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Abstract: A variety of structure-adaptive filters are proposed to overcome the 

blurred effects of image structures caused by the classical Gaussian weighted mean 

filter. However, two major issues are needed to be dealt with carefully for 

structure-adaptive anisotropic filters. One is to properly construct the filter kernel 

and the other is to accurately estimate the orientation of the image structures. In 

this paper we propose to improve the structure-adaptive anisotropic filtering 

approach based on the nonlinear structure tensor (NLST) analysis technique. 

According to the anisotropism measurements of image structures, a new kernel 

construction method is designed to make the filter shape fine adapted to image 

features. Through the accurately estimated orientation of the image structures, the 

filter kernels are then properly aligned to perform the filtering process. 

Experimental results show that the proposed filter denoises the noisy images 

carefully and image features, such as corners and junctions are well preserved. 

Compared with some other known filters, the proposed filter obtains great 

improvements both in Mean Square Error (MSE) and visual quality. 

Keywords: Structure-adaptive anisotropic filter, non-linear structure tensor, image 

denoising, orientation estimation. 
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1. Introduction 

Computing denoised versions of noisy images have always been a desirable goal in 

the fields of computer vision and image processing. It is a useful pre-processing 

step that eases further analysis and processing of the considered image. Numerous 

filtering schemes have been proposed both in the image domain [1] and transformed 

domains [2]. Recently, anisotropic filtering schemes have especially drawn more 

attention by researchers in image processing communities, which enable us to 

reduce noise, at the same time, to keep important image structures neither 

delocalized nor blurred. Different approaches are proposed based on diffusion 

techniques [3, 5], structure-adaptive anisotropic filters [6, 7], and transform 

methods with anisotropic atoms [8, 11]. In this paper we focus on the anisotropic 

filtering methods in the image domain, which are inspired by a common idea: to 

penalize smoothing along the direction of maximum signal variation while it is 

favoured in the orthogonal one. By casting the problem in terms of a heat equation 

in anisotropic medium, P e r o n a and M a l i k  [3] presented a nonlinear diffusion 

scheme. When small iteration steps are used, it can also be considered as a useful 

tool for image noise filtering [12]. However, the classical anisotropic diffusion 

model of Perona and Malik is actually referred to as a non-homogeneous isotropic 

diffusion model [13], which only considers the gradient information of the image 

and limits the smoothing of an image near pixels with a large gradient magnitude. 

To address this problem, real anisotropic diffusion was proposed to allow the 

diffusion to be different along different directions defined by the local geometry of 

the image [4, 14]. Thus, diffusion across edges can be prevented while diffusion 

along edges is being allowed. Diffusion methods suffer from three major 

drawbacks: i) they slow down the filtering process in very noisy images, ii) they 

tend to distort sloping edges [6], iii) the diffused results depend on the diffusion 

time which is hard to be determined [15]. Another kind of a structure-adaptive 

anisotropic filtering scheme has been proposed by Yang and co-workers [6]. Instead 

of using local gradients as means of controlling the anisotropism of filters, the 

anisotropic Gaussian filter is controlled by local intensity orientation and an 

anisotropic measure. But the parameter estimations in Yang’s filtering scheme are 

non-optimal for images features, such as corners, junctions or edges. 

In Yang’s filtering scheme, there are two main operations during the 

anisotropic filtering process: constructing a proper Gaussian neighbourhood for 

signal estimation and estimating accurate orientation to align the anisotropic kernel 

along the local image structures. Either of them should be carefully done to obtain a 

high filtering quality. Yang and co-workers construct the filter kernel according to 

image local anisotropic features and their orientation estimation scheme is based on 

the fact that the power spectrum of an oriented pattern lies along a line through the 

origin in the Fourier domain, while the direction of the line is perpendicular to the 

dominant spatial orientation of the pattern. An improved version of Yang’s filtering 

scheme has been proposed [7]. In the improved filtering scheme, the main axis of 

the filter kernel is constructed in an exponential manner and the structure 

orientation is estimated by using the method of D o n a h u e and R o k h l i n [16], 
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where a gradient-type operator is calculated in a small neighbourhood and then 

average taken over a larger window to obtain the oriented pattern direction.  

