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Abstract

We present an improved three-step pipeline for the stereo

matching problem and introduce multiple novelties at each

stage. We propose a new highway network architecture

for computing the matching cost at each possible dispar-

ity, based on multilevel weighted residual shortcuts, trained

with a hybrid loss that supports multilevel comparison of

image patches. A novel post-processing step is then intro-

duced, which employs a second deep convolutional neural

network for pooling global information from multiple dis-

parities. This network outputs both the image disparity

map, which replaces the conventional “winner takes all”

strategy, and a confidence in the prediction. The confidence

score is achieved by training the network with a new tech-

nique that we call the reflective loss. Lastly, the learned

confidence is employed in order to better detect outliers in

the refinement step. The proposed pipeline achieves state of

the art accuracy on the largest and most competitive stereo

benchmarks, and the learned confidence is shown to outper-

form all existing alternatives.

1. Introduction

The modern pipeline for stereo matching, which

achieves state of the art results on the most challenging

benchmarks, contains a deep neural network for comput-

ing the matching score, and a few heuristic post-processing

steps. The main goal of these processing steps is to incorpo-

rate spatial information in order to verify the plausibility of

the proposed matching and to selectively smooth and refine

the obtained results.

We present methods that improve the deep matching

network by incorporating, among other improvements, a

variant of highway networks [32] with a multilevel skip-

connection structure and a gating signal that is fixed at a

constant. Analysis of this architecture is provided, and ex-

perimental results are shown to support its advantages over

many existing Residual Network alternatives [16, 6, 18, 32].

To compute the disparity image, a second network is in-

troduced to replace the “winner takes all” (WTA) rule, and

is currently applied to obtain both the predicted disparity at

each position and the confidence in this result as a separate

output.

A confidence measure for the disparity prediction has

been the subject of considerable study. More generally, as-

sessing the correctness of a CNN output is also a subject

that is under magnifying glass. We propose a new training

signal, which we call the reflective loss. The labels used

for this loss are changing dynamically, based on the current

success of the CNN on each training sample. In our case,

when the disparity predicted by the network for a given ex-

ample during training is correct, the target confidence label

of the sample is 1, otherwise 0.

The obtained confidence is a crucial part of the subse-

quent refinement step of the pipeline, in which we detect

incorrect disparity predictions and replace them by interpo-

lating neighboring pixels.

The contributions of this paper are: (i) In Sec. 3 we

present a new highway network architecture for patch

matching including multilevel constant highway gating and

scaling layers that control the receptive field of the network.

(ii) This network is trained with a new hybrid loss (Sec. 3.3)

for better use of the description-decision network architec-

ture. (iii) Computing the disparity image by using a CNN

instead of the previously suggested WTA strategy, as de-

picted in Sec. 4. (iv) In Sec. 4.2 we introduce a novel way

to measure the correctness of the output of a CNN via re-

flective learning that outperforms other techniques in the lit-

erature for assessing confidence in stereo matching. (v) In

Sec. 5 we show how to use this confidence score for bet-

ter outlier detection and correction in the refinement pro-

cess. (vi) Achieving the best results on the KITTI 2012 and

KITTI 2015 stereo data sets with an error rates of 2.27 and

3.42, respectively, improving the 2.43 and 3.89 of the MC-
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CNN[36] baseline. (vii) Improving the fast architecture to

achieve the best results on the KITTI 2012 and KITTI 2015

for methods that run under 5 seconds, with an error rate of

2.63 and 3.78 on these benchmarks, in comparison to the

2.82 and 4.62 baseline. (viii) An open source code1 for eas-

ily using and modifying the pipeline.

2. Related work

Computing the matching cost via convolutional neural

networks was firstly introduced by Zbontar and LeCun [35,

36]. This pipeline was subsequently modified: [21] reduced

the computation time with only minor reduction to the ac-

curacy; object knowledge and semantic segmentation were

used to create object-category specific disparity propos-

als [10], and [20] applied adaptive smoothness constraints

using texture and edge information for a dense stereo esti-

mation.

