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Abstract 

Hole drilling or contour milling for the large and complex workpieces such as automobile panels and aircraft fuse-

lages makes a high combined demand on machining accuracy, stiffness and workspace of machining equipment. 

Therefore, a 5-DOF (degrees of freedom) parallel kinematic machine (PKM) with redundant constraints is proposed. 

Based on the kinematics analysis of the parallel mechanism using intermediate variables, the kinematics problems 

of the PKM are solved through equivalent kinematics model. The structural stiffness matrix method is adopted to 

model the stiffness of the parallel mechanism of the PKM, where the stiffness of each joint and branch component 

is obtained by stiffness formula and finite element analysis. And the stiffness model of the parallel mechanism is 

improved by correction coefficient matrix, each element of which is constructed as a polynomial function of three 

independent end variables of the parallel mechanism. The terminal stiffness matrices obtained by simulation result 

are used to determine the coefficients of polynomial function by least square fitting to describe the correction coef-

ficient over the workspace of the parallel mechanism quantitatively. The experiment results prove that the modifica-

tion method can greatly improve the stiffness model of the parallel mechanism. To enhance the machining accuracy 

of the PKM, the proposed kinematics model and the improved stiffness model are utilized to optimize the working 

stiffness of parallel machine by searching the best relative position of parallel machine and workpiece. A plate work-

piece taken as example is examined in the case study section, which demonstrates the effectiveness of optimization 

method.

Keywords: PKM, 5-DOF, Equivalent kinematics model, Intermediate variables, Stiffness correction coefficient, Optimal 

working stiffness
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1 Introduction
�e parallel kinematic machine (PKM) is composed of 

parallel mechanism and series mechanism, which have 

both the characteristics of these two types of mechanism. 

�erefore, compared with the conventional industrial 

robot, the PKM has more advantages in material removal 

applications, which require higher stiffness and precision of 

machining equipment in a relatively large workspace than 

other applications, such as feeding, welding and printing. 

Recently, there are increasing practical applications of 

PKMs in the industries of automobile and aviation [1–3].

Many PKMs with different structures have been pro-

posed, among which the most representative ones are 

Tricept mechanism and Exechon mechanism [4, 5]. Bi 

et al. [6, 7] proposed an Exechon parallel mechanism with 

redundant constraints, which had three DOF, and pre-

sented a method of solving the kinematics problem for 

Exechon parallel mechanism by using intermediate vari-

ables to establish the relation between joint variables and 

end variables. Zhang et al. [8, 9] proposed a Tricept par-

allel mechanism, the stiffness of which was enhanced by 

a passive chain, and used various intelligent algorithms 

to evaluate the positive kinematics solution of a 3-DOF 
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parallel mechanism with redundant actuation and found 

that v-SVM was the most efficient algorithm.

As an effective way to evaluate the performance of 

PKM, stiffness analysis is usually separated into the anal-

ysis on terminal stiffness of parallel mechanism and joint 

stiffness of series mechanism [10–13]. Bi et al. [14] used 

finite element method and structural stiffness matrix to 

solve the terminal stiffness of Exechon parallel mecha-

nism. Dumas [15] introduced a general method for cal-

culating the stiffness of any 6-DOF series robot by fining 

out its joint stiffness.

Based on the stiffness analysis, the stiffness model can 

be transferred into computer algorithms for applica-

tions on mechanical design and machining. Fan et al. [16] 

related to the design of PKM for optimal static stiffness 

using computer simulation. He et al. [17] proposed a new 

stiffness orientation method, which was used to optimize 

milling path and improve stability of the robotic mill-

ing system. Li et al. [18] used robot stiffness model and 

dynamic milling force model to optimize the cutter path 

and clamping position in robotic milling process.

In this paper, a new type of redundant constrained 

PKM is proposed, and its kinematics and stiffness are 

studied in detail. Section 2 analyzes the structure of the 

PKM. Section  3 introduces its kinematics solution. �e 

improved stiffness model of the parallel mechanism is 

established in Section 4. �e following section shows the 

effectiveness of the improved stiffness model and analy-

sis on the stiffness of the parallel mechanism. Section 6 

develops an application of the kinematics model and 

the improved stiffness model to improve the machining 

accuracy of the PKM. In Section 7, some findings of this 

research are concluded.

2  Structure of PKM
As shown in Figure  1, the PKM with redundant con-

straints is composed of a base, a fixed platform, three 

limbs, a moving platform, two rotary joints and a spin-

dle. Limb1 and limb2 are two symmetrical linear motion 

chains, which are connected with the fixed platform at 

one end via a Hooke hinge, and with the moving plat-

form at the other end via a rotary pair. �e third linear 

motion chain limb3 is connected to the fixed platform 

in the form of a rotary pair and to the moving platform 

via a spherical pair. �e two rotary joints are mounted in 

series on the moving platform of the parallel mechanism, 

the rotary axes of which are perpendicular to each other. 

�e spindle is mounted on the end of the PKM via a 

flange, which serves as the end-effector to drive the mill-

ing cutter.

As an important feature of this new PKM, the para-

metric model of the parallel mechanism is shown in 

Figure 2, where B1, B2 and B3 are the junctions of limb1, 

limb2, limb3 and fixed platform, respectively; A1, A2 

and A3 are the junctions of limb1, limb2, limb3 and 

moving platform, respectively. �e joint variables qi 

(i=1,. . . , 3) of three branches represent the lengths of 

lines A1B1, A2B2 and A3B3. �A1A2A3 and �B1B2B3 are 

isosceles triangles, where sides B1B3 and A1A3 are equal 

to sides B2B3 and A2A3, respectively. Points A and B 

are the midpoints of sides A1A2 and B1B2. �e lengths 

of sides BB2, BB3, AA2 and AA3 are b1, b2, a1 and a2, 

respectively. Coordinate systems B-xyz and A-uvw are 

established on the fixed platform and the moving plat-

form, respectively. For coordinate system B-xyz, the 

direction of x axis points from point B to point B3 and 

Figure 1 Structure of the PKM

Figure 2 Parametric model of the parallel mechanism
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the direction of y axis points from point B to point B2. 