Nowadays, the structure tensor is a very popular tool for image local structure 

analysis in computer vision and image processing [17, 18]. It can provide very 

useful information about the two main operations in the structure-adaptive 

anisotropic filtering methods [19]. However, the smoothing with a Gaussian kernel 

makes the classic Linear Structure Tensor (LST) suffer from the dislocation of 

edges and corners, leading to inaccurate estimation results near region boundaries. 

To address this problem, many techniques have been proposed to replace the 

Gaussian smoothing and generate some kinds of improved structure tensors [20, 

24]. Among these, the NonLinear Structure Tensor (NLST) [24] based on an 

anisotropic nonlinear diffusion processes has shown its capability for presenting 

useful information of an image, such as homogeneous regions, edges, and corners. 

In this paper we propose to improve the structure-adaptive anisotropic filtering 

technique based on the NLST. Both with the local anisotropism measure and the 

more accurate structure orientation derived from NLST, a more robust-to-noise 

filter kernel is constructed and properly aligned along image local structures. The 

rest of the paper is organized as follows. In Section 2 the definition of the nonlinear 

structure tensor is presented and some of its properties are analyzed. The structure-

adaptive anisotropic filter in [4] is briefly reviewed in Section 3. The improved 

structure-adaptive anisotropic filtering method is proposed in Section 4. 

Experimental results and discussions are then given in Section 5 for both synthetic 

and natural images at various degrees of additive white Gaussian noise. Finally, the 

paper is concluded in Section 6. 

2. Nonlinear structure tensor 

2.1. Nonlinear structure tensor estimation 

Let f be the greyscale image. The LST, ( )LSTS x  at each pixel x is calculated by a 

convolution operator of a Gaussian kernel with the outer product of the image 

gradients:  

(1)   ( ) ( ) ( ) ( )( )T 11 12

LST

12 22

.
x x x y

x y y y

G f f G f f s s
G f f

G f f G f f s s

ρ ρ
ρ

ρ ρ

∗ ∗⎛ ⎞ ⎛ ⎞
= ∗ ∇ ∇ = =⎜ ⎟ ⎜ ⎟∗ ∗ ⎝ ⎠⎝ ⎠

S x x x x   

Symbol ∗  stands for the convolution operator, ∇  is the gradient operator, ( )Gρ x  is 

a Gaussian kernel with a standard deviation ρ . 

The LST represented by the image gradients integrates information from the 

local neighbourhood without cancellation effects. The Gaussian smoothing of the 

initial matrix not only reduces the noise level in the matrix field, but also introduces 

spatial coherence through the scale factor ρ . The integration of local orientation 

creates additional information, thus making it possible to distinguish areas where 

the structures are oriented uniformly, as in regions with edges, from areas where the 

structures have different orientations, like in a corner region [24]. Unfortunately, 

linear Gaussian smoothing applied in the LST blurs and dislocates structures 
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because the local neighbourhood for the integration is fixed in both its size and its 

shape. Consequently, it cannot adapt to the data and the estimated orientation of a 

pixel located close to the boundary of two different regions is disturbed by 

ambiguous information. Recently, the NLST has been introduced [24], which is one 

of the adaptive structure tensors adapting the computation to the image data. The 

NLST uses the nonlinear diffusion process instead of Gaussian smoothing to 

overcome the above problem. 

Since Gaussian smoothing can be modelled by the heat diffusion equation, 

Equation (1) is equivalent to the linear matrix-valued diffusion with the initial 

matrix 

(2)   
( ) ( ) ( ) ( )T 0

0 ,

, , 1, 2.

ij

t ij ij

f f s

s s i j

= ∇ ∇ =

∂ = Δ =

S x x x
 

The diffusion time t  is related to the scale-space parameter ρ  via 
2 / 2t ρ=  and Δ  

stands for the Laplacian operator. 