Residual Networks [16] (ResNets) are neural networks

with skip connections. These networks, which are a spe-

cific case of Highway Networks [32], present state of the

art results in the most competitive computer vision tasks.

However, this is not true with stereo matching. The success

of residual networks was attributed to the ability to train

very deep networks when employing skip connections [12].

A complementary view is presented by [33], who attribute

it to the power of ensembles and present an unraveled view

of ResNets that depicts ResNets as an ensemble of networks

that share weights.

Very recently, a concurrent tech report proposed a dif-

ferent residual network architecture for the task of image

classification, which, like us, employs multilevel skip con-

nection [18]. The two main differences from our architec-

ture are: First, by introducing the learned λ coefficient as

a constant highway gate, we allow the network to adjust

the contribution of the added connections. Second, we add

scaling layers to control the receptive field of the network.

Another very recent report entangles the network with more

residual connections to create densely connected residual

networks [6]. We evaluated these architectures and found

them (Sec. 6) to be inferior to the proposed solution, which

is much simpler. We also found that adding our constant

skip connections contributes significantly to the above ar-

chitectures.

Estimating the confidence of stereo matches in order to

interpolate correspondences is one of the most popular re-

search topics in stereo vision [8, 27, 9, 26]. A very recent

work [31] was the first to leverage a CNN for stereo confi-

dence measure. They incorporated conventional confidence

features to the input of the CNN and trained the network

especially for this purpose. Our global disparity network is

different in four major ways: (i) We apply a single network

1The code is available at https://github.com/amitshaked/resmatch

to obtain both the confidence score and a much more accu-

rate disparity map. (ii) Our confidence indication is trained

with reflective loss that depends not only on the ground truth

but also on predicted labels that change dynamically during

training. (iii) While [31] uses the confidence to improve the

performance of the Semi-Global Matching step [13], we in-

corporate it in the outlier detection step during the disparity

image refinement process. (iv) Our solution is not bounded

to stereo matching and our reflective loss is a novel and gen-

eral technique for evaluating confidence.

3. Computing the matching cost

The first step in a modern stereo matching pipeline is

based on computing a matching cost at each position for

every disparity under consideration. Starting from two im-

ages, left and right, for every position p in the left image

and disparity d, we compute the matching cost between a

patch centered around p = (x, y) in the left image and a

patch centered around pd = (x − d, y) in the right. The

cost is expected to be low for patches centered around the

same 3D location and high otherwise. Similar to previous

work, we employ a convolutional neural network, trained

on pairs of small image patches where the true disparity is

known.

The novel architecture of our network is presented in

Fig. 1. It consists of a composition of the following compo-

nents: A constant highway residual block denoted as inner-

λ-residual, which consists of two convolutional layers with

3× 3 filters, 1× 1 padding in order to preserve spatial size,

and ReLU non-linearities, followed by a constant highway

skip-connection (see Sec. 3.2). Two such blocks, followed

by another constant highway connection, are combined into

a second level of residual blocks denoted as outer-λ-residual

blocks. Between outer-λ-residual blocks another convolu-

tional layer, denoted as scaling layer, with 3 × 3 filters and

no padding is added, followed by ReLU non-linearity, in or-

der to increase the receptive field of the network. Note that

since both inner- and outer-residual blocks maintain the spa-

tial size, the scaling layers are the only factor on the size of

the receptive field. For example, a network with 5 scaling

layers of 3×3 filters has a 11×11 receptive field, no matter

how many inner and outer blocks are being used. In this

work, we use a description network that is composed of 5

outer blocks, separated by scaling layers.

In order to compare two image patches, two identical

(tied weights) description networks are employed and two

descriptors vectors are extracted – ul and ur. During train-

ing, two pathways are then used to compare the patches and

produce a matching cost. The first pathway, denoted as the

decision sub-network, is a fully connected network, which

concatenates the two representations into a single vector

[u⊤
l , u

⊤
r ]

⊤ and is trained via the cross-entropy loss. The

second pathway directly employs the hinge loss criterion to
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Figure 1: Our λ-ResMatch architecture of the matching cost network. (a) Outer λ-residual block that consists of two inner

λ-residual blocks. (b) The core description network that consists of five outer λ-residual blocks, separated by scaling layers

with ReLU activations. (c) Two-tower structure with tied parameters [11]. The description network outputs the two feature

maps, which are the input for two pathways: the first concatenates and passes them to the fully-connected decision network

which is trained via the cross-entropy loss, and the second directly employs a Hinge loss criterion to the dot product of the

representations.

the dot product of the two representations u⊤
l ur.

