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Present-day, noisy, small or intermediate-scale quantum processors—although far from fault toler-

ant—support the execution of heuristic quantum algorithms, which might enable a quantum advantage,

for example, when applied to combinatorial optimization problems. On small-scale quantum processors,

validations of such algorithms serve as important technology demonstrators. We implement the quan-

tum approximate optimization algorithm on our hardware platform, consisting of two superconducting

transmon qubits and one parametrically modulated coupler. We solve small instances of the NP (nonde-

terministic polynomial time)-complete exact-cover problem, with 96.6% success probability, by iterating

the algorithm up to level two.

DOI: 10.1103/PhysRevApplied.14.034010

I. INTRODUCTION

Quantum computing promises exponential computa-

tional speedup in a number of fields, such as cryptography,

quantum simulation, and linear algebra [1]. Even though a

large, fault-tolerant quantum computer is still many years

away, impressive progress has been made over the last

decade using superconducting circuits [2–4], leading to

the noisy intermediate-scale quantum (NISQ) era [5]. It

was predicted that NISQ devices should allow for “quan-

tum supremacy” [6], that is, solving a problem that is

intractable on a classical computer in a reasonable time.

This was recently demonstrated on a 53-qubit processor by

sampling the output distributions of random circuits [7].

Two of the most prominent NISQ algorithms are the

quantum approximate optimization algorithm (QAOA) for

combinatorial optimization problems [8–10] and the vari-

ational quantum eigensolver (VQE) for the calculation

of molecular energies [11–13]. The QAOA is a heuris-

tic algorithm that could bring a polynomial speedup to

the solution of specific problems encoded in a quantum
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Hamiltonian [14,15]. Moreover, the QAOA should pro-

duce output distributions that cannot be efficiently calcu-

lated on a classical computer [16].

The QAOA is a hybrid algorithm, as it is executed

on both a classical and a quantum computer. The quan-

tum part consists of a circuit with p levels, where better

approximations to the solution of the encoded problem

are generally achieved with higher p . In this work, we

report on using our superconducting quantum processor to

demonstrate the QAOA with up to p = 2, enabled by ade-

quately high gate fidelities. We solve small toy instances

of the NP (nondeterministic polynomial time) complete

exact-cover problem with 96.6% success probability. For

p > 1, the QAOA solution cannot be efficiently calculated

on a classical computer, as the computational complexity

scales doubly exponentially in p [8].

Our interest in solving the exact-cover problem orig-

inates from its use in many real-world applications, for

instance, the exact-cover problem can provide feasible

solutions to airline planning problems such as tail assign-

ment [17]. Currently, this is solved by well-developed

optimization techniques in combination with heuristics.

By leveraging heuristic quantum algorithms such as the

QAOA, the current approach can be augmented and might

provide high-quality solutions while reducing the running

time. Applying the QAOA to instances of the exact-cover

problem extracted from real-world data in the context

of tail assignment has been numerically studied with 25

qubits, corresponding to 25 routes and 278 flights [18].
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Other quantum algorithms for solving the exact-cover

problem, specifically quantum annealing, have been con-

sidered in Refs. [19–21].

II. QAOA

All NP-complete problems can be formulated in terms

of finding the ground state of an Ising Hamiltonian [22].

The QAOA aims at finding this state by applying two

noncommuting Hamiltonians, B̂ and Ĉ, in an alternating

sequence (with length p) to an equal superposition state of

n qubits [visualized in Fig. 1(a)],

| �γ , �β〉 =

p
∏

i=1

[e−iβiB̂e−iγiĈ]

(

|0〉 + |1〉

2

)⊗n

, (1)

where γi and βi are (real) variational angles. The first

Hamiltonian in the sequence is the Ising (cost) Hamilto-

nian specifying the problem,

Ĉ =

n
∑

i=1

hiσ̂
z
i +

∑

i<j

Jij σ̂
z
i σ̂ z

j , (2)

and the second is a transverse field (mixing) Hamiltonian

defined by

B̂ =

n
∑

i=1

σ̂ x
i , (3)

where hi and Jij are real coefficients, and the σ̂
x(z)
i are the

Pauli X (Z) operators applied to the ith qubit.