The NLST, ( )NLSTS x , replaces the diffusion scheme (2) by the nonlinear 

diffusion process: 

(3)   
2

2

, 1

, , 1,2,t ij ml ij

m l

s g s s i j
=

⎛ ⎞⎛ ⎞
∂ = ∇ ∇ =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑div  

( )g i  is a decreasing diffusivity function which correlates the amount of smoothing 

with the gradient of every component of the matrix data. Several diffusivity 

functions have been proposed in literature [4] and each of them is with different 

properties. In our case, we use the diffusivity function expressed as follows: 

(4)   ( )( )
( ) 2 2

1
,g f

f ε
∇ =

∇ +
x

x

 

ε  is a small positive constant to avoid singularities. The function is a good 

compromise between smoothing and edge preserving. Besides, there are also not so 

many parameters to be determined. We note that all matrix components of structure 

tensor are coupled in (3), which makes the NLST robust against noise or other 

artifacts, and allows a more reliable estimation in noisy images. 

2.2. Interpretation of the nonlinear structure tensor 

By smoothing the no-full rank initial matrices ( )0S x  with the nonlinear diffusion 

process, the NLST becomes full rank. Thus, by using the eigenvalue decomposition, 

the structure tensor ( )NLSTS x  can be expressed as follows: 

(5)   ( ) ( )
T

1 1

N LST 1 2 T
2 2

0
,

0

λ
λ

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

v
S x v v

v
 

1v , 2v  are the eigenvectors of ( )NLSTS x , and 1 2 0λ λ≥ ≥  are the eigenvalues of 

( )NLSTS x , corresponding to 1v , 2v . 
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The analysis of the eigenvalues and eigenvectors of ( )NLSTS x  provides useful 

information about the complexity of local image structures in a neighbourhood [25]. 

The eigenvector 1v  represents the direction of the maximum signal variation while 

2v  parallels to the direction of local oriented patterns.  Furthermore, different cases 

in 2D can also be distinguished by analyzing the two eigenvalues: 

i) 1 2 0λ λ≈ � : There is no preferred orientation of signal variation, which 

represents a corner, a junction in 2D or due to noise; 

ii) 1 2 0λ λ ≈� : There is only one main direction of signal variation, where 

there may be a linear structure or an edge. 

iii) 1 2 0λ λ≈ ≈ : There is neither a preferred orientation of the signal variation 

nor significant variation, which corresponds to homogeneous regions. The total 

gradient energy is given by the trace of the structure tensor: 

(6)   ( ) ( )( ) ( ) ( )2

NLST 1 2Tracef λ λ∇ = = +x S x x x  

and an anisotropic measure is constructed as follows:  

(7)   ( ) ( ) ( )
( ) ( )

2

1 2

1 2

.C
λ λ
λ λ

⎛ ⎞−
= ⎜ ⎟⎜ ⎟+⎝ ⎠

x x
x

x x
 

The anisotropic measure indicates how much the local signal resembles a 

linear structure, and takes values between 0 and 1. Therefore, there may be a linear 

structure or an edge when ( ) 1C →x  and an isotropic or more complex case when 

( ) 0C →x . The NLST is a very useful tool for adaptive and anisotropic processing 

systems and algorithms. We will present a new algorithm to denoise images using 

the information provided by the NLST to drive an anisotropic filtering kernel in 

Section 4. 

