based on the Gli@h(1984) estimator.

3. CONSTRUCTINGF-LIKE STATISTICS

To illustrate how to construcE-like statistics using different variance estimators, we start with the
generalF statistic for a general linear mixed model and then introduce the statistics based on shrinkage
estimators.

A general linear mixed model (Sea#dkal., 1992) can be written as

Y =X+ Zu+e (3.1)

whereY is the vector of observations, X is the design matrix of fixed effg¢t2 is the design matrix of
random effectsl, ande is the vector of the residuals.

The variances of the random effectsand residuals in equation (3.1) can be estimated using the
restricted maximum likelihood method (REML) (Seadeal., 1992). Estimation of the corresponding
fixed effects §) and the prediction of the random effect§ €an be obtained through generalized least
squares using the estimated variance components (®eatle1992; Witkovsky, 2002).

The variance covariance matrix Afand(i can be estimated as

(3.2)

A X'R1X X'R1z N
C= rB-1 rH-1 S
ZRIX ZR11z+6G

whereR is a matrix with the estimates of residual variances on the diagonal and 0 elsewheGijsaad
matrix with the variance components estimated for random efteatsthe diagonal and 0 elsewhere. The
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‘—’ sign represent the generalized inverse of the matrix. Linear combinations of the fixed effects (denoted
by L) inequation (3.1) can then be tested usind-astatistic (Littellet al., 1996) constructed as

AL CLHILB

rank(L) (3.3)

When a linear mixed model is fit to microarray data one gene at a time, the design matricesndZ
are the same for all genes. Therefore, the general linear mixed model fog ganebe expressed as

Yg = Xﬂg + ZUg + €g (34)

The statistic defined in equation (3.3) can then be used to test the fixedsfidiotctly for each gene. We

refer to this as the gene-specifictest (F1) (Wolfingeret al., 2001). The variance components in this test

are estimated using data from only one gene and the power of this test is likely to be low in experiments
with only a few RNA samples. Othét-like statistics F andFs, defined by Cui and Churchill (2003b) can
borrow information across genes when estimating the variance compoRgnises the pooled variance

estimatorc}pzOol for each variance component. For balanced desi@;ﬁ&,l is an average across genes of
the individual variance estimateB; uses the average ég andc?pzool for each component. In this paper

we define a newF-like statistic, Fs, which usess?2 from the shrinkage estimator in equation (2.3) as
the variance component estimator for each gene. The variance component estimators are then used in
equations (3.2) and (3.3) to compute the corresponHistatistics.
Consider a fixed effects ANOVA model in whichandu are empty. If we denote the sum of squares
of relative expression across samples for ggas A, then the fourF tests can be written as

F2= Ag/3(62 + 620);
Fs = AQ/&pzooI’
Fs= Ag/d¢.

(3.5)

This form highlights the intuition behind the construction of these statistics.

The justification for choosing one of these four statistics depends on our assumptions about the
variability of the variances across genes. If all variance components are constant across gefgssthen
the right statistic. If the variance components are gene specific,Rh@nthe right statistic. However, a
statistic like Fs should be more efficient when there is limited information to estimate the gene specific
variance components. Comparisons of these tests in different situations are described in Section 4.

For simple microarray experiments, fixed effects ANOVA models, a special case of the general
linear mixed model with empty andu in equation (3.1), can be used for modeling and computational
convenience. The error variance for each gene can be estimated using the residual mean square error
(MSE), which is the SSE divided by its degrees of freedojnThus, the denominators &, F», F3, and
Fs can be estimated based on these MSEs across the genes in equation (3.5).