For coordinate system A-uvw, the direction of u axis 

points from point A to point A3 and the direction of v 

axis points from point A to point A2. Besides the vec-

tors u11 and u21 coincide with the rotary axes of the first 

joint of Hooke hinges of limb1 and limb2, respectively; 

the vectors u12 and u22 coincide with the rotary axes of 

the second joint of Hooke hinges of limb1 and limb2, 

respectively; the vectors r1, r2 and r3 coincide with the 

rotary axes of rotary joints of limb1, limb2 and limb3, 

respectively.

�e Kutzbach Grubler formula are commonly used to 

calculate the degrees of freedom (DOF) of the mecha-

nism and it is expressed as

where M is the number of DOF of the mechanism; n is 

the number of the rigid bodies in the mechanism, g is the 

number of joints; and fi is the number of DOF for joint i.

Without consideration of the redundancy of constraints 

in the proposed the parallel mechanism, its DOF is equal 

to 1 according to Eq. (1), which should be adjusted to 3 

by analyzing the extra DOF caused by redundant con-

straints [6, 7]. And then DOF of the whole PKM amounts 

to 5, counting 2 DOF of two rotary joints mounted on the 

end of the parallel mechanism.

�ere are only 6 passive pairs in the proposed PKM 

less than those in Tricept mechanism, which is beneficial 

to the decrease in motion error caused by passive pairs 

clearance and the practical application of PKM [19]. �e 

kinematic pairs in Exechon mechanism which connect 

limb3 to the fixed platform and to the moving platform 

are interchanged in the proposed PKM, which makes it 

possible to use one-piece precision spherical pair instead 

of three rotation pairs and thus avoid the assembly error.

3  Kinematics Modeling
In this paper, the kinematics analysis of the PKM is car-

ried out by solving the equivalent kinematics model. 

Here, the parallel mechanism is regarded as a joint of the 

PKM and then it is equivalent to a 3-joint series mecha-

nism. �e first step of kinematics analysis is to establish 

DH model for the 3-joint series mechanism equivalent to 

the PKM. And then the kinematics analysis of the parallel 

mechanism of the PKM is discussed in detail to obtain 

the kinematics model of the PKM.

3.1  Kinematics Model of the PKM

�e position and pose matrix Th and Tp of the PKM 

and the parallel mechanism in coordinate system B-xyz 

are solved by xyz and zyx Euler angles respectively. 

(1)M = 6(n − g − 1) +

g∑

1

fi,

�e position and pose variation matrices Ts1i and Ts2i 

(i  =  1,2) of two series joints can be obtained by estab-

lishing standard DH model according to the parameters 

listed in Table 1, where β and α are the amounts of rota-

tion around z and x axes, respectively; d and b are the 

amounts of movement along z and x axes, respectively 

[20].

And then position and pose matrix Th of the PKM 

can be calculated by Eq. (2) according to the principle of 

coordinate transformation:

By multiplying the inverse matrix of Ts22 and Ts21 on 

both sides of Eq. (2), the joint variables of the series 

mechanism and the end variables of the parallel mecha-

nism can be obtained by letting the corresponding ele-

ments of matrix on both sides of the equation equal to 

each other. According to the end variables of the parallel 

mechanism, the inverse kinematics of the parallel mecha-

nism is analyzed. And thus, the inverse kinematics solu-

tion of the PKM is achieved.

3.2  Kinematics Model of the Parallel Mechanism

To solve the kinematics model of the PKM, the kinemat-

ics model of the parallel mechanism is solved by the 

method of intermediate variables to determine its posi-

tion and pose matrix Tp.

�rough the analysis on the structure of the paral-

lel mechanism, it can be known that the direction of u 

axis of coordinate system A-uvw is perpendicular to the 

directions of y axis of coordinate system B-xyz and vector 

A1B1 ; the direction of y axis of coordinate system B-xyz 

is perpendicular to the direction of vector A3B3 . Accord-

ing to these constraint conditions, Eq. (3) is shown as 

below, which indicates that the workspace of the parallel 

mechanism is a plane:

As shown in Figure 3, three intermediate variables are 

designed here through the analysis of the parallel mecha-

nism, which include distance L between points A and B, 

(2)Th = TpT s11T s12T s21T s22.

(3)







ϕ = 0,

Y0 = 0,

X0 = Z0 × tan θ .

Table 1 Parameters of DH model of two series joints

β (°) d (mm) α (°) b (mm)

1 0 0 0 − 20

2 β1 417 90 − 35

3 β2 0 − 90 − 150

4 0 190 0 0
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angle E between lines A1A2 and B1B2, angle G between 

planes A1B1B2 and B1B2B3. �us, the kinematics problem 

of the parallel mechanism can be solved by relating end 

variables to intermediate variables and also intermediate 

variables to joint variables, respectively.

Eq. (4) can be derived according to the geometric rela-

tions shown in Figure 3, where line AB is perpendicular 

to lines B1B2 and AA3. And the values of L and E can be 

obtained by the equation.

Eq. (5) can be obtained from the geometric relations 

shown in Figure 3:

Based on the above analysis, the values of intermediate 

variables L, E, G can be obtained according to the values 

of joint variables q1, q2 and q3. And then the values of 

end variables θ , σ , and Z0 can be evaluated according to 

the values of L, E and G via Eq. (6). �us, the kinematics 

problem of the parallel mechanism is solved.

(4)

{

(L + a1 × sin E)2 + (b1 − a1 × cosE)
2

= q2
1
,

(L − a1 × sin E)2 + (b1 − a1 × cosE)
2

= q2
2
.

(5)















G1 = a tan(a2/L),

N =

�

L2 + a2
2
,

G2 = a cos((N 2
+ b2

2
− q2

3
)/(2 × N × b2)),

G = G1 + G2.

4  Kinetostatic Modeling
�e stiffness modeling of PKM includes the stiffness 

modeling of parallel mechanism and series mechanism. 

�e paper focus on the stiffness modeling of parallel 

mechanism, because the stiffness of series mechanism 

has little impact on the stiffness of PKM [14]. And PKM 

has different forms of series mechanism for different 

applications, it is not meaningful to study the stiffness 

modeling of series mechanism [21]. As for the stiffness 

modeling of parallel mechanism, the stiffness modeling 

method for Exechon parallel mechanism is adopted to 

achieve the basic stiffness model [5, 21, 22]. In order to 

improve the accuracy of the basic stiffness model, cor-

rection coefficient matrix of the basic stiffness model 

is solved by regression analysis method to optimize the 

stiffness model and get the improved stiffness model.