The ground state of Eq. (2) corresponds to the

lowest-energy state. We therefore define the energy

expectation value of Eq. (1) as a cost function

F( �γ , �β) = 〈�γ , �β|Ĉ| �γ , �β〉 =

n
∑

i=1

hi〈σ̂
z
i 〉 +

∑

i<j

Jij 〈σ̂
z
i σ̂ z

j 〉.

(4)

This cost function is evaluated by repeatedly preparing and

measuring | �γ , �β〉 on a quantum processor. To find the state

that minimizes Eq. (4), a classical optimizer is used to find

the optimal variational angles �γ ∗, �β∗. For a high enough p ,

| �γ ∗, �β∗〉 is equal to the ground state of Ĉ and hence yields

the answer to the optimization problem [8]. However, for

algorithms executed on real hardware without error correc-

tion, noise will inevitably limit the circuit depth, implying

that there is a trade-off between algorithmic errors (too

low p) and gate errors (too high p). Note that, in order

to find the solution to the optimization problem, it is not

necessary for | �γ ∗, �β∗〉 to be equal to the ground state: as

long as the ground-state probability is high enough, the

quantum processor can be used to generate a shortlist of

potential solutions that can be checked efficiently (in poly-

nomial time) on a classical computer. For instance, even

if the success probability of measuring the ground state is

only 5%, we could measure 100 instances and still attain

a probability greater than 99% of finding the correct state.

Moreover, the angles �γ ∗, �β∗ themselves are not interest-

ing, as long as they yield the lowest-energy state. This

gives some robustness against coherent gate errors, since

any over or under rotations can be compensated for by a

change in the variational angles [12].

We apply the QAOA to the exact-cover problem, which

reads: given a set X and several subsets Si containing parts

of X , which combination of subsets include all elements of

X just once? Mathematically speaking, this combination

of subsets should be disjoint, and their union should be X .

This problem can be mapped onto an Ising Hamiltonian,

where the number of spins equals the number of subsets,

while the size of X can be arbitrary.

Let us consider n = 2, for which the two-spin Ising

Hamiltonian is

Ĉ = h1σ̂
z
1 + h2σ̂

z
2 + J σ̂ z

1 σ̂ z
2 . (5)

The exact-cover problem is mapped onto this Hamiltonian

by choosing hi and J as [23]

J > min(c1, c2), (6)

h1 = J − 2c1, h2 = J − 2c2,

where ci is the number of elements in subset i, and J > 0

if the two subsets share at least one element. We are free

to choose J , as long as it fulfills the criterion in Eq. (6).

(a)

(b)

FIG. 1. (a) The QAOA for a problem specified by the Ising

Hamiltonian Ĉ. An alternating sequence of two Hamiltonians

(Ĉ and B̂) is applied to an equal superposition of n qubits. After

measurement of the qubit states, a cost is calculated, which a

classical optimization algorithm minimizes by varying the angles

�γ , �β. (b) Our implementation of one QAOA level with n = 2

using controlled-phase, Hadamards (H), and single-qubit x and
y rotations (Rx and Ry ). The background color of each gate

identifies which part in (a) it implements.
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TABLE I. The four different exact-cover problems available

with two subsets, and their solutions and respective sets of

coefficients in the Ising Hamiltonian Ĉ = h1σ̂
z
1 + h2σ̂

z
1 + J σ̂ z

1 σ̂ z
2 .

Problem Subsets h1 h2 J Solution

A S1 = {x1, x2},
S2 = {x1}

−1/2 0 1/2 |10〉

B S1 = {x1, x2},
S2 = {}

−1 0 0 |10〉 or |11〉

C S1 = {x1},
S2 = {x2}

−1/2 −1/2 0 |11〉

D S1 = {x1, x2},
S2 = {x1, x2}

0 0 1 |10〉 or |01〉

For example, consider X = {x1, x2} and two subsets S1 =
{x1, x2} and S2 = {x1}. This gives c1 = 2 and c2 = 1, and

we could choose J = 2, yielding h1 = −2 and h2 = 0. It

is easy to check that the corresponding ground state is |10〉
(i.e., S1 is the solution). Finally, we normalize J and hi

such that the Ising Hamiltonian has integer eigenvalues,

allowing us to restrict γi and βi to the interval [0, π [.