The null distributions of the modifie& statistics are not readily available. The test for a fixed-
effect ANOVA model, which is used for small or simple experiments, has a stafddistribution and
critical values could be obtained from tie tables under typical distributional assumptions; however,
when mixed-effects ANOVA models are used for large and complicated experiments, ithhequation
(3.5) does not strictly follow thé distribution, although a conservative approximation can be obtained
(Littell et al., 1996). SinceF,, F3, and Fs are not standardr statistics, their null distributions can be
approximated by permutation analysis (\&al., 2003). It may be prudent to establish all critical values
by permutation analysis because distributional assumptions are often questionable for microarray data.
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Permutation analysis is a nonparametric approach to establish the null distribution of a test statistic.
The key to developing a permutation strategy is to identify units in the experiment that are exchangeable
under the null hypothesis. In microarray experiments, if we allow for gene-specific variance heterogeneity,
then the unit must be whole arrays. Furthermore, the arrays that are to be shuffled will depend on the design
of the experiment and the factor(s) being tested. Two-color arrays are slightly more complex than single-
color systems as the pairing between the two channels of the array must be maintained in the permuted
units. To execute the permutation analysis we generate random shpfflesl(. .., P) of whole array
units and compute a new set of statistl?g(so) (g =1,...,G). Due to the large computational demand,
we can typically perform only 100 permutations. For example, a 2000-gene experiment with 30 arrays
requires about an hour on our 32-node Beowulf cluster. To reduce the granularity of the gene-specific null
distribution, a common null distribution for each test statistic is established using the entire collection
of Fép) values over indicep and g based on the assumption that the F statistics have common null
distributions across genes (Storey and Tibshirani, 2003).

4, SMULATION STUDIES

In order to compare the tests based on each of the Fowtatistics in their ability to identify
differentially expressed genes, we first simulated an abstracted canonical form and then simulated data
based on real microarray experiments. For the latter we simulated data based on models using estimated
parameters from real data sets. We also used resampling methods based on real data. The first microarray
experiment that we considered is based on a five-sample comparison with no biological replicates and the
second is based on a three-sample comparison with biological replicates.

4.1 Canonical simulation

To evduate the tests based on the fdurstatistics in a general setting, we simulated data in a canonical
form and studied the successful detection rate (the percentage of true positives identified), which is
analogous but not identical to the average power in Duetodll. (2003), of each test at several levels
of variance heterogeneity, represented by coefficient of varia@n) (of the variances and degrees of
freedom ¢).

We define the canonical form of this problemyg = 6g ¢ +€g,t forgeneg =1, ..., G and treatment
t=1,..., T, wherefy represents the relative expression level of ggnader treatment condition
andeg is the gene-specific residual erreg ¢ ~ N(O, 05)) associated with estimatireg .

In this simulation, the residual varianceé,, were drawn randomly from the 15 600 residual variance
estimates from the tumor data set described in Section 4.3. To va@\thef these residual variances
while keeping their geometric means constant, we rescaled them using a tuning patameter

021

- _ 9 2
Zg = gm(agk) * gM(ag), (4.6)

wheregm stands for geometric mean. Wher= 0,CV = 0, corresponding to the homogeneous variance
case. We study four cases where- 0, 0.78, 15 and 23, which correspond t€V = 0, 1, 4 and 20. The
two middle cases are typical of real microarray data.

The treatment effect for each gene can be estimated as

. 1 o -
Ag = t—1 Z(yg,t - yg.)z' (4.7)
t=1
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This is also the common numerator for all fdustatistics in equation (3.5). In this case, the denominators
of all F statistics are obtained using residual MS& the place of&& in equation (3.5). The residual
MSEy for each gene was generated from a chi-square distribution and scaled by gene-specific residual
varianceZg, MSEg ~ Zgx2/v, wherev are the degrees of freedom associated with iyISEe studied
many degrees of freedom but only report= 2, 6, and 50 here to represent small, moderate and large
microarray experiments.
To establish the null distribution for thle tests, we sedgt = Oforallg=1,...,5000t=1,...,5.
We calculatedFy, F», F3, and Fs for each gene and then use the 95% quantiles as the critical values.
To calculate the successful detection rate for e&chiest, we generated a number of non-zero

fy. Because the successful detection rate of a test depends on the magnitude of theAgffeet (
21 Y (0gt — 0g)?), we study it as a function of\g. Specifically, we letQg: ~ N(0,1%) and

0.t = KQg.t/y/ > o1 Q3+, consequentlyk = ,/Ag(t — 1). By varying K, we can vary the treatment
effect. For eactK value we studied, we generated 5000 genes and recorded the percentage that were
identified by each test. Figure 1 shows the successful detection rate of the four tests as a function of
VAg(t —1) for degrees of freedom, = 2, 6,50, and heterogeneitf;V = 0, ~ 1, ~ 5, and~ 20.