When computing the matching cost of two full size im-

ages, the description tensors of the two images, UL and UR,

can be computed in a single forward pass in the description

sub-network. Then, for every disparity d under considera-

tion, the matching cost C(p, d) is computed by propagat-

ing UL(p) and UR(pd) in the decision sub-network. This

requires a total of disparity max forward passes, which

makes it the main factor on the methods runtime.

In order to have the flexibility to choose between accu-

racy and speed, one applies the full decision network, or

uses only the dot-product based similarity score. In both

cases, the added term, which is not used in run time, im-

proves the performance of the matching network. This ef-

fect and the trade-off is further studied in Sec. 6.

In the following subsections, we elaborate on each of the

structural novelties we introduce to matching networks.

3.1. Inner­Outer Residual blocks

Using a deeper network does not always mean a better

prediction. For example, Zbontar and LeCun [36] report

that five layer and six layer architectures for the description

network are outperformed by the proposed four-layer archi-

tecture. Inspired by [16], we want to deepen the network by

adding skip connections and employ residual blocks. How-

ever, residual networks are ineffective for matching.

In our experience, stacking residual blocks (with or with-

out constant highway skip connections as described below),

leads to great difficulties in making the network converge to

a meaningful solution and does not improve the quality of

the prediction. We, therefore, suggest further deepening our

network by introducing a second level of skip connections

and adopting another connection every two inner residual

blocks. In addition, spatial pooling layers followed by batch

normalization are discarded. They are potentially harmful

for matching networks since they reduce the resolution and

sensitivity. They are, therefore, incompatible with the stereo

matching task.

We believe that the added capacity of the proposed archi-

tecture improves the results both quantitatively and qualita-

tively since they allow us to employ new sources of infor-

mation that are inaccessible in the conventional architec-

tures. For example, our network benefits from the use of

color, while the literature reports no added benefit from it

(see Supplementary).

3.2. Constant highway skip connection

In order to further improve the effectiveness of the resid-

ual shortcuts, we introduce a constant highway skip connec-

tion, in which the identity shortcut of the residual building

block is weighted by a learned factor λ, and formally de-

fined as:

yi+1 = fi+1(yi) + λi+1 · yi (1)

In the highway network, the two terms fi+1(yi) and yi are

weighted by ti+1 and 1 − ti+1 respectively, where ti+1 is

a function of yi. In our case, the weighting collapses to a

learned parameter λi+1.

To further understand the effect of the multilevel con-

stant highway connections, we unravel it. Consider an outer

block that consists of two inner blocks as shown in Fig. 1(a).
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The formulation of the output y2 is recursive by its nature

and can be unrolled as:

y2 = λ0y0 + λ2 · y1 + f2(y1)

= λ0y0 + λ2

(

λ1y0 + f1(y0)
)

+ f2
(

λ1y0 + f1(y0)
)

= (λ0 + λ2λ1)y0 + λ2f1(y0) + f2
(

λ1y0 + f1(y0)
)

(2)

One can see that the added parameter λ2 controls the flow

of f1, λ1 balances the input to f2 and the outer parameter

λ0 controls y0. That way, when the residual network is in-

terpenetrated as an ensemble of the possible paths [33], the

learned parameters determine the contribution of each path

to the ensemble. For example, we observed that they adopt

much smaller values in the upper layers of the network to

reduce the effect of the shortest paths and bias the network

toward deeper representations (see Supplementary).

All λ-parameters are initialized with the value of one in

order to emulate vanilla residual connections, and are then

adjusted by back-propagation, as usual. No regularization

is applied to this term.