3. The structure-adaptive anisotropic filter 

The structure-adaptive anisotropic filter, which has been firstly proposed by Y a n g 

and co-workers [6], uses a local intensity orientation and an anisotropic measure of 

the level contours to control the shape and extent of the filter kernel. The filter 

kernel applied at each pixel 0x  is defined as follows: 

(8)   ( ) ( )
( )( )

( )
( )( )

( )

2 2

0 0

0 0 2 2

1 0 2 0

, exp .k φ
σ σ

⊥
⎧ ⎫⎡ ⎤− • − •⎪ ⎪⎢ ⎥= − × − +⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

x x n x x n
x x x x

x x
 

The symbol ( )0φ −x x  represents a positive and rotationally symmetric cutoff 

function that satisfies the condition ( ) 1φ =x  when r≤x , and r  is the maximum 

support radius. Both n  and ⊥n  are mutually normal unit vectors with n  parallel to 

the local oriented pattern direction. The parameters of ( )1 0σ x , ( )2 0σ x  are used to 

control the shape of the kernel ( )0 ,k x x . Furthermore, a relationship 
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( ) ( )1 0 2 0σ σ≥x x  is usually maintained to keep the kernel elongated along the 

direction n. 

The estimation of the oriented pattern direction ( )θ x  (the direction of 

vector n ) is done as follows: 

(9)   ( ) 1

22

2
1

tan ,
2 2

f f
dxdy

x y

f f
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x y
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Ω
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⎛ ⎞∂ ∂⎛ ⎞⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪∂ ∂⎪ ⎪⎝ ⎠⎝ ⎠= +⎨ ⎬
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∫∫

∫∫
x

i
 

where Ω  is a local neighbourhood of the pixel ( ),x y=x . 

The space parameters ( )1σ x  and ( )2σ x  are controlled by the corner detector 

( )c x  and the measurement of anisotropism ( )g x  is as follows: 

(10)   ( ) ( )1 ,
1 /

r

c
σ

β
=

+
x

x
 

(11)   ( ) ( )( ) ( )2 11 ,gσ σ= −x x x  

β  is a normalization factor that controls how faithfully the corners and junctions 

are preserved during the filtering process. 

The anisotropic measure gives indication of how strong a pattern is oriented. It 

is defined as follows: 

(12)   ( )

2
222

2
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.

f f f f
dxdy dxdy

x y x y
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f f
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Ω Ω
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It can provide a feasible way of finding the corner and junction points within a 

given image. Yang and co-workers suggest using the measure of anisotropism and a 

gradient strength to estimate the corner strength in the following way: 

(13)   ( ) ( )( ) ( ) 2

1 .c g f= − ∇x x x  

The parameter estimation approach of Yang’s filter is essentially based on the 

LST. However, they used a fixed square window rather than a smoothly decaying 

Gaussian neighbourhood for information integration. This can enhance noise, 

introduce some artifacts, and make the parameter estimation inaccurate. In this 

paper, Yang’s filtering scheme is utilized on the basis of LST for comparison. 

4. Improved structure-adaptive anisotropic filter 

In this section we propose improvement of the structure-adaptive anisotropic filter 

by using the information provided by the NLST. The filter kernel applied at each 

pixel 0x  is defined as follows: 
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(14)   ( )
( )( )
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( )( )
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2 2
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1
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⊥
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The symbols n  and ⊥n  have the same meaning as in (8). The parameters ( )0a x  and 

( )0b x  represent the main axis and the orthogonal one of the anisotropic Gaussian 

kernel, respectively. A schematic drawing of the anisotropic Gaussian kernel is 

shown in Fig. 1 (a). 

 

Fig. 1. An elliptic kernel controlled by its principle axes a , b  and the direction θ  (a);  

The filter kernel controlled through the image local anisotropic features (b) 

The structure-adaptive anisotropic Gaussian filter is directional and adjusts the 

shape of the kernel according to the image local anisotropic features. The main 

purpose of such a filter is to make the flat areas well smoothed while keeping the 

edges less blurred and dislocated and the edge junctions scarcely destroyed. So the 

filter kernel must be carefully constructed and the orientation of image structures 

must be accurately estimated. The nonlinear structure tensor is just a very useful 

tool for this purpose. It provides a convenient way of finding edges, corners or 

junctions within a given image. The anisotropism measure ( )C x  given in Section 2 

can be a good indicator for edges. Furthermore, as learned from Yang’s ideas, a 

measure of the corner strength can be calculated through the anisotropic measure 

( )C x  and the gradient strength ( ) 2

f∇ x : 

(15)   ( ) ( )( ) ( ) ( ) ( )
( ) ( )

2 1 2

1 2

4
1 .J C f

λ λ
λ λ

= − ∇ =
+

x x
x x x

x x
 

The corner strength ( )J x  is directly calculated with the eigenvalues of the structure 

tensor. 