4.1  Basic Sti�ness Model of Parallel Mechanism

�e terminal stiffness matrix of the parallel mechanism 

is affected by its three branches, each of which includes 

three parts. Limb1 and limb2 include Hooke hinge U, 

prismatic joint P and rotary joint R. Limb3 includes 

rotary joint R, prismatic joint P and spherical joint S. 

�erefore, it can be determined by analyzing the stiffness 

of three branches. As shown in Figure  4, the connect-

ing joints in the parallel mechanism are replaced by the 

springs with equivalent stiffness. And the prismatic joint 

is regarded as a cantilever beam which is composed by a 

lead screw connected in parallel with a connecting rod. 

�e fixed platform and the moving platform are regarded 

as rigid bodies. �us, the terminal stiffness matrix of the 

parallel mechanism Kp can be obtained without consid-

ering the influence of frictional force and damping force 

between the connecting members.

(6)







θ =
π

2
− G,

σ = −E,

Z0 = L × sinG.

Figure 3 Schematic diagram of the parallel mechanism

Figure 4 Simplified diagram of branch structure
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To solve the stiffness of the parallel mechanism, the 

stiffness of each joint is solved firstly by finite element 

analysis and structural stiffness analysis [21], which can 

be expressed as Eq. (7):

where subscript l represents the link of each branch; sub-

script r represents the rotary joint R; subscript u represents 

the Hooke hinge U; subscript s represents the spherical 

joint S; subscript i represents the number of each branch. 

And the values of krui, kuui, kuvi, ksu, ksv and ksw are zero.

Based on the above analysis of joint stiffness of each 

branch, the terminal stiffness matrix of the parallel mech-

anism can be obtained by the structural stiffness matrix. 

�e parallel mechanism can be divided into four units, 

the nodes of which are points A1, A2, A3 and A. Hence, 

the structural stiffness matrix K of the parallel mecha-

nism can be expressed as Eq. (8):

where K ii(i = 1, . . . , 4) is the stiffness of four nodes; 

K 4i(i = 1, . . . , 3) is the coupling stiffness relating the 

first three nodes to the fourth node; K i4(i = 1, . . . , 3) is 

the coupling stiffness relating the fourth node to the first 

three nodes.

�e elements K ii(i = 1, . . . , 4) in structural stiffness 

matrix K are acquired through the analysis on force rela-

tion and displacement relation between the first three 

nodes A1, A2, A3 and the fourth node A, and the deforma-

tion compatibility conditions of the parallel mechanism. 

�e specific steps for solving Kii is not listed here, which 

can be found by the stiffness modeling of Exechon PKM 

[5, 21, 22].

It can be found that structural stiffness matrix K is 

non-diagonal, which indicates that the terminal stiffness 

of the parallel mechanism is effected by the stiffnesses of 

three branches. �e terminal stiffness matrix Kp of the 

parallel mechanism in coordinate system A-uvw can be 

determined by flexibility matrix [21]:

(7)











K li = diag[ klxi klyi klzi klui klvi klwi ], i = 1, . . . , 3,
K ri = diag[ krxi kryi krzi 0 krvi krwi ], i = 1, . . . , 3,
K ui = diag[ kuxi kuyi kuzi 0 0 kuwi ], i = 1, 2,
K s = diag[ ksx ksy ksz 0 0 0 ],

(8)K =







K 11 0 0 K 14

0 K 22 0 K 24

0 0 K 33 K34

K 41 K 42 K 43 K 44






,

where Tp0 = diag[Rp0, Rp0], Rp0 represents the first 3 × 3 

block of matrix Tp, K−1
6×6 represents the last 6 × 6 block of 

the inverse matrix of K.

4.2  Improved Sti�ness Model of the Parallel Mechanism

In order to improve the stiffness model of the parallel 

mechanism, the correction coefficient matrix is intro-

duced, each element of which is a function of three inde-

pendent end variables of the parallel mechanism. Based 

on the stiffness data of simulation result, the polynomial 

function is constructed to fit the correction coefficient of 

stiffness calculated by stiffness model, which establishes 

the basis of the improved stiffness model. �e construc-

tion method is presented in detail and verified by its good 

effect on improving the precision of stiffness model.

Because the diagonal elements in the stiffness matrix 

are the principle stiffness values, the non-diagonal ele-

ments are the coupled stiffness values, so we only ana-

lyze the principle stiffness values for content limitation 

[21]. �e correction coefficient matrix Cp is defined as a 

diagonal matrix shown in Eq. (10) accordingly. �en the 

improved stiffness matrix Km can be acquired by calcu-

lating the dot product of correction coefficient matrix Cp 

and stiffness matrix Kp obtained by stiffness model.

Each diagonal element cpii(i = 1, . . . , 6) of correction 

coefficient matrix Cp can be expressed by a polynomial 

function of three independent end variables θ , σ and Z0 of 

the parallel mechanism.

�e terminal stiffness matrix Ka of the parallel mecha-

nism obtained by stiffness measurement experiment [23] 

or finite element analysis [24] is regarded as the improve-

ment goal of stiffness model. In order to acquire the 

stiffness matrices of the parallel mechanism at a series 

of position and poses, an orthogonal experiment is con-

ducted. �e orthogonal experiment is designed by using 

the first three columns of L49(78) orthogonal experiment 

table to divide three variables θ , σ and Z0 into seven 

levels, which can reduce the complexity of the experi-

ment and also characterize the workspace of the parallel 

(9)K p = T
′

p0

[

K
−1
6×6

]

−1
Tp0,

(10)

{

Km = Cp. × K p,
Cp = diag[cp11, cp22, cp33, cp44, cp55, cp66].

Table 2 Levels of three independent end variables

1 2 3 4 5 6 7

θ (°) − 15 − 10 − 5 0 5 10 15

σ (°) − 15 − 10 − 5 0 5 10 15

Z0 (mm) 500 510 520 530 540 550 560
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mechanism. To cover the workspace as much as possible, 

the levels of each variable can be distributed as Table 2.