3.3. Hybrid loss

While further processing the output of the two descrip-

tor networks improves the ability to discriminate between

matching and non-matching patches, it comes at the cost of

making the descriptors less explicit. We, therefore, suggest

combining two losses together: a hinge loss over the dot

product s = u⊤
l ur and the cross-entropy over the decision

network’s output v. Similar to [36] we consider pairs of

examples, matching and non-matching, centered around the

same image position, and the compound loss is given by:

loss = α ·XEnt(v+, v−) + (1−α) ·Hinge(s+, s−) (3)

where Hinge(s+, s−) = max(0,m + s− − s+) and

XEnt(v+, v−) = −(log(v−) + log(1− v+)
)

Note that the dot product produces similarity score.

Therefore, when choosing the fast pathway the output is

multiplied by −1 to represent the matching cost. A mar-

gin of m = 0.2 for the hinge loss and α = 0.8 are used

throughout the experiments.

4. Computing the disparity image

The computation of the matching cost results in a map

C(p, d) of size H × W × disparity max in which the

matching cost of every position is computed for every pos-

sible disparity. The goal of the next stage is to output the

disparity image D(p) of size H × W with the predicted

disparity in every position.

Modern stereo matching pipelines use few post-

processing steps, and then apply the “winner takes all” strat-

egy: D(p) = argmind C(p, d). The post processing is

required, since even with improved matching networks, in

order to be competitive, the method needs to incorporate

information from the neighboring pixels that is beyond a

simple maximization. Following Mei et al [23], we begin

by applying cross-based cost aggregation [17] (CBCA) to

combine information from neighboring pixels by averaging

the cost with respect to depth discontinuities, continue with

semi global matching [13] (SGM) to enforce smoothness

constraints on the disparity image, and then apply few more

iterations of the cost aggregation, as described in [36].

While CBCA and SGM contribute greatly to the success

of modern stereo matching pipelines, they are limited and

error especially in challenging situations where machine

learning can help. These situations include occluded or

distorted areas, highly reflective or sparse texture regions

and illumination changes. Fig. 2(b) presents one example

in which these schemes fail to correct the matching in re-

flective regions such as car glass.

To overcome this challenge, while one can follow the

footsteps of Guney and Geiger[10] and use object-category

specific disparity proposals, this requires explicit object

knowledge and semantic segmentation, which we choose to

avoid for two reasons: the introduced computational com-

plexity, and the loss of generality associated with specific

objects models. Instead, we propose to apply a learned

criterion and replace the WTA approach. We construct a

global disparity convolutional neural network and propa-

gate the entire matching cost map to output the disparity

at each position. An example of how this method can help

in challenging situations is presented in Fig. 2(c). This net-

work is trained with a novel reflective loss to simultane-

ously produce a confidence measure in the network’s dis-

parity prediction, to be used later in the refinement process,

as described in Sec 5.

4.1. Global Disparity Network

The data set used to train the disparity network is com-

posed of processed images from the matching cost network

training data. For each pair of left and right images, we

compute the full image size matching cost at each possible

disparity as described in Sec. 3, and then apply CBCA and

SGM. Note that the matching network returns independent

probability estimations, and that post CBCA and SGM, the

values can become negative and not bounded to a specific

range. We, therefore, apply Tanh in order to bring the val-

ues to the fixed range [−1, 1]. The target (ground truth)

value for each matching costs patch is the disparity of its

central pixel. Sampling 9 × 9 patches this way, we collect

25 (17) million training examples for training the KITTI

2012 (2015) disparity network.

The patches are fed to the global disparity network

(GDN) as described in Fig. 3. Two layers are considered

as target layers: FC3, that outputs the vector y, which is the
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(a) Reference image

(b) Prediction errors before applying the disparity network

(c) Prediction errors after applying the disparity network

Figure 2: An example taken from KITTI 2015 data set

showing the effect of the disparity network. Observe the

errors in the predicted car glass disparities before and after

applying the disparity network.