The anisotropic Gaussian kernel changes with its form, size and direction 

depending on the image local anisotropic features (Fig. 1 (b)). The main axis ( )a x  

must be maximal in regions with no corners and minimal in regions where there is a 

high value of the corner strength. Meanwhile, the second axis ( )b x  must follow the 
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main axis ( )a x  to become large in flat regions and shrink its value when regions 

with edges or junctions are met. Therefore, small filter kernels are used in regions 

with corners ( ( ) 0J x � ), while large ones − for ( ) 0J →x . Large filter kernels are 

distinguished yet in two very different cases. The filter shape obtains a highly 

oriented elliptical form with its main axis parallel to the direction of local oriented 

patterns in regions with a high anisotropism measure ( ( ) 1C →x ) while extending its 

size isotropically to the maximal one for very flat regions. Furthermore, the 

preservation of the corner structures should also be carefully dealt with while 

maximizing the filtering capability. So, the transition of ( )a x  from smooth regions 

to regions with corners should be taken good care of. To meet these requirements, 

the proposed adaptive filtering scheme is finally formalized as follows: 

(16)   ( )
( )( )

1 exp ,
/

m

m

C
a r

J β

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟= ⋅ − −⎨ ⎬
⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

x
x

 

(17)   ( ) ( )( ) ( )1 ,b C a= −x x x  

where the parameters r  and β  take the same meanings as in Yang’s filtering 

scheme and β  is usually chosen as a value between 50% and 200% of the 

maximum corner strength within the image.  

The determination function of the main axis ( )a x  is first introduced by 

Weickert as the conductance function for his anisotropic diffusion model [4]. 

Therein, it is presented as follows: 

(18)   ( )
( )

1 exp .
/

m

m

C
s

s
ϕ

λ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

 

The constant m
C  is calculated in such a way that the flux-function ( )s sϕ  is 

increasing for [ ]0,s λ∈  and decreasing for ( ),s λ∈ ∞ . To the proposed filtering 

scheme, the smoothing performance is prior for ( ) ( ]/ 0, 1J β ∈x , while inhibited for 

the preservation of corners for ( ) ( )/ 1,J β ∈ ∞x . These requirements are just similar 

to what the conductance function requires. Thus, by setting ( ) /s J β= x and 1λ = , 

the constant m
C  can be simply determined through the following equation:  

(19)   ( )( )1 exp 1 0.m mC mC− − + =  

Comparing the behaviour of the proposed space parameter ( )a x  (equation 

(16)) with Yang’s space parameter ( )1σ x  (equation (10)) highlights the 

improvement of the proposed filtering scheme.  
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Fig. 2. Behaviours of controlling the main axis of the filter kernel 

 for Yang’s filter and the proposed filter 

Fig. 2 demonstrates the behaviour of controlling the main axis of the filter kernel 

for both Yang’s filter and the proposed one. This figure shows that adopting the 

proposed filter can give better behaviours according to the corner strength. 

Compared with Yang’s filter, the main axis ( )a x  of the proposed anisotropic filter 

kernel takes larger values for low values of corner strength, and vice versa. 

Therefore, much more pixels are collected for estimation in smooth regions and 

only a few are used in regions with corners. So the proposed filter can produce 

smoother results in flat places and better preserve corners and junctions in images. 

In addition, the proposed kernel construction technique is with an extra 

parameter m , which allows the filtering characteristic adjusted for different noise 

levels and different image contents. Commonly, the parameter m  takes its value 

between ( ]1, 1.5 and takes larger values for very noisy conditions and small ones for 

slightly corrupted images. 