According to the orthogonal experiment, the termi-

nal stiffness matrix of the parallel mechanism Kp and Ka 

at each position and pose of orthogonal experiment can 

be acquired by stiffness model and finite element analy-

sis, respectively. And then correction coefficient matrix 

Cp at these position and poses can be acquired by dividing 

each element of matrix Ka by the corresponding element 

of matrix Kp, which can be used as the raw data of correc-

tion coefficient to be fitted. �e relation between correct 

coefficients cpii and three independent end variables are 

discussed through the qualitative analysis of experimen-

tal results firstly, and then the mathematical expression of 

each correction coefficient cpii with respect to three inde-

pendent end variables is acquired by using the least squares 

method to fit the raw data of correction coefficient.

Correction coefficient cp11 is taken as an example to 

analyze its functional relation with three independent 

end variables. �e data of orthogonal experiment can 

be divided into 7 groups by the values of variable θ from 

−  15° to 15°. Figure  5(a) shows the mean of correction 

coefficient cp11 of each group, which indicates an approxi-

mate quadratic function relation between correction 

coefficient cp11 and variable θ . Similarly, a quadratic func-

tion relation between correction coefficient cp11 and vari-

able σ and a linear function relation between correction 

coefficient cp11 and variable Z0 are found through analyz-

ing Figure 5(b) and (c).

Similarly, through the analysis on the rest main diago-

nal elements of correction coefficient matrix, it can be 

found that all the diagonal elements cpii have the quad-

ratic function relation with variables θ and σ , and the 

linear relation with variable Z0. �erefore, the vector of 

correction coefficients cpii can be expressed by Eq. (11):

In each group of orthogonal experiment, one vari-

able keeps unchanged while the other two variables are 

assigned seven different combinations of values. When 

the combination of values of the rest two variables has 

an obvious effect on the relation between the correction 

coefficient and the first variable, the correction coef-

ficient cannot change with the first variable in a certain 

regular pattern. �erefore, the combined items of any 

two variables in Eq. (11), which have less influence on the 

(11)











[cp11, cp22, cp33, cp44 , cp55, cp66]
′ = [e1, e2, e3, e4 , e5, e6]

′. × ep′ ,

ei = [ei1, ei2, ei3, ei4 , ei5, ei6, ei7, ei8, ei9], i = 1, . . . , 6,

ep = [θ2, θ , σ 2, σ ,Z0, θ × σ , θ × Z0, σ × Z0, 1],

correction coefficient, can be ignored to simplify the fit-

ting function.

�e relation between correction coefficient cp11 and 

three independent end variables θ , σ , Z0 are shown in Fig-

ure 6. �e data with the same marker in each subFigure 

come from the experiments with the same value of the 

corresponding variable. It can be seen from Figure  6(a) 

and (c) that correction coefficient cp11 changes regularly 

with variables θ and Z0. But the relation between correc-

tion coefficient cp11 and variable σ shown in Figure 6(b) 

Figure 5 The tendency of correction coefficient cp11
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is irregular. �erefore, the combined items of variables 

θ and σ , variables σ and Z0 play a very small role in the 

fitting function, which can be negligible by setting their 

coefficient to zero. �e combined items of variables θ and 

Z0 has such a marked impact on correction coefficient 

cp11 that it cannot be ignored in Eq. (11).

Similarly, through the analysis on the other main diag-

onal elements of the correction coefficient matrix, it can 

be found that the influence of combined items of varia-

bles θ and σ and variables θ and Z0 are much smaller than 

that of variables σ and Z0 on correction coefficients cp22, 

cp33 and cp66. And the combined item of variables θ and 

Z0 plays a more important role on the fitting function of 

correction coefficient cp44 than that of variables θ and σ , 

and variables σ and Z0. �e combined items of any two 

variables all have little impact on correction coefficient 

cp55.

�erefore, the fitting functions of correction coeffi-

cients cpii(i = 1, · · · , 6) about three independent end 

variables can be expressed as Eq. (12):

�e coefficients eij(i = 1, . . . , 6, j = 1, . . . , 9) in the 

above equation can be evaluated by least square fit-

ting based on 49 sets data of orthogonal simulation 

experiments. �us, the quantitative functional relations 

between six main diagonal elements of correction coef-

ficient matrix and three end variables are obtained, which 

are used to correct the linear stiffnesses and torsional 

stiffnesses along x, y and z axes in coordinate system 

A-uvw of the end of the parallel mechanism at different 

position and poses.

5  Veri�cation and Analysis on Sti�ness 
of the Parallel Mechanism

As an important performance of PKM, stiffness should be 

fixed attention on especially in mechanical machining. In 

order to further apply the improved stiffness model, it is 

necessary to verify the accuracy and also study the stiff-

ness distribution of parallel mechanism in the workspace.

5.1  Veri�cation of Improved Sti�ness Model

�e verification of improved stiffness model includes two 

parts: the effectiveness of fitting correction coefficient in 

improving the accuracy of basic stiffness model; the accu-

racy of improved stiffness model by comparing with the 

stiffness obtained by ANSYS finite element simulation.

To evaluate the effect of correction coefficient matrix 

on the improvement of basic stiffness model of the par-

allel mechanism, verification experiment is conducted 

at more position and poses to achieve richer experiment 

data for regression analysis. Besides the 49 position and 

(12)


























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






















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=




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0

0

0

0

e68
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
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
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×


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poses of orthogonal experiment, the additional 25 posi-

tion and poses of the parallel mechanism which cover its 

workspace as widely as possible are selected to calculate 

the end stiffness matrices Kp, Km and Ka by the basic stiff-

ness model, the improved stiffness model and finite ele-

ment analysis, respectively.

Correction effect matrix ME, defined as Eq. (13), is 

introduced to evaluate the correction effect of correc-

tion coefficients cpii(i = 1, . . . , 6) quantitatively. If the 

values of meii are positive, it indicates that the stiffness 

from improved stiffness model is closer to the stiffness 

obtained by ANSYS finite simulation than the one from 

basic stiffness model. �e larger the value of meii is, the 

better the correction effect of correction coefficient.

where kii
p, kii

m, kii
a are the main diagonal elements of stiff-

ness matrices obtained by basic stiffness model, improved 

stiffness model and finite element analysis, respectively.

As listed in Table 3, if correction effect meii ranges from 

0.9 to 1, the correction effect of correction coefficients cpii 

is satisfactory; if correction effect meii ranges from 0.6 to 

0.9, the correction effect is acceptable; if correction effect 

meii ranges from 0 to 0.6, the correction effect is poor.