score yi for every disparity di, and FC5, which depicts the

confidence c in the prediction. The loss function on FC3,

inspired by [21], is a weighted cross-entropy loss that cen-

ters the mass around the ground truth yGT , with respect to

the error metric of the data set:

loss(y, yGT ) = −
∑

yi

p(yi, y
GT ) · log

e−yi

∑

j e
yj

(4)

where p(yi, y
GT ) is a smooth target distribution, centered

around the ground-truth yGT . For the KITTI data set, we

are interested in 3-pixel error metric and use:

p(yi, y
GT ) =















λ1 if |yi − yGT | ≤ 1
λ2 if 1 < |yi − yGT | ≤ 2
λ3 if 2 < |yi − yGT | ≤ 3
0 otherwise

(5)

The main difference from [21] is that we allow real-valued

yGT and the loss is modified accordingly. The values used

in our work are λ1 = 0.65, λ2 = 0.25, λ3 = 0.1. A model

that outputs the disparity instead of the scores vector was

also tested with different regression losses and found to be

inferior to our model.

4.2. Reflective confidence

In order to obtain a confidence measure from the dis-

parity network, we simultaneously train a binary classifier

consists of two fully-connected layers via the binary cross-

entropy loss. The training labels for this loss reflect the cor-

rectness of the score vector y, which is also the input to

the classifier, as shown in Fig 3. After each forward pass,

argmaxi yi is compared to the ground truth disparity yGT .

If the prediction is correct, i.e differs from the ground truth

by less than one pixel, the sample is considered positive,

otherwise negative. Note that although the KITTI data set

requires an error less than three pixels, we notice that train-

ing the confidence allowing a three pixel error (and not just

one) causes too many positive samples and is not effective.

This loss is unconventional in the sense that the target

value depends not only on the ground truth, but also on the

activations of the network. To our knowledge, this is the

first loss in the literature that is based on labels that change

dynamically during training in this way.

This reflective loss is combined with the weighted cross-

entropy loss of FC3 using 15:85 weights, respectively. We

employ mini-batches of size 128 and a momentum of 0.9.

The network was trained for 15 epochs, starting with a

learning rate of 0.003 and decimating it on the 12th epoch.

5. Disparity refinement

While the global disparity network greatly contributes

to the quality of the predicted disparity image, it can still

suffer from known issues such as depth discontinuities and

outlier pixel predictions. The goal of the third and last stage

is to refine the disparity image and output the final predic-

tion. Similar to [36, 23], we employ a three-step refinement

process: (i) left-right consistency check for outlier pixel de-

tection and interpolation, in which we incorporate our confi-

dence score; (ii) sub-pixel enhancement in order to increase

the image resolution, and (iii) median and bilateral filter-

ing for smoothing the disparity image without blurring the

edges. The second and third steps are performed exactly as

in [36]. The first step is described below.

Denote CL(p) as the confidence score at position p of

the prediction d = DL(p) obtained by using the left im-

age as a reference, and CR(pd) the confidence score at the

correspondent position p− d of the prediction DR(pd),
obtained by using the right image as a reference. We label

each position p applying these rules in turn:

correct if |d−DR(pd)| ≤ τ1 or
(

CL(p) ≥ τ2 and CL(p)− CR(pd) ≥ τ3
)

mismatch if there exist d̂ 6= d s.t. |d̂−DR(pd̂)| ≤ τ4

occlusion otherwise

That means a pixel is labeled as correct if the two predic-
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Figure 3: The global disparity network model for representing disparity patches. ReLU units are used as activation functions

following every convolution and fully connected layer. Two layers are considered as target layers: FC3 on which LogSoftMax

is applied to determine the predicted disparities, and FC5 which depicts the confidence measure. Cross-entropy loss for the

prediction and binary cross-entropy loss for the confidence measure are combined together using 85:15 weights, respectively.

tions DL(p) and DR(pd) match, or they don’t match but

the reference prediction D(p) = DL(p) is much more reli-

able. When neither holds, a pixel is considered mismatch

if there exist another disparity d̂ such that if it were the

prediction, it would have matched DR(pd̂). If none ex-

ist, the pixel is considered as occlusion. Throughout our

experiments, we use τ1 = 1 the maximum left-right predic-

tion disagreement, τ2 = 0.7 the minimum confidence score

in the prediction, τ3 = 0.1 the minimum left-right confi-

dence gap, and τ4 = 1 the maximum left-right prediction

disagreement for other possible disparities.