For two subsets, four different problems exist, which all

yield different sets of hi and J . These are summarized in

Table I. Problem A is the example given above; it is the

most interesting, as the other problems are trivial. Prob-

lems B and C are trivial since they do not contain any

qubit-qubit interaction (J = 0). Problem D is also triv-

ial since both subsets are equal. Additionally, the ground

states are degenerate for problems B and D.

III. REALIZATION ON QUANTUM HARDWARE

We implement Eq. (1) on our quantum processor using

the circuit in Fig. 1(b). The circuit can be somewhat com-

piled by simple identities (e.g., two Hadamard gates act as

an identity gate). We stress that our implementation of the

QAOA is scalable in that we do not use any exponentially

costly precompilation (e.g., calculating the final circuit

unitary and using Cartan decomposition to minimize the

number of two-qubit gates).

Our quantum processor is fabricated using the same pro-

cesses as in Ref. [24] and consists of two fixed-frequency

transmon qubits with individual control and readout. Both

qubits are coupled to a common frequency-tunable coupler

used to mediate a controlled-phase (CZ) gate between the

qubits. The CZ gate is realized by a full coherent oscilla-

tion between the |11〉 and |02〉 states. The interaction is

achieved by parametrically modulating the resonant fre-

quency of the coupler at a frequency close to the difference

frequency between the |0〉 − |1〉 and |1〉 − |2〉 transitions

of qubit 1 and 2, respectively [25,26]. We have bench-

marked such a gate on the same device during the same

cooldown to above 99%; however, the benchmark per-

formed closest in time to the experiments presented here

showed a fidelity of 98.6%. These kinds of fidelity fluc-

tuations might be related to fluctuations in the qubits’

coherence times [24]. Single-qubit X rotations are driven

by microwave pulses at the qubit transition frequencies

with fidelities of 99.86% and 99.93% for the respective

qubits. Z rotations are implemented in software as a shift

in drive phase and thus have unity fidelity [27]. All the

reported gate fidelities are measured by (interleaved) ran-

domized benchmarking [28]. More experimental details,

a measurement setup along with a device schematic, and

benchmarking results are given in Appendices A and B.

IV. APPLYING THE QAOA TO FOUR PROBLEMS

For p = 1, we apply a simple grid (61 × 61) search

of β1, γ1 ∈ [0, π [ while recording 5000 measurements of

each qubit. From these, we calculate 〈σ z
i 〉, 〈σ z

1σ z
2 〉, the

cost function F , and the occupation probability for each

of the four possible states, while accounting for the lim-

ited, but calibrated, readout fidelity (86% and 95% for the

two qubits). By collecting sufficiently many samples, the

statistical error on the estimated quantities can be made

small.

The grid search allows us to explore the shape of the

optimization landscape, which may bring important under-

standing in the difficulty of finding global minima for

black-box optimizers. In Fig. 2, we show measured cost

functions for the four problems in Table I. Because of

the normalization of hi and J , the ground state for each

problem corresponds to F = −1. In Fig. 2(a), the cost

function for problem A never reaches below −0.5. To

achieve costs approaching −1, additional levels (p > 1)

are needed. Moreover, the existence of a local minimum

(a) (b)

(c) (d)

FIG. 2. Cost functions F( �γ , �β) for the QAOA applied to four
instances of the exact-cover problem with p = 1 and n = 2.

Panels (a)–(d) correspond to problems A–D in Table I. Each

experimental data point is evaluated from the average of 5000
measurements on our quantum processor. The dashed lines

indicate the positions of the linecuts in Fig. 3.
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around γ1 ≈ β1 ≈ 3π/4 could cause difficulties for opti-

mizers trying to find the global minimum. For problems

B–D [Figs. 2(b)–2(d)], we see clear minima where F ≈
−1, indicating that we have found the optimal variational

angles | �γ ∗, �β∗〉 corresponding to the ground state.