According to Table 3, the minimum of correction effect 

meii is equal to 0.32, which proves that the modification 

method can effectively decrease the differnce between the 

stiffness obtained by basic stiffness model and finite ele-

ment analysis. By comparing the mean and distribution of 

correction effect meii in orthogonal experiment and verifi-

cation experiment, it can be seen that the correction effect 

in verification experiment is not as good as that in orthogo-

nal experiment. It is due to the relatively small number of 

(13)

{

ME = diag[me11,me22,me33,me44,me55,me66],

meii = 1 − (kmii − kaii)/(k
p
ii − kaii), i = 1, . . . , 6,

position and poses selected in orthogonal experiment to 

characterize the entire workspace of the parallel mecha-

nism resulting in the relatively poor fitting precision of cor-

rection coefficient at the position and poses in verification 

experiment. �erefore, the correction effect can be obvi-

ously enhanced by appropriately increasing the number of 

level in orthogonal experiment to obtain the high-precision 

fitting correction coefficient.

In order to verify the accuracy of improved stiffness 

model, the relative errors of main diagonal elements of 

improved stiffness model reii(i = 1, . . . , 6) are defined as 

Eq. (14). �e closer to zero the values of reii is, the more 

accurate the improved stiffness model.

�e values of reii can be solved through the analysis 

on experimental data obtained by orthogonal experi-

ment and verification experiment, which are shown in 

Table 4. �e means of relative errors are all smaller than 

(14)reii =
|km
ii

− k
a
ii
|

k
a
ii

× 100%, i = 1, . . . , 6.

Table 3 Correction e�ect me
ii
 of correction coe�cient cpii on main diagonal elements of sti�ness matrix

Correction e�ect Mean Stdev Max Min Distribution

[0.9, 1] [0.6, 0.9) [0, 0.6)

Orthogonal experiment me11 0.96 0.01 0.98 0.95 49 0 0

me22 0.90 0.12 1.00 0.53 36 12 1

me33 0.98 0.01 1.00 0.97 49 0 0

me44 1.00 0.00 1.00 1.00 49 0 0

me55 1.00 0.00 1.00 1.00 49 0 0

me66 1.00 0.00 1.00 0.99 49 0 0

Verification experiment me11 0.83 0.12 1.00 0.37 3 20 2

me22 0.69 0.16 0.91 0.32 1 18 6

me33 0.68 0.07 0.73 0.44 0 23 2

me44 0.99 0.00 1.00 0.99 25 0 0

me55 0.99 0.00 0.99 0.98 25 0 0

me66 0.93 0.02 0.98 0.86 24 1 0

Table 4 Statistics on  relative errors re
ii
 of  main diagonal 

elements of sti�ness matrix

Mean Stdev Max Min

re11 2.33 0.85 4.57 0.45

re22 8.82 1.83 14.33 0.82

re33 5.67 0.81 12.99 0.20

re44 1.11 0.05 2.59 0.02

re55 2.35 0.04 4.32 0.19

re66 1.10 0.04 1.62 0.06
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10%, which indicates that the improved stiffness model 

is accurate enough to describe the stiffness of the par-

allel mechanism in the mass. �rough the analysis on 

standard deviation, maximum and minimum of reii, the 

deviation of re22 is relatively large. It indicates that the 

improved stiffness model doesn’t describe the liner stiff-

ness along y axis in coordinate system A-uvw as effec-

tively as others.

5.2  Analysis on the Sti�ness of the Parallel Mechanism

To visualize the stiffness of the parallel mechanism, the 

distribution of stiffness over its workspace is calculated 

based on the improved stiffness model and then plotted.

It can be seen from the kinematics analysis that the 

workspace of the parallel mechanism is a plane Y0=0, 

which is xz plane of coordinate system B-xyz. �e distri-

bution of the main diagonal elements of stiffness matrix 

over the workspace is shown in Figure 7.

By comparing the distribution of stiffness km11, km22 and 

km33, it can be seen that the linear stiffness of the par-

allel mechanism is relatively large in area X0 ∈ [− 400, 

−  200], which is located at the extreme position and 

pose of workspace. When X0 keeps fixed, the linear 

stiffness of the parallel mechanism decreases with the 

increment of Z0. �e value of km33 is about one order of 

magnitude higher than that of km22 and km33, which indi-

cates that the linear stiffness along z axis of coordinate 

system A-uvw of the parallel mechanism is the highest 

and the linear stiffnesses along x and y axes are similar 

in value.

By comparing the distribution of stiffness km44, km55 and 

km66, it can be seen that the values of km44 and km55 are large 

in area X0 ∈ [200, 400] and the value of km66 is large in 

area X0 ∈ [−  400, −  200], which are all located at the 

extreme position and poses of workspace. As shown 

in Figure  7, the linear stiffnesses of the parallel mech-

anism is much better than its rotational stiffnesses so 

that the parallel mechanism can sustain greater forces 

in the directions of x, y and z axes of coordinate system 

A-uvw rather than moments around x, y and z axes.

In the application of PKM in machining, the work-

ing stiffness in which the stiffness of parallel mecha-

nism plays a key role is usually taken into account for 

the good machining quality. �erefore, according to 

the characteristics of stiffness distribution, the working 

stiffness of PKM in its application can be improved by 

optimizing its working position and pose. For example, 

in the robotic machining, the flange or fixture used to 

install the motorized spindle into the end of robot can 

be designed to ensure that the main force is applied 

along z axis of parallel mechanism, which can reduce 

the influence of deformation on the machining preci-

sion [25]. Moreover, the external axis also can help to 

optimize the machining position and pose of PKM for 

higher working stiffness. �e following section presents 

the application of improved stiffness model to optimize 

the relative position of the workpiece and the PKM via 

external axis for the improvement of working stiffness 

of the PKM.

6  Application of Improved Sti�ness Model
In order to expand the workspace of PKM for the 

machining of large-scale workpieces, the additional 

machinery are usually integrated into the machining sys-

tem as the external axes of PKM [26–31]. However, there 

are few researches on the control and planning of move-

ment of additional machinery which is generally deter-

mined by manual work according to the on-site teaching. 

�erefore, based on the improved stiffness model and 

the kinematics model, a way to find the most appropri-

ate position of the additional machinery which makes the 

best working stiffness of the PKM is proposed.