When all the treatments are identicgdAg(t — 1) = 0, the null hypothesisip holds. In generalF;

shows good power only whenis large ¢ > 6). F3 only has good power when variance heterogeneity

is low (CV < 1). F is similar to F3 but more robust. It still has good power wh&V/ is about 4. The

power of theF, and F3 tests decrease when thd/ increases. When theV is larger than 10F3 loses

power completely andr, loses most of its power. Compared with the other testsis the most robust

and is usually most powerful or nearly sbg is more powerful than or as powerful & and F3 in

all the situations. The improvement over is quite substantial whenis small. It also has a substantial
advantage ovef, andF3 when theCV is large. When th€V is small, the power oF s is still comparable

to that of Fs.

4.2 Analysisand simulation of a microarray experiment:
Case|l. Technical replication

To compare the fouF -like tests in a simple microarray experiment, we applied them to experimental data
and performed simulations based on the results of this experiment. The experiment compared two human
colon cancer cell lines, CACO2 and HCT116, and three human ovarian cancer cell lines, ES2, MDAH2774
and OV1063, using a design in which the samples were arranged in a loop and no reference sample
was used (Figure 2A). Fluorescent dye labeled cDNA targets were hybridized to cDNA microarrays
containing 9600 human cDNA clones from the Research Genetics sequence verified human cDNA
collection (Invitrogen, Carlsbad, CA) spotted in duplicate. Slides were scanned using the GenePix4000
microarray scanner and the median intensities of each spot were calculated using an image processing
software (Axon Instruments, Inc., Foster City, CA).

To simplify the analysis, the two spots for the same gene on each array were averaged at the original
signal level. The data were then intensity LOWESS transformedéiGii, 2003) and normalized before
fitting the following ANOVA model to each gene:

Vij =+ A+ Dj + Sq.j) +€ij- (4.8)
In this model,u is the gene meany (i =1, ..., 10) is the array effectD; (j = 1, 2) is the dye effect,
Sa,jy (k = 1,...,5) is the sample effect. The sample indeis determined by the array and channel

indicesi and j. Heregjj is the residual, termg, Dj and S j) are treated as fixed while terdy is
treated as random. To put this model in the context of the general linear mixed model (equatipn 3.4),
D and &, j) belong tog and A; belongs tau. The dimension of theX matrix is 20x 8 with rank of 6
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Fig. 1. Successful detection rate comparison among theRaests using the canonical simulations. In each panel,
the successful detection rate of ed€hest is plotted against the treatment effeg¢t\ (t — 1). The variability of the
individual variances is controlled by shown on the top and is reflected by the coefficient of variat@®w ) shown

at the upper left corner of each panel. The degrees of freedemZ, 6, and 50) are noted in each panel at the upper
left corner. The nominal type | error rate of 0.05 is indicated by a solid blue line.

and the dimension of thé matrix is 20x 10 with rank of 9. The variance componentsffandejj were
estimated (Searlet al., 1992) for each gene and their distributions were compared (Figure 3A). The array
variance is substantially larger than the residual variance but it has similar heterog€néity 1.34) to

the residual variancexV = 1.79). We note that array variance has little impact onFheests because

of the experimental design (Cui and Churchill, 2003a); thus in simple experiments like this one treating
array as a fixed effect simplifies the computation with little impact on the results.

The four F test statistics were constructed under model (4.8) and their null distributions were
established by permutation analysis (Keral., 2000; Wuet al., 2003; Cui and Churchill, 2003b). The
permutation unit in this case is one array. At a nominal significance level of 6Q15>, Fs and F3
detected 1588, 2012, 1896 and 981 significant genes, respectively. The volcano plot (Figure 3B) illustrates
the differences among the fo&rtests. The significant genes fBi are located above the horizontal line
and those forF3 are located right of the vertical line. The significant genes identifieéband F> are
indicated by yellow and red coloring respectively and are generally in the upper right corner.