In Fig. 3, we take linecuts along the dashed lines in

Fig. 2 and benchmark our measured cost functions and

state probabilities against those of an ideal quantum com-

puter without any noise. We see excellent agreement

between measurement and theory: the measured positions

of each minimum and maximum are aligned with those

of the theory, consistent with low coherent-error rates.

In addition, we observe excellent agreement between the

absolute values at the minima and maxima, indicating low

incoherent-error rates as well. Even with high gate fideli-

ties, a high algorithmic fidelity is not guaranteed. Random-

ized benchmarking gives the average fidelity over a large

number of random gates, which transforms any coherent

errors into incoherent errors. For real quantum algorithm

circuits, the gates are generally not random. Therefore,

any coherent errors can quickly add up and yield algorith-

mic performance far lower than expected from randomized

benchmarking fidelities alone [29,30].

To quantify the performance of the QAOA with p = 1,

we compare the highest-probability state at the minima

of F with the solutions in Table I. Problem A [Fig. 3(a)]

does not reach its ground state (F ≈ −0.5); however, the

(a) (b)

(c) (d)

FIG. 3. A comparison between experiment (open circles) and

theory (solid lines) for four exact-cover problems using the

QAOA with p = 1. Each color (given at the top) corresponds
to either a state probability or the value of the cost function

F . The four panels (a)–(d) correspond to the four problems

(A–D) in Table I. The linecuts are taken at the vertical dashed
lines in Fig. 2. The theory curves are calculated assuming an

ideal quantum processor, whereas each experimental data point is
derived from the average of 5000 measurements on our quantum

processor.

probability of measuring the correct state (|10〉) is approx-

imately 50%, which is still better than random guessing.

For problem C [Fig. 3(c)], we see that F ≈ −1 does indeed

correspond to a probability close to unity of measuring

the ground state (|11〉). Problems B and D [Figs. 3(b)

and 3(d)] have degenerate ground states, indicated by two

state probabilities close to 50% each at F ≈ −1.

V. INCREASING THE SUCCESS PROBABILITY

To increase the success probability for problem A, we

add an additional level (p = 2). For p > 1, a grid search

to map out the full landscape becomes unfeasible due to

the many parameters (equal to 2p). Therefore, we instead

use black-box optimizers to find the optimal variational

angles. We try three different gradient-free optimizers:

Bayesian optimization with Gaussian processes (BGPs),

Nelder-Mead, and covariance matrix adaptation evolution

strategy (CMA ES). We choose BGPs due to its ability to

find global minima, Nelder-Mead due to it being common

and simple, and CMA ES due to its favorable scaling with

the number of optimization parameters.

We evaluate the optimizer performances by running

200 independent optimizations with random starting val-

ues ( �γ , �β ∈ [0, π [) for each optimizer. For each set of

variational angles, we repeat the circuit and measure 5000

samples to accurately estimate the expectation values. We

set a threshold for convergence at F < −0.95 and count

the number of converged optimization runs as well as the

number of calls to the quantum processor (function calls)

required to converge. We also record the success probabil-

ity of measuring the problem solution (P|10〉). The results

are summarized in Table II.

We observe that the success probabilities after con-

vergence are similar for all three optimizers. However,

there is a difference in convergence probability, of which

BGPs has the highest and Nelder-Mead has the lowest.

The lower performance of Nelder-Mead is most likely due

to its sensitivity to local minima, a well-known problem

for most optimizers. In contrast, one of the strengths of

Bayesian optimization is its ability to find global minima,

TABLE II. Comparison between different optimizers. We run

the QAOA for problem A over 200 iterations with random

starting parameters. We extract the convergence probability for
reaching a cost below −0.95, the average number of func-

tion calls required to reach that level, and the highest achieved

probability of measuring the problem solution (P|10〉).