Accurate estimation of oriented pattern direction is of great importance for 

efficient performance of directional filters, such as the structure-adaptive 

anisotropic filter. If the orientation of the kernel is not properly aligned for 

anisotropic filtering, the image produced could be worse than that of using a simple 

linear filtering technique. Fortunately, the structure tensor allows orientation 

estimation and especially the NLST, which is robust against noise, can give a more 

reliable estimation with few blurring or dislocation effects. We propose to use the 

NLST for the estimation of oriented pattern direction. The orientation ( )θ x  is given 

by the eigenvector 2v , which corresponds to the minimum eigenvalue 2λ  of the 

structure tensor ( )NLSTS x : 

(20)   ( ) ( )( ){ }21 2

12 11 22 11 22 12tan 2 / 4 .s s s s s sθ −= − − − +x  

5. Experimental results and discussions 

The performance of the proposed structure-adaptive anisotropic filter based on the 

NLST is compared with the same filtering scheme based on the LST, Yang’s filter 

and the anisotropic diffusion filter. Experiments were conducted with several grey 



 121

scale test images shown in Fig. 3, including a synthetic image and three natural 

images – Cameraman, Bike and Circuit board, all of which are with the size 

256×256.  

 
Fig. 3. Test images: Synthetic (a); Bike (b); Cameraman (c); Circuit Board (d) 

Zero mean Gaussian white noises with standard deviation σ =15, 25, 35 were added 

to generate noisy images at different noise levels. The same parameters  r  and β  

are chosen for the proposed filter and Yang’s filter, where the maximum axis size r  

was chosen as 2.0 and the parameter β  was set to be 75% of the maximum of 

corner measures within the image [6]. Besides, the exclusive parameter m  for the 

proposed filter kernel construction scheme was set to be 1.15, which will be proven 

to produce visually good results for these test images. The scale factor ρ  for the 

LST was selected as 3.0. And we adopted the Edge Enhancing Diffusion (EED) 

filter [4] as the anisotropic diffusion filter. The diffusivity function along the 

oriented pattern direction was chosen as 

(21)   ( )
2

2
, 1/ 1 .

f
d t

K

⎛ ⎞∇
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

x  

And the one in the orthogonal direction was ( ), / 5d tx . The conductance parameter 

K  was set to be 10% of the maximum of the gradient magnitudes within the image 

[26]. The diffusion time t  was carefully chosen to obtain visually good results. 

Since the maximum size of the anisotropic filter kernel is determined by the 

corner strength measure, it is necessary to accurately locate and calculate the corner 

strength to achieve good filtering results. According to formula (15), the estimation 

of the corner strength based on the LST and NLST is compared. Both the LST and 

NLST were applied to the synthetic image and the results are presented in Fig. 4. 
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Fig. 4. Results of the corner strength estimation for synthetic image using techniques:  

LST (a);  NLST (b) 

It can be seen that the corner location obtained with the LST is spread and less 

precise while the one obtained with the NLST is well localized. Moreover, efficient 

performance of the directional filters depends highly also on the correct estimating 

of the direction of oriented patterns. The performance of estimating the orientation 

based on the LST and NLST is compared as well. A noisy version of the bike image 

(σ =25), in which the orientation of lines is clearly distinguished, is used for the 

experiment.  

 
Fig. 5. Results of oriented pattern direction estimation using different techniques:  

Bike image corrupted by Gaussian noise ( 25σ = ) and local orientation estimated by (a); 

LST with 2.0ρ =  (b);  LST with 3.0ρ =  (c); NLST (d) 

As demonstrated in Fig. 5, the LST leaves too much noise in the orientation 

space when using a small scale factor ρ , and introduces blurs and dislocations to 

image structures when a larger one is used. Compared with the results of the LST, 

the estimated orientation with the NLST is more robust to noise, and shows more 

accurate directions for oriented patterns and more spatially consistent orientations 

for non-textural regions. Through these experiments it can be seen that both the 

location of corners and the estimation of structure orientations with NLST are 

superior to those with the LST. 
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Table 1. MSE values of denoised images using different methods 