To study the false positive and the successful detection rates offedeht, we simulated 10 data
sets based on this design, each with 1000 constant genes and 1000 differentially expressed genes. The
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Fig.2. lllustration of the microarray designs used in the paper. Panel A is a double-loop design comparing five
samples (S1-S5). Panel B is a reference design used in the tumor experiment to compare three treatments (T1, T2,
and T3) with five mice in each treatment group and one pair of arrays for each mouse. Arrows represent arrays with
head pointing to the sample with Cy3 labeling and tail pointing to the sample with Cy5 labeling. R denotes reference
sample.

individual treatment effect§ j) were drawn randomly from distributioN (O, 0.3%). The 1 and Dj

were generated from normal distributioNg0, 0.65%) and N (0, 0.35%), respectively. These fixed effects
parameter values were held constant across all simulations. For each simufgtioias generated
randomly from a normal distributioN (0, 0.62) and the residualgjj) were drawn randomly from normal
distribution N (O, 05), where the gene specific varian@é was sampled randomly without replacement

from the 9600 estimates of residual variance of the loop data set. The variability of the residual variances
was controlled byr in the same fashion as for the canonical simulation, but the valwenafsset to be

0.8, 1, and 1.5 to only cover the ranges of variability that we have seen in real data sets. Corresponding
CVsare about 2, 1.8, and 37.

The averaged results of the 10 simulations at nominal significance level of 0.05 are shown in Table 2.
Among the 1000 null model genes, fewer than 50 false positives were detected bl ¢ast) which
indicates that the actual average type | error rate is somewhat lower than the expectation in each case.
Among the 1000 differentially expressed genes, the majority were identified by alFfeests, but the
number of identified true positives decreas€asincreasesk; andFs are less affected by heterogeneity
than F, and F3. Fs identifies fewer true positives thafy, when theCV is around 1.2 and 1.8, but it
identifies more tharl>, when theCV is around 3.7 Fg identifies more true positives tharn and F3
regardless of the degree of heterogeneity. The successful detection rate df tteste plotted against
the sample effect is shown in Figure 4 (A-C). The relationship among all Fotgsts are similar to
those obtained in the canonical simulation. The volcano plots from one simulation (Figure 5) illustrate the
false positives and false negatives from ekdest. The results of all individual simulations are shown in
supplemental Tables 1A-C.

4.3 Analysisand simulation of a microarray experiment:
Casell. Biological replication

A promising trend in microarray experiments is to include biological replicates of samples in order to
account for inherent biological variation. To accommodate this trend, mixed linear models with biological
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Fig.3. Variance component plots and volcano plots of the loop and tumor data sets. Panel A shows smoothed
histograms of the variance components of the loop data Wittreated as random (equation 4.8). Panel B shows

the volcano plot from the loop experiment. Panel C shows the smoothed histograms of the variance components from
the tumor data set. Panel D shows the volcano plot of the tumor data. In the volcano plots, i@ veges based on
permutation analysis of thig; statistic are plotted against the treatment effect. Horizontal and vertical lines represent
the 0.01 nominal significance level f&§ andF3 respectively. Yellow squarég significant; Red ‘+',F» significant.

replicates treated as random effects are required. Here we analyze a representative data set and perform
simulations based on these data to compare the properties of th€ {fide tests in this experimental
setting.

The granulosa cell tumor microarray experiment was performed using eight week old SWXJ-9 mice.
The effects of dietary androgenic supplementation (DHEA, testosterone and control) were assessed.
RNA samples from each mouse were compared to the Stratagene reference RNA using two microarrays
with dye labeling reversed (Figure 2B). Fluorescent dye labeled cDNA targets were hybridized to DNA
microarrays printed with the 15000 NIA clone set spotted in duplicate. Slides were scanned and the
mean intensities of each spot calculated using the GenePix4400 microarray scanner and image processing
software.
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Table 2.Average number of true and false positives identified by each F test in 10 simulations of model
(4.8). Sgnificance level is nominal 0.05. The total number of genes is 2000, with 1000 constant genes
and 1000 differentially expressed genes. CV;, average CV of the residual variance; TP, true positives; FP,
false positives. The results fromindividual simulations are shown in Supplemental Tables 1A-C

CVi =12 CV\ =18 CVy =37
TP FP TP FP TP FP
F1 766 44 746 44 713 41
F, 866 33 829 31 688 30
Fs 857 35 824 39 762 40
F3 806 37 752 46 434 50
1=08 =1 =15
1 D T T D T T T é
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Fig.4. The average successful detection rate of Fotests from 10 microarray simulations. The data were simulated
with the fixed-effect ANOVA model (A-C) or mixed-effects ANOVA model with two variance components (D-F).