Optimizer Convergence Function calls P|10〉

(%) (%)

BGPs 61.5 44 ± 16 96.5

Nelder-Mead 20.0 38 ± 13 96.3

CMA ES 49.5 121 ± 46 96.6
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which could explain why it performs better than Nelder-

Mead and CMA ES. Additionally, Bayesian optimization

is designed to handle optimization where the time of each

function call is high (costly), such that the number of

calls is kept low. However, for more optimization param-

eters (higher p), the performance of BGPs is generally

decreased due to an increasing need for classical computa-

tion. CMA ES, on the other hand, excels when the number

of parameters is high, and thus might be a good optimizer

for the QAOA with tens or hundreds of parameters. Here,

with just four parameters, CMA ES has a convergence

(a)

(b)

(c)

FIG. 4. Optimization of variational angles for problem A using

p = 2 iterations of the algorithm and three different black-box
and gradient-free optimizers: (a) Bayesian optimization with

Gaussian processes, (b) Nelder-Mead (NM), and (c) covariance

matrix adaptation evolution strategy. We run the optimization
200 times with random starting parameters. Plotted as blue lines

are the individual optimization trajectories for F , where each data

point is the average of 5000 measurements. In orange and green
are the costs (F) and success probabilities (P|10〉) averaged over

the converged runs.

probability similar to that of BGPs, although with a greater

number of function calls on average.

To quantify the optimization further, we study the tra-

jectories of each optimization run (Fig. 4). For each run,

we plot the costs F . The trajectories for BGPs and Nelder-

Mead [Figs. 4(a)–4(b)] corroborate the indications about

local minima. We see groups of horizontal lines corre-

sponding to different local minima, especially clear at F ≈
−0.55 for both BGPs and Nelder-Mead. We also see that

BGPs tries, and sometimes succeeds, to escape these local

minima, which is one of the advantages of Bayesian opti-

mization. In comparison, Nelder-Mead rarely gets out of a

local minimum once it has found it. For the third optimizer,

CMA ES [Fig. 4(c)], it is hard to draw any conclusions

from the trajectories other than that the convergence is

slower than for the other optimizers. However, we include

the CMA ES trajectories for completeness. For each opti-

mizer, we also plot the averaged (over all the converged)

trajectories for F and the probability of finding the solution

state P|10〉.

At the end of the optimization, the highest recorded

probability of generating the correct state is 96.6%. The

success probability is limited by imperfect gates (we have

verified that an ideal quantum computer and p = 2 can

achieve P|10〉 = 1). We compare our measured success

probability to what we would expect from the randomized-

benchmarking fidelities. The quantum circuit for p = 2

consists of 6 X, 4 Hadamard, 4 Z, and 3 CZ gates, which,

when multiplied together with the fidelities for each gate,

predicts a total fidelity of 96.3%, in good agreement with

the measured fidelity considering experimental uncertain-

ties (e.g., fluctuations in qubit coherence and gate fideli-

ties). Note that p = 3 would not yield a higher success

probability, since adding more gates would lower the total

fidelity further (predicted to be 94.2%).

Finally, we examine histograms over the success prob-

abilities at the end of each optimization run for the three

different optimizers; see Fig. 5. Again, we observe that

FIG. 5. Histogram of the final success probabilities (P|10〉) for

three different optimizers on problem A using p = 2 iterations
of the algorithm. Each optimizer is run 200 times. The bars are

vertically offset for clarity.
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BGPs has the most converged runs out of the three. We

see clusters around 55% and 95% success probabilities for

all three optimizers, possibly corresponding to one local

and the global minima. For CMA ES, the success prob-

abilities are more scattered, where some runs even have

below 40% success. All in all, Bayesian optimization per-

forms the best; however, further studies will be needed to

determine which classical optimizer is the most suitable

for variational quantum algorithms, such as the QAOA and

VQE.