For pixels labeled as mismatch, we want the disparity

value to come from the reliable neighboring pixels and so

take the median of the nearest neighbors labeled as correct

from 16 different directions. The value of outliers p marked

as occlusion most likely come from the background. There-

fore, the interpolation is done by moving left until the first

correct pixel and use its value.

6. Experimental results

We evaluated our pipeline on the three largest and most

competitive stereo data sets: KITTI 2012, KITTI 2015 and

Middlebury. Comparisons with the state of the art and com-

ponents analysis are provided.

6.1. Benchmark results

KITTI stereo data sets: The KITTI 2012 [7] data set

contains 194 training and 195 testing images, and the KITTI

2015 [24] data set contains 200 training and 200 testing im-

ages. The error is measured as the percentage of pixels for

which the true disparity and the predicted disparity differ

by more than three pixels. The leader-boards of the two

data sets are presented in Tab. 1 and Tab. 2. The reported

error rates were obtained by submitting the generated dis-

parity maps of the testing images to the online evaluation

servers. Our accurate method is ranked first on both bench-

marks and improved the error rate of the mc-cnn [36] base-

Method Set. NOC ALL runtime

1 Ours 2.91 3.42 48s

2 Displets v2[10] S 3.09 3.43 265s

3 PCBP[25] 3.17 3.61 68s

4 Ours-fast 3.29 3.78 2.8s

5 MC-CNN-acrt[36] 3.33 3.89 67s

Table 1: The highest ranking methods on KITTI 2015 due

to November 2016, ordered by the error rate for all pixels.

The S in the settings indicates the use of semantic segmenta-

tion. Very recently, two more anonymous submissions were

submitted to the online evaluation server. CNNF+SGM

achieves an error rate of 3.60 for all pixels and 3.04 for

non-occluded pixels, and SN that achieves 3.66 and 3.09,

respectively. We do not know whether or not they use seg-

mentation.

line from 2.43 to 2.27 on KITTI 2012 and from 3.89 to 3.42

on KITTI 2015.

Our fast architecture was also submitted to the online

servers, and a comparison between methods that run under

five seconds is presented in Tab. 3 and Tab. 4.

The runtime was measured by testing our pipeline on the

NVIDIA Titan X (pascal) graphics processor unit.

Middlebury stereo data set: The Middlebury stereo

data set contains five separate works in the years 2001 [3],

2003 [30], 2005 [28], 2006 [14], and 2014 [4]. The im-

age pairs are indoor scenes given in a full, half and quar-

ter resolution, and rectified perfectly using precise 2D cor-

respondences for perfect rectification, or imperfectly using

standard calibration procedures. We trained our network on

half resolution, due to the limited size of our GPU’s mem-

ory card, on pairs rectified imperfectly, since only two out of

fifteen image pairs in the test set are rectified perfectly. The

error is measured for pixel disparity predictions that differ

from the ground truth by more than two pixels, and is al-
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Method Set NOC ALL runtime

1 Ours 2.27 3.40 48s

2 PCBP[25] 2.36 3.45 68s

3 Displets v2[10] S 2.37 3.09 265s

4 MC-CNN-acrt[36] 2.43 3.63 67s

5 cfusion[25] MV 2.46 2.69 70s

Table 2: The highest ranking methods on KITTI 2012 due to

November 2016, ordered by the error rate for non occluded

pixels. The S in the settings indicates the use of seman-

tic segmentation and MV the use of more than two tempo-

rally adjacent images. The very recent anonymous submis-

sions mentioned in Tab. 1 were also submitted here, where

CNNF+SGM achieves 2.28 error rate for non occluded pix-

els and 3.48 for all pixels, and SN 2.29 and 3.50 respec-

tively.

Rank Method NOC ALL runtime

1 Ours-fast 3.29 3.78 2.8s

2 DispNetC[22] 4.05 4.34 0.06s

3 Content-CNN[21] 4.00 4.54 1s

4 MC-CNN-fast[36] ? 4.62 0.8s

5 SGM+CNN(anon) 4.36 5.04 2s

Table 3: The highest ranking methods on KITTI 2015 for

methods under 5 seconds due to November 2016.