The values of variance components in A—C and D—E were randomly drawn from the loop and tumor data, respectively.

The variability of the variances across genes are controlled (@8, 1, 1.5) and reflected gV, andCVpy. CV;,
CV of the residual variance componeftym, CV of the mouse variance component.

The raw data were preprocessed as described above before fitting the following mixed ANOVA model
(Wolfingeret al., 2001) for each gene,

Vij =+ A+ Dj + Tki.j + Migj) + Raa.j) +€ij» (4.9)

with u for the gene mear¥y for array effecti{ = 1,...,30), Dj (j = 1, 2) for the dye effectTyg, j)

(k = 1, 2, 3) for the treatment effect, anld, ., (I = 1, ..., 15 for mouse effectRy j) is an indicator

of referenceh = 1) versus tissue sampléa = 2). The indices of treatment, mouse and reference are
determined by the combination of array and dye. We frgddj, Ty j) and Ry, j) as fixed effects. The
biological replicatemouse (M, j), effect is treated as a random effect. Therefore, the mouse variance is
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Fig.5. Representative volcano plots of the simulations based on the loop data set using a fixed-effect ANOVA
model (equation (4.8)) witV = 2.2. Panels A, B and C correspond to non-differential, differential, and all genes,
respectively. The selected genes in panel A are false positive and the unselected genes in panel B are false negative
results. Horizontal and vertical lines indicate the 0.01 nominal significance levif fand F3, respectively. Red ‘+’,

F» significant; orange diamondFg significant.

included with the error variance in tests that compare treatmégts ) (McLeanet al., 1991; Churchill,
2002; Cui and Churchill, 2003b). The array effeét ) is treated as random effect but it has little impact
on theF statistics.

The variance componenisouse, array, andresidual in this model were estimated using REML
(Searleet al., 1992). Their distributions are shown in Figure 3C. The array variance is the largest
component and has only moderate heterogenéity & 1.5). The mouse variance is the smallest, but
it has greatest heterogeneit@{ = 3.4). Most of the genes have small mouse variance, but a small
proportion of genes show large variation across individual mice. The residual variances are intermediate,
between array and mouse components, in size and have only moderate heteroGaheityl (7).

The fourF statistics were computed for each gene and their null distributions were established using
permutation analysis. The permutation unit in this case is mouse, which consists of a pair of arrays
measuring the same RNA samples with the dye labels reversed, because mouse is a nested factor within
treatment (Figure 2B). At a nominal significance level of 0.01, FaeF>, Fs and F3 tests detect 295,

348, 333, and 252 genes respectively. The volcano plot of thessts is shown in Figure 3D.

To study the false positive rate and successful detection rate of the four tests in this experimental
setting, we performed 10 simulations each having 1000 constant genes and 1000 differentially expressed
genes based on the design and variance components estimates of this experiment. The simulations were
similar to those in the previous section. The settings for the fixed effgctz and Dj were the same as
the corresponding fixed effects of model (4.8). The setting&aindejj were the same as before except
thatag was drawn randomly from the 15600 estimates of residual variance of this data set. The settings
for the random effect mous#);, were sampled from mouse variance component estimates. The reference
Rng, j) effect was drawn randomly from distributid¥(0, 0.3%).