6.1  Optimization Algorithm on Position of Additional 

Machinery

�e external axes of PKM can be the linear axis along 

x, y or z axis of world coordinate system, the rotation 

axis around x, y or z axis of world coordinate system or 

any combination of them. However, too many external 

axes will increase the cost and difficulties in control of 

machining application. �erefore, the common addi-

tional machinery used to expand the workspace of PKM 

include: the cross slide table [26–28] providing two exter-

nal linear axes; both the positioner [29, 30] and the slew-

ing platform [31] providing an external rotation axis.

Taking the cross slide as an example, the most appro-

priate position of the additional machinery which makes 

the best working stiffness of the PKM can be determined 

by the following steps.

Figure 7 Distribution of stiffness over the workspace of the parallel 

mechanism
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(1) Establish four coordinate systems.

 �e coordinate system B-xyz is established on the fixed 

platform of the parallel mechanism; the world coor-

dinate system W-xyz is established on the ground as 

intermediate transformation coordinate system; the 

cross slide table coordinate system C-xyz is estab-

lished for controlling the motion of cross slide table; 

the worktable coordinate system U-xyz is established 

for describing the trajectory to be machined.

(2) Determine the object to be optimized.

 According to the form of external axes, the object to 

be optimized is defined as dx and dy, which are the 

x and y coordinate values of the origin of workta-

ble coordinate system U-xyz in world coordinate 

system W-xyz. According to the travel of cross slide 

table, dx and dy should be chosen in the allowable 

range [dxmin, dxmax] and [dymin, dymax].

(3) Get the position and pose matrices of machining 

trajectory in coordinate system B-xyz.

 �e position and pose matrices of machining trajec-

tory are usually given in coordinate system U-xyz as 

Ti
U-xyz according to the three-dimensional model of 

workpiece, which should be transformed into coor-

dinate system B-xyz through Eq. (15): 

where i is the number of machining position and 

poses; TW

B
 is the transformation matrix of coordi-

nate system B-xyz relative to the world coordinate 

system W-xyz; TW
U (dx, dy) is the transformation 

matrix of the worktable coordinate system U-xyz 

relative to the world coordinate system W-xyz.

(4) Establish the optimization model.

 Based on the position and pose matrices Ti
B-xyz(dx, 

dy) obtained in step (3), the stiffness matrices of 

the parallel mechanism at each position and pose 

can be obtained by the improved stiffness model 

obtained in Section 4.2 and then the objective func-

tion can be constructed as Eq. (16): 

where Kpi

(

T
B−xyz
i (dx, dy)

)

 is the sum of the princi-

ple stiffness values of the parallel mechanism of 

machining position and pose i.

(5) Search the optimal solution.

(15)

T
B−xyz
i (dx, dy) = (TW

B )−1
× T

W
U (dx, dy) × T

U−xyz
i ,

(16)

Min(C(dx, dy)) =

n
∑

i=1

1

Kpi

(

T
B−xyz
i (dx, dy)

) ,

Figure 8 Optimization of working stiffness of the PKM in hole 

machining

 (5.1) Randomly generate a population including 

multiple candidate solutions (dx, dy) within 

their corresponding allowance range.

 (5.2) Calculate the position and pose matrices  

Ti
B-xyz(dx, dy) by Eq. (14).

 (5.3) Determine whether solution (dx, dy) is the fea-

sible solution by whether position and pose 

matrices Ti
B-xyz(dx, dy) are all in the workspace 

of the PKM.

 (5.4) Calculate the value of objective function by Eq. 

(15) for each candidate solution (dx, dy). Keep 

the minimum value of objective function as the 

current optimal value and the corresponding 

solution (dx, dy) as the current optimal solution.

 (5.5) Determine whether the number of iterations 

reaches the set value. If the set value is not reached, 

generate the next generation of group consisting of 

multiple candidate solutions (dx, dy) by crossover 

and mutation operation, and then return to step 

(5.2). If the set value is reached, end the optimiza-

tion and then output the optimal solution (dx, dy).

To facilitate the motion control of cross slide table, it is 

necessary to convert the optimal position (dx, dy) of workta-

ble in world coordinate system W-xyz into that in cross slide 

table coordinate system C-xyz by coordinate transformation.

6.2  Case Study

To verify the optimization method mentioned above, the 

plate workpiece shown in Figure 8 is taken as an example 

where there are two series of holes distributed in areas A 

and B respectively. �e cross slide table drives the work-

piece to let every series of holes to be machined enter 

the workspace of the PKM one after another. �us, the 

movement of cross slide table is optimized to determine 

the relative position of the workpiece and the PKM which 

always makes the best working stiffness.

In the optimization, the values of objective function 

C (dx, dy) for areas A and B keep decreasing, which 
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indicates the growing working stiffness for machining 

two series of holes. �e improvement of working stiffness 

is described by the ratio Q of the difference between the 

optimized stiffness and the maximum stiffness to the dif-

ference between the lowest stiffness recorded during the 

optimization and the maximum stiffness. If the value of 

ratio Q is less than 1, the working stiffness is improved. 

�e smaller the value of ratio Q, the better the optimiza-

tion efficiency. �e average value of ratio Q of six stiff-

nesses of machining trajectory in area A is 0.73 and that 

in area B is 0.74, which indicates that the optimized 

working stiffness comes much closer to the maximum 

stiffness. �e best positions (dx, dy) of the worktable 

for machining two series of holes in areas A and B are 

(− 176, 300) and (− 152, − 136), respectively. �e great 

difference between two best positions demonstrates the 

significance of the proposed optimization method in 

enhancing the working stiffness of the PKM.

By comparing the data listed in Table  5 with the dis-

tribution of stiffness over the workspace of the parallel 

mechanism shown in Figure 7, it can be seen that all the 

values of stiffness km11, km22, km33, km44 and km66 after optimizing 

the position of worktable concentrate near their maximal 

values except the values of stiffness km55.