VI. CONCLUSION

In conclusion, we implement the quantum approximate

optimization algorithm with up to p = 2 levels. Using a

superconducting quantum processor with state-of-the-art

performance, we successfully optimize four instances of

the exact-cover problem. For the nontrivial instance (prob-

lem A), we use p = 2 and black-box optimization to reach

a success probability of 96.6% (up from 50% with p =
1), in good agreement with a prediction from our gate

fidelities. Even if many more qubits are needed to solve

problems that are intractable for classical computers, algo-

rithmic performance serves as a critical quantum-processor

benchmark since performance can be much lower than

what individual gate fidelities predict. Although further

experiments with larger devices are needed to explore

whether the QAOA can have an advantage over classical

algorithms, our results show that the QAOA can be used to

solve the exact-cover problem.
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APPENDIX A: MEASUREMENT SETUP

The experimental measurement setup used here is a

standard circuit quantum electrodynamics setup; see the

schematic in Fig. 6. The quantum processor consists of

two xmon-style transmon qubits coupled via a frequency-

tunable anharmonic oscillator. The tunability is provided

by two Josephson junctions in a superconducting quan-

tum interference device (SQUID) configuration. The two

qubits are capacitively coupled to individual control lines

and quarter-wavelength resonators for readout. There is

(a)

(b)

FIG. 6. (a) Cryogenic setup and electrical circuit of the quan-

tum processor. All lines are attenuated and filtered to minimize
the amount of noise reaching the qubits. The readout output con-

tains cryogenic isolators and a high electron mobility transistor

amplifier. (b) False-colored micrograph of the processor. The col-
ors match the circuit elements in (a). The three waveguides at the

bottom are for control over the qubits and the coupler.

also a readout resonator for the coupler, which is only

used as a debugging tool (i.e., it is not involved during any

algorithm execution). The SQUID for the tunable coupler

is inductively coupled to a waveguide to allow for both

static and fast modulation of the resonant frequency.
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The processor is fabricated on a high-resistivity intrin-

sic silicon substrate. After initial chemical cleaning, an

aluminium film is evaporated. All features except the

Josephson junctions are patterned by direct-write laser

lithography and etched with a warm mixture of acids. The

Josephson junctions are patterned by electron-beam lithog-

raphy, and evaporated from the same target as previously.

A third lithography and evaporation step (with in-situ ion

milling) is performed to connect the Josephson junctions to

the rest of the circuit. Finally, the wafer is diced into indi-

vidual dies and subsequently cleaned by a combination of

wet and dry chemistry.

A die is then selected and packaged in a copper box and

wire bonded to a palladium- and gold-plated printed cir-

cuit board with 16 nonmagnetic coaxial connectors. For

the present device, we use five of these connectors, two for

readout, two for single-qubit control, and one for control of

the magnetic flux through the SQUID loop of the coupler.

These are connected to filtered and attenuated coaxial lines

leading up to room temperature. We point out that the dc

current for the static flux bias is also provided through the

coaxial line. Finally, the processor is attached to the mixing

chamber of a Bluefors LD250 cryo-free dilution refrigera-

tor. There, it is shielded from stray magnetic fields by two

high permeability shields and two superconducting shields.

We perform multiplexed readout by using the Zurich

Instruments UHFQA for generating and detecting the read-

out signals, together with a Rohde & Schwarz SGS100A

continuous-wave signal generator and two Marki IQ mix-

ers for up- and down-conversion. The single-qubit pulses

are synthesized by the Zurich Instruments HDAWG and

up-converted using Rohde & Schwarz SGS100A vector

signal generators. The flux drive is generated directly by

the HDAWG since the modulation frequency is within

the bandwidth of the instrument. Finally, all instru-

ments are controlled and orchestrated by the measurement

and automation software Labber. Labber also does cost-

function evaluations and calls external Python packages

for the three different optimizers. All three optimizers are

run using publicly available packages: Scikit-Optimize for

BGPs, scipy for Nelder-Mead, and pycma for CMA ES.

APPENDIX B: CHARACTERIZATION AND

TUNE-UP

Initially, we perform basic spectroscopy and decoher-

ence benchmarking of each qubit individually. This allows

us to extract readout frequencies, qubit frequencies and

anharmonicities, relaxation and dephasing times, and static

couplings between qubit and resonator, as well as between

qubit and coupler. The extracted parameters are found in

Table III.

After the initial characterization, we tune up high-

fidelity single-qubit gates. The drive pulses have cosine

envelopes together with first-order derivative removal by

TABLE III. Device parameters. Readout-resonator frequency
fR and qubit transition frequencies fij