The average numbers of true and false positives over 10 simulations byFe&est at nominal
significance level of 0.05 are shown in Table 3. The numbers of false positives are all close to expectation
(50), indicating that average type | error is controlled at the specified level. The successful detection rate
of eachF test decreases &V increases, especially fét, and F3. Again, Fs shows an advantage over
F1. More importantly, it shows more advantage o¥erand F3 at largeCVs than observed from the
microarray simulation without biological replication in Table 2, indicating that when biological variation
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Table 3.Average number of true and false positives identified by each F test in 10 simulations of model
(4.9). Sgnificance level is nominal 0.05. The total number of genes is 2000, with 1000 constant and
1000 differentially expressed. CV,, average CV of the residual variance; CVy, average CV of the mouse
variances, TP, true positives; FP, false positives

CV =10 CV =16 CVi =47

CVm =22 CVm =33 CVmn=79

TP FP TP FP TP FP
Fi 789 41 758 43~ 666 38
Fo 806 40 751 37 493 42
Fs 796 41 764 43 671 38
F3 742 39 658 41 282 48

Table 4.Average number of true and false positives identified by each Fs, B, Regularized-t and SAM
testsin 10 simulations as described in Section 4.4. Sgnificance level is nominal 0.05. The total number
of genesis 2000, with 1000 constant and 1000 differentially expressed. CV;, average CV of the residual
variance; CVp, average CV of the mouse variances; TP, true positives; FP, false positives

CVr =10 CVr =17 CVr =45
CVim =22 CVin = 3.2 CVm =178
TP FP TP FP TP FP
Fs 591 42 563 41 500 41
B 619 51 574 54 527 92
Rt 583 46 553 45 493 44
SAM 212 0.2 157 0.7 203 25

is included in the computation of the error varianEe,could be advantageous. The successful detection
rate comparison among all folir tests against the treatment effect is shown in Figure 4 (D to F). The
results from each of the 10 simulations are shown in Supplemental Table 1D—F.

4.4 Comparison between Fs and some other information-sharing statistics

In order to evaluaté-g against other information-sharing statistics, we compd&eaith SAM (Storey
and Tibshirani, 2003; éinnstedt and Speed, 2002), and regularizsthtistics (Baldi and Long, 2001)
using the simulations described in the microarray simulation case Il. Bedawsad regularized-
statistics are not applicable to multiple group comparisons, we restricted the simulations to two groups.
The SAM, B, and regularizetl-source codes were incorporated into our analysis from their current imple-
mentations irsiggenesathttp: //www.bioconductor.org/, SMAathttp://cran.r-project.org/
src/contrib/PACKAGES, andhdarray athttp://visitor.ics.uci.edu/genex/cybert/hdarray,
respectively. Significance levels for each statistic were established by permutation analysis as discussed in
Section 3. The average number of true and false positives identified by each test is shown in Table 4. The
individual simulation results are shown in supplemental Table 2. Figure 6 shows the comparison of the
successful detection rates of these four statistics as the size of the treatment effect changes. The successful
detection rates dfs, B and regularized are similar in most of the cases. TBestatistic shows a slightly
higher false positive rate than expected when the heterogeneity of variances i€hjgh=(4.47 and
CVmn = 7.76). The SAM statistic is conservative compared to the other three in identifying differentially
expressed genes regardless of the heterogeneity of the variance components.

In order to relax the normality assumptions in the simulation model (4.9), we conducted 10 additional
simulations with all parameters drawn from the estimates of the tumor microarray experiment. For each
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Fig. 6. The average successful detection rate9fB, SAM, and regularized (R-t) from 10 microarray simulations.

Data were simulated according to model (4.9) with two variance components and normal effects as described in the
text. Variance components were randomly drawn from the tumor data. Significance level is nominal 0.05 type | error
rate. The variability of the variances across genes was controlled®, 1, 1.5) and is reflected 1§V, andCVm.

CV,, CV of the residual variance componefityy, CV of the mouse variance component.

Table 5.Average number of true and false positives identified by Fs, B, Regularized-t and SAM under
per genetype | error or FDR control at 0.05. Ten simulations were conducted with all parameter drawn
from the estimates of the tumor data. The total number of genes is 2000, with 1000 constant and 1000
differentially expressed. Average CV of the residual variance CV; = 2.3; Average CV of the mouse
variances CVy, = 3.6. TP, true positives, FP, false positives

Type | error 0.05 FDR 0.05
TP FP TP FP
Fs 338 45 159 2.2
B 310 46 111 2.2
Rt 354 52 195 4.9
SAM 185 6.3 42 0.0

simulation,« and R were randomly drawn from the estimates of these two parameters. The values of

D at geneg were set to be the estimates of a randomly picked gene. ATHe, M, ande were set in

the same way ab except that only two of the three treatments were sampled. The sampled data depart
dramatically from normal assumptions. The comparisoRoWwith B, regularizedt, and SAM is shown

in Figure 7A, Table 5, and supplemental Table 3. Results from this simulation are similar to those obtained
from previous simulations except that SAM appears to be slightly less conservative than before.