Rank Method NOC ALL runtime

1 Ours-fast 2.63 3.68 2.8s

2 MC-CNN-fast[36] 2.82 ? 0.7s

3 Content-CNN[21] 3.07 4.29 0.7s

4 Deep Embed[2] 3.10 4.24 3s

5 SPS-st[34] 3.39 4.41 2s

Table 4: The highest ranking methods on KITTI 2012 for

methods under 5 seconds due to November 2016.

ways computed on full resolution. Hence, when training on

half resolution, we are interested in less than one pixel error.

The data set contains 60 image pairs for which the ground

truth is available, but unlike KITTI, the maximal disparity

is not fixed and varies between 30 and 800. Our global dis-

parity network feature input plane is the size of the maximal

disparity, and since there are only a few pairs for each pos-

sible value, there was not enough data to train the network

at a fixed size. We have, therefore, tested our λ-ResMatch

architecture using the post processing of [36]. As can be

seen in Tab 5, the fast architecture introduces substantial

improvement, lowering the validation error from 9.87 re-

ported on [36] to 9.08. We were not able to reproduce the

KITTI 2012 KITTI 2015 MB

Matching Processing fast act fast act fast

content [21] - 6.61 - 7.23 - -

content +HW [32] - 6.70 - 7.01 - -

content +RN [16] - 6.96 - 7.05 - -

content +λ-RM - 5.60 - 6.94 - -

mc-cnn [36] SM (w.t.a) [36] 3.02 2.61 3.99 3.25 9.87

λ-RM SM (w.t.a) [36] 2.73 2.45 3.69 3.15 9.08

λ-RM SM+GDN 2.66 2.40 3.18 2.87 –

λ-RM SM+GDN+CR 2.65 2.38 3.16 2.83 –

Table 5: Comparison between [21], [36] and λ-ResMatch

pipelines, also when augmenting with our λ-ResMatch, or

with alternative residual architectures: Highway [32] or

ResNets [16]. The validation error is computed by split-

ting the KITTI and Middlebury stereo data sets into 80-20

train validation.

7.91 error rate reported for the accurate architecture. Train-

ing MC-CNN [36] with its published code obtained 8.18

validation error that we improved with λ-ResMatch to 8.01.

6.2. Components Analysis

In order to demonstrate the effectiveness of our novel-

ties in each stage of the pipeline, we gradually tested them

on the above data sets. Table 5 reports the contribution of

adding each stage. One can see that on the KITTI 2015

data set, the greatest improvement comes from employing

the global disparity network, while on KITTI 2012 it is the

novel constant highway network. This is due to the fact

that vehicles in motion are densely labeled in KITTI 2015

and car glass is included in the evaluation, and, therefore,

reflective regions are more common.

λ-ResMatch architecture: We have tested our accu-

rate architecture for the matching cost network thoroughly

and compared it to five different architectures: (i) the base-

line for our work MC-CNN [36], (ii) conventional high-

way network, (iii) ResNets [16], (iv) the concurrent work of

Densely Connected Residual network [6], and (v) the con-

current work of Residual networks of residual networks [18]

which also suggests to add another level of residual connec-

tion. In early experiments, we used the published code of

these architectures as our matching cost network, but the

results were far from competitive. We then removed the

batch normalization and pooling layers and replaced them

with our scaling layers, except the work of densely con-

nected in which we used their original “transition layers”.