When the worktable locates at position (−  176, 300) 

in W-xyz, the PKM drills holes 1 to 4 with the position 

variable X0 of the parallel mechanism ranging from − 400 

to − 200, where other than stiffness km55 almost any other 

stiffness is relatively high. It conforms with the finding 

discussed in Section 5.2. When the worktable locates at 

position (− 152, − 136) in W-xyz, the PKM drills holes 5 

to 7 with the position variable X0 of the parallel mecha-

nism ranging from −  210 to −  150, where the stiffness 

is a little poorer. It is because the disturbed holes 5 to 7 

cannot be drilled together by the PKM with the position 

variable X0 of the parallel mechanism ranging from − 400 

to −  200. �erefore, a series of suboptimal positions of 

the parallel mechanism is found, which ensures the best 

working stiffness of the PKM when the series of holes in 

area B is machined without moving the worktable.

�is case proves that the proposed optimization 

method can solve the best position of worktable to obtain 

the highest working stiffness of the parallel mechanism 

and also ensure the machining trajectory in the work-

space of the PKM.

7  Conclusions
�e studies on kinematics modeling and stiffness mod-

eling of a novel 5-DOF PKM with redundant constraints 

are conducted, which promote the theoretical research 

method of the PKM and improve its application in the 

field of machining.

(1) To facilitate the study on kinematics, the parallel 

mechanism of the PKM is transformed into a joint 

of the PKM, which is equivalent to a 3-joint series 

mechanism. �e kinematics analysis is firstly car-

ried out on the equivalent series mechanism of the 

PKM and then on the parallel mechanism.

(2) Correction coefficient matrix is introduced to 

improve the basic stiffness model of the paral-

lel mechanism. Based on the data from orthogo-

nal simulation experiment, the qualitative relation 

between correction coefficients and three inde-

pendent end variables of the parallel mechanism 

is described by polynomial fitting function. �e 

results of verification experiment prove the effec-

tiveness of the modification method on improving 

the precision of main diagonal elements of stiffness 

matrix over the workspace of the parallel mecha-

nism.

(3) �rough the research on the application of kin-

ematic model and improved stiffness model of 

the parallel mechanism in the field of machin-

ing, the working stiffness of the PKM is optimized 

by searching the best relative position of the PKM 

and workpiece to be machined for improving the 

machining accuracy.

Table 5 Sti�ness and  position variables of  the  parallel mechanism for  drilling each hole when  the  worktable locates 

at the optimal position

No. of holes k
m

11

(107 N/m)
k
m

22

(107 N/m)
k
m

33

(108 N/m)
k
m

44

(105 N·m/rad)
k
m

55

(105 N·m/rad)
k
m

66

(105N·m/rad)
X0 (mm) Z0 (mm)

1 2.02 1.32 1.67 5.36 5.31 4.52 − 307.38 363.45

2 2.02 1.30 1.64 4.77 4.85 4.48 − 232.79 375.90

3 2.24 1.51 1.70 4.83 4.66 4.63 − 263.39 315.72

4 2.26 1.52 1.73 5.55 5.25 4.67 − 338.00 300.14

5 1.95 1.23 1.62 4.61 5.12 4.45 − 156.24 433.25

6 2.03 1.29 1.65 4.69 5.43 4.53 − 184.17 447.83

7 2.20 1.38 1.71 4.83 5.42 4.62 − 206.45 458.46



Page 12 of 12Shen et al. Chin. J. Mech. Eng.           (2020) 33:40 

Acknowledgements

The authors wish to acknowledge Shanghai Machine Tool Works Co., Ltd, for 

the help in checking CAD drawings and designing manufacturing process of 

the proposed PKM.

Authors’ Contributions

NS, JL conceived the idea of the study; LG, FY and ZY refined the ideas; LG per-

formed the theoretical derivation and simulation experiment. FY contributed 

to structure design. LG and ZY and wrote the manuscript; ZW assisted with 

data analyses. All authors read and approved the final manuscript.

Authors’ Information

Nanyan Shen is currently an associate professor/Ph.D at Shanghai Key Labora-

tory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering 

and Automation, Shanghai University, China. Her research interests include 

Intelligent Manufacturing and Robotics.

Liang Geng is currently a master candidate at School of Mechatronic Engi-

neering and Automation, Shanghai University, China.

Jing Li is currently an associate professor/Ph.D at Shanghai Key Laboratory 

of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and 

Automation, Shanghai University, China. Her research interests include intel-

ligent manufacturing and robotics.

Fei Ye is currently a master candidate at School of Mechatronic Engineering 

and Automation, Shanghai University, China.

Zhuang Yu is currently a master candidate at School of Mechatronic Engi-

neering and Automation, Shanghai University, China.

Zirui Wang is currently a master candidate at School of Mechatronic Engi-

neering and Automation, Shanghai University, China.

Funding

Not applicable.

Competing Interests

The authors declare no competing financial interests.

Author Details
1 Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shang-

hai University, Shanghai 200444, China. 2 School of Mechatronic Engineering 

and Automation, Shanghai University, Shanghai, China. 

Received: 5 June 2019   Revised: 8 January 2020   Accepted: 16 April 2020

References

 [1] T Tang, J Zhang, M Ceccarelli. Static performance analysis of an exechon-

like parallel kinematic machine. International Conference on Mechanism 

and Machine Science, Guangzhou, China, December 15–17, 2016: 

831-843.

 [2] J Zhang, Y G Li, T Huang. Dynamic modeling and eigenvalue evaluation 

of a 3-DOF PKM module. Chinese Journal of Mechanical Engineering, 2010, 

23(2): 166–173.

 [3] T F Tang, J Zhang. Conceptual design and kinetostatic analysis of a 

modular parallel kinematic machine-based hybrid machine tool for large 

aeronautic components. Robotics and Computer-Integrated Manufactur-

ing, 2019, 57: 1–16.

 [4] T Huang, X Y Zhao, D J Whitehouse. Stiffness estimation of a tripod-based 

PKM. Transactions on Robotics and Automation, 2002, 18(1): 50–58.

 [5] Y Q Zhao, Y Jin, J Zhang. Kinetostatic modeling and analysis of an 

Exechon PKM(PKM) module. Chinese Journal of Mechanical Engineering, 

2016, 29(1): 33–44.

 [6] Z M Bi, Y Jin. Kinematic modeling of Exechon PKM robot. Robotics and 

Computer-Integrated Manufacturing, 2011, 27: 186–193.

 [7] Z M Bi, Y Jin, R Gibson, et al. Kinematics of PKM Exechon. IEEE International 

Conference on Information and Automation, Zhuhai, Macau, China, June 

22-24, 2009: 201–206.