False discovery rate (FDR) is often used to address the multiple testing issues in microarray data
analysis. FDR is the expected proportion of false positives among the rejected null hypotheses (Benjamini
and Hochberg, 1995; Storey, 2002). When the average nominal is controlled at a specified level, a total
number of false positives are controlled. A more powerful test will detect more true positive genes.
Therefore, the FDR of the detected gene list is usually smaller for a more powerful test. On the other
hand, if we control FDR at fixed level, a more powerful test will generally give a longer significant gene
list. To compareFs with B, SAM and regularized-statistics we controlled FDR using Benjamini and
Hochberg's adaptive control procedure (Benjamini and Hochberg, 2000), which is similar to Storey’s
positive FDR (Storey, 2002). Figure 7B and Table 5 show the comparisdty efith B, regularized
t, and SAM when FDR is controlled at 0.0bs and regularized perform well. TheB statistic is less
powerful when the treatment effect is small but recovers quickly when the effect increases. SAM identifies
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Fig. 7. Comparison betweehRs, B, SAM, and regularized (R-t) using data-based resampling simulations. Data
were simulated according to model (4.9) where all parameters were drawn from the estimated values of the tumor
data set. The average number of true positives of 10 simulations identified by each test is @lgtiedV of the

residual variance componer@Vy, CV of the mouse variance component. A, nominal type | error is controlled at
0.05 for each gene. B, FDR is controlled at 0.05.

0

the smallest number of genes among the four statistics regardless of the size of the treatment effect. We
also performed a larger simulation with 1000 differential genes and 9000 constant genes. The successful
detection rates of the four tests are lower than those shown in Figure 7B but the relative comparison among
methods is the same.

5. DIsScUssION

Variance components in microarray experiments display varying degrees of heterogeneity, across
experiments, across variance components, and across genes within a variance component (Cui and
Churchill, 2003a). Assumptions of variance heterogeneity lead to the use of individual gene-specific tests,
such ad1, but these tests can suffer from low power due to small sample size per gene. On the other hand,
the assumption of common variance leads to powerful tests, sugh bst at the risk of generating false
positive and negative in the event that the common variance assumption is not true. A better approach is
to use the tests based on variance estimates that are gene specific but combine information across many
genes. We gain power by utilizing more information in the data but can also avoid bias.

In this paper, we apply James—Stein shrinkage to improve estimated variance components in a linear
mixed model. We show that the resulting test statiBégerforms better than the standard gene-specific
test F1 and that the improvement in successful detection rate can be substantial when the degrees
of freedom are small, a common situation for microarray experiments. Compared with some other
information-sharing statistics, such 8s SAM, and regularized, Fs has comparable or better power
in identifying differentially expressed genes. MoreovEg is more general as it can be applied to a
wider range of experimental designs, i.e. not restricted to two-sample comparisons with single variance
component.

By taking a shrinkage approach to improve variance estimation, we make only weak prior assumptions
about the distribution of the variance components. Although the James—Stein shrinkage estimator was
developed in the context of a normal model, it is the sampling distribution of the logarithm of the variance
estimators, not the values of the variance themselves, that are assumed to be normal. Parametric Empirical
Bayes methods require explicit distributional assumption on the true variances. In some simple settings,
such as estimating a normal mean which has a normal prior, the Empirical Bayes approach and the
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shrinkage approach lead to exactly the same estimator (Efron and Morris, 1973). But in this setting,
the Empirical Bayes approach is complicated (Wright and Simon, 2003). Our proposed stgistias
an explicit expression and is computationally simple.

In summary, we have proposed a variation on the general mixed model testing strategy using shrinkage
estimates of variance components to construct test statistics that are powerful and robust in respect to
variance heterogeneity in gene expression data.

Supplemental tables, software and data sets cited in this paper are availabte at/www. jax.
org/staff/churchill/labsite/pubs/index.html.
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