These results are reported in Tab. 6, at the first row of every

architecture. The second row contains further experiments

of other architecture variants where we replaced the vanilla

residual shortcuts with our constant highway skip connec-

tions. The results show that the multilevel constant connec-

tions contribute in almost all cases. To let the comparison

be as direct as possible, we tested the accurate architecture
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Inner Outer KITTI KITTI MB

shortcut shortcut 2012 2015

mc-cnn[36] - - 2.84 3.53 9.73

Highway[32] - - 2.81 3.51 9.77

ResNet[16] A - 2.82 3.71 10.03

λ variant λ - 2.81 3.55 10.01

DC[6] A - 3.86 5.02 11.13

λ variant λ - 3.42 4.43 11.07

RoR[18] A C 2.86 3.52 9.68

λ variant λ λ· C 2.84 3.53 9.95

Variants of A A 2.78 3.49 9.63

our method λ A 2.75 3.42 9.83

without the A λ 2.78 3.46 10.3

hybrid loss λ λ 2.73 3.42 9.60

λ-ResMatch λ λ 2.71 3.35 9.53

Table 6: The validation errors of different architectures and

their λ-variants, when trained on 20% of the data. “A”

shortcut is the identity connection, “C” is 1X1-convolution

and “λ” is our constant highway skip-connection.

with and without hybrid loss training. One can see that the

λ-ResMatch architecture achieves the best accuracy in the

task of stereo matching on all data sets, and that the added

hybrid loss further improves the results.

Reflective confidence: To evaluate the performance of

our new method for confidence indication, we compared

it to the six most widely used techniques, using the AUC

measure. These techniques belong to different categories

according to which aspects of stereo cost estimation they

take into account [15]. The notations we use to describe

the different methods are: d1(p) = D(p) = DL(p) the

predicted disparity at position p when using the left image

as a reference, c1(p) = CSGM (p, d1) the matching cost

of the prediction disparity (before applying the global dis-

parity network), c2 the second smallest local minimum, and

prob(p) = CGDN (p, d1) = maxd CGDN (p, d) the proba-

bility of the predicted disparity.

The evaluated methods are (i) Matching Score Measure

(MSM)[5] which assigns higher confidence to lower costs:

CMSM = −c1. (ii) The probability (PROB) of the pre-

diction after applying the disparity network Cprob = prob,

(iii) The Curvature (CUR) of the matching cost CCUR =
−2 · c(d1)+ c(d1−1)+ c(d1+1) that is widely used in the

literature, (iv) the Peak Ratio (PKRN)[15] is the ratio be-

tween the second smallest cost and the smallest CPKRN =
c2
c1

, (v) the Negative Entropy Measure (NEM)[29] p(d) =
e−c1

∑
d
e−c(d) , CNEM = −

∑

d p(d) log p(d) that takes into

consideration the entire cost curvature, and (vi) the Left

Right Difference (LRD)[15] which utilizes both left-right

consistency check and the margin between the two smallest

minima of the cost: CLRD = c2−c1
|c1−min cR(x−d1,y,dR)| .

We tested the above measures on 40 random validation

Ref MSM Prob CUR PKRN NEM LRD

KITTI2012 0.943 0.928 0.648 0.772 0.930 0.919 0.833

KITTI2015 0.894 0.850 0.758 0.832 0.853 0.864 0.812

Table 7: The average AUC over the entire validation set for

different confidence measures.

Figure 4: AUC of confidence measures on 40 random vali-

dation images from the KITTI 2015 stereo data set.

images from the KITTI 2012 and the KITTI 2015 data sets.

The results for KITTI 2015 presented in Fig 4, and the

very similar results for KITTI 2012 that can be found in the

supplementary, show that our reflective confidence measure

performs better on almost every image. The average score

over the entire data set in Tab. 7 shows that it is also the

overall most accurate in both data sets.

7. Discussion

It is interesting to note that unlike the most recent state

of the art results, we make no use of semantic segmenta-

tion. Semantic segmentation employs additional training

data that is not used by our method and requires an addi-

tional runtime. Nevertheless, it would be interesting to see

whether the benefits of semantic segmentation are comple-

mentary to the increased performance we obtain, in which

case, our results could be further improved with little effort.

The need for specific residual architectures for matching

probably goes hand in hand with the favorable performance

of moderate depth networks, the detrimental effect of batch

normalization, and other unique practices in this domain.

More study is required in order to understand what sets this

problem apart from categorization problems.

We believe that the reflective loss can be extended to

other problems and applications such as the gradual learn-

ing schemes self-paced [19] and curriculum [1] learning.
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