Image σ  
Noisy 

image 
EED filter 

Yang’s 

filter 

Proposed 

(LST) 

Proposed 

(NLST) 

Synthetic 

15 

25 

35 

226.213 

624.911 

1228.1 

35.764 

70.629 

112.034 

98.461 

153.531 

233.368 

47.848 

103.238 

173.901 

21.345 

54.424 

102.958 

Bike 

15 

25 

35 

224.169 

622.821 

1232.5 

262.734 

444.687 

648.496 

154.344 

218.889 

320.572 

107.207 

196.295 

316.051 

83.995 

149.024 

249.723 

Cameraman 

15 

25 

35 

224.295 

623.745 

1227.0 

82.806 

144.216 

196.911 

100.969 

127.978 

177.931 

68.808 

108.394 

162.651 

59.396 

101.667 

152.151 

Table 1 shows the MSE values of the denoised images using different methods 

versus a range of noise levels. The proposed structure-adaptive anisotropic filter 

outperforms the other methods. Firstly, when the proposed filtering scheme based 

on the LST and Yang’s filter are compared, remarkable MSE value improvement is 

obtained with the proposed filtering scheme, which demonstrates the improvement 

of our kernel construction approach. Secondly, the proposed filtering scheme based 

on the NLST produces better results than the one based on the LST, which indicates 

superior performance of NLST in the description of image structures. Both of these 

show that great improvements are achieved with the proposed filter when compared 

with Yang’s filter.  

 
Fig. 6. The noisy images (a)-(d) obtained by adding white Gaussian noise ( 25σ = )  

to test images in Fig. 3 respectively 

To visually compare the denoising performance, the noisy versions of the test 

images at noise level σ =25 (Fig. 6) are used and the denoised results by different 

methods are shown in Figs 7, 8, 9 and 10, respectively. 
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Fig. 7. The reconstructed images (a)-(d) by applying the EED filter  

to the noisy images in Fig. 6 respectively 

 

Fig. 8. The reconstructed images (a)-(d) by applying Yang’s filter  

to the noisy images in Fig. 6 respectively 
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Fig. 9. The reconstructed images (a)-(d) by applying the proposed filtering scheme  

based on the LST to the noisy images in Fig. 6 respectively 

 

Fig. 10. The reconstructed images (a)-(d) by applying the proposed filtering scheme based on the 

NLST to the noisy images in Fig. 6 respectively 

As seen, the anisotropic diffusion filter leaves much noise at edges and introduces 

some unexpected artifacts and block effects. Both Yang’s filter and the proposed 

filter are able to overcome these problems. However, Yang’s filter tends to produce 

artifacts along singularity structures like edges and lines. The proposed filter 

produces visually the best results and outperforms Yang’s filter especially at corner 

regions and flat places. 
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6. Conclusions 

An improved structure-adaptive anisotropic filtering scheme has been proposed, 

and this scheme is based on the NLST analysis of image structures. In the proposed 

filtering scheme, the NLST has been used to measure the image local anisotropic 

features and estimate the orientation of the image structures. The image 

anisotropism measurements are taken to shape the anisotropic Gaussian kernels and 

the filter kernels are then tuned to align along the structure orientations. The 

proposed filter could adapt its shape exquisitely to local image structures and 

denoise noisy images and image structures, such as corners, junctions and edges, 

are better preserved. The experiment on test images shows the excellent capability 

of the proposed filter for recognizing the image features and estimating structure 

orientations. The proposed filter carefully denoises the corner and edge regions and 

causes little blurs to these features. When compared to Yang’s filter, the proposed 

filter not only obtains significant MSE value improvements, but also gets better 

visual quality. Furthermore, both the anisotropic diffusion filter and the proposed 

filtering scheme on the basis of LST are also taken for comparison. The former 

leaves much noise along the edges, while the latter introduces blurs to image 

features, such as corners and edges. The experimental results highlight the superior 

performance of the proposed structure-adaptive anisotropic filter based on the 

NLST. 
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