 [8] D Zhang, L Wang. Conceptual development of an enhanced tripod 

mechanism for machine tool. Robotics and Computer-Integrated Manufac-

turing, 2015, 21(4): 318–327.

 [9] D Zhang, J Lei. Kinematic analysis of a novel 3-DOF actuation redundant 

parallel manipulator using artificial intelligence approach. Robotics and 

Computer-Integrated Manufacturing, 2011, 27: 157–163.

 [10] K Nagai, Z Liu. A systematic approach to stiffness analysis of parallel 

mechanisms and its comparison with FEM. SICE Annual Conference, Taka-

matsu, Japan, September 17-20, 2007: 1543–1548.

 [11] H T Liu, T Huang, D G Chetwynd, et al. Stiffness modeling of parallel 

mechanisms at limb and joint/link. IEEE Transactions on Robotics, 2017, 

33(3): 734–741.

 [12] C Dong, H Liu, W Yue, et al. Stiffness modeling and analysis of a novel 

5-DOF hybrid robot. Mechanism and Machine Theory, 2018, 125(1): 80–93.

 [13] D Deblaise, X Hernot, P Maurine. A systematic analytical method for 

PKM stiffness matrix calculation. International Conference on Robotics and 

Automation IEEE, Orlando, FL, USA, May 15-19, 2006: 4213–4219.

 [14] Z M Bi. Kinetostatic modeling of Exechon PKM for stiffness analysis. The 

International Journal of Advanced Manufacturing Technology, 2014, 71(1-4): 

325–335.

 [15] C Dumas. Joint stiffness identification of six-revolute industrial serial 

robots. Robotics and Computer-Integrated Manufacturing, 2011, 27(4): 

881–888.

 [16] S Fan, S W Fan, W B Lan, et al. A new approach to enhance the stiffness of 

heavy-load parallel robots by means of the component selection. Robot-

ics and Computer-Integrated Manufacturing, 2020, 161(1): 101834.

 [17] F X He, Y Liu, K Liu. A chatter-free path optimization algorithm based on 

stiffness orientation method for robotic milling. The International Journal 

of Advanced Manufacturing Technology, 2018, 101(1): 2739–2750.

 [18] J Li, B Li, N Y Shen, et al. Effect of the cutter path and the workpiece 

clamping position on the stability of the robotic milling system. Interna-

tional Journal of Advanced Manufacturing Technology, 2017, 89(9-12): 1–15.

 [19] H Bo. Kinematically identical manipulators for the Exechon parallel 

manipulator and their comparison study. Mechanism and Machine Theory, 

2016, 103: 117–137.

 [20] C Faria, F Ferreira, W Erlhagen, et al. Position-based kinematics for 7-DoF 

serial manipulators with global configuration control, joint limit and 

singularity avoidance. Mechanism and Machine Theory, 2018, 121(1): 

317–334.

 [21] J Zhang, Y Q Zhao, Y Jin. Kinetostatic-model-based stiffness analysis of 

Exechon PKM. Robotics and Computer-Integrated Manufacturing, 2016, 

37(1): 208-220.

 [22] T F Tang, J Zhang. Conceptual design and comparative stiffness analysis 

of an Exechon-like parallel kinematic machine with lockable spherical 

joints. International Journal of Advanced Robotic Systems, 2017, 14(4): 1–13.

 [23] G Yu, L Wang, J Wu, et al. Stiffness modeling approach for a 3-DOF parallel 

manipulator with consideration of nonlinear joint stiffness. Mechanism 

and Machine Theory, 2018, 123(1): 137–152.

 [24] A Raoofian, A Taghvaeipour, A Kamali. On the stiffness analysis of robotic 

manipulators and calculation of stiffness indices. Mechanism and Machine 

Theory, 2018, 130(1): 382–402.

 [25] N Y Shen, Z M Guo, J Li, et al. A practical method of improving hole posi-

tion accuracy in the robotic drilling process. The International Journal of 

Advanced Manufacturing Technology, 2018, 96(5-8): 2973–2987.

 [26] F P Marcelo, L E Luis, P Hilde, et al. Analysis of a single-edge micro cutting 

process in a hybrid parallel-serial machine tool. International Journal of 

Mechanical Sciences, 2019, 151(1): 222–235.

 [27] D Xie, J Zhu, M Wang, et al. Motion performance analysis and control 

mode design for the cross slide. IOP Conference Series Materials Science 

and Engineering, 2017, 244: 1–8.

 [28] W J Tian, F W Yin, H T Liu, et al. Kinematic calibration of a 3-DOF spindle 

head using a double ball bar. Mechanism and Machine Theory, 2016, 102: 

167–178.

 [29] Y Liu, X Tian. Robot path planning with two-axis positioner for non-ideal 

sphere-pipe joint welding based on laser scanning. International Journal 

of Advanced Manufacturing Technology, 2019, 105(1-4): 1295–1310.

 [30] T Bonnemains, H Chanal, B C Bouzgarrou, et al. Dynamic model of an 

overconstrained PKM with compliances: The Tripteor X7. Robotics and 

Computer-Integrated Manufacturing, 2013, 29(1): 180–191.

 [31] S M Safavi, S S Mirian, R Abedinzadeh, et al. Use of PLC module to control 

a rotary table to cut spiral bevel gear with three-axis CNC milling. Inter-

national Journal of Advanced Manufacturing Technology, 2010, 49(9-12): 

1069–1077.


	Improved Stiffness Modeling for An Exechon-Like Parallel Kinematic Machine (PKM) and Its Application
	Abstract 
	1 Introduction
	2 Structure of PKM
	3 Kinematics Modeling
	3.1 Kinematics Model of the PKM
	3.2 Kinematics Model of the Parallel Mechanism

	4 Kinetostatic Modeling
	4.1 Basic Stiffness Model of Parallel Mechanism
	4.2 Improved Stiffness Model of the Parallel Mechanism

	5 Verification and Analysis on Stiffness of the Parallel Mechanism
	5.1 Verification of Improved Stiffness Model
	5.2 Analysis on the Stiffness of the Parallel Mechanism

	6 Application of Improved Stiffness Model
	6.1 Optimization Algorithm on Position of Additional Machinery
	6.2 Case Study

	7 Conclusions
	Acknowledgements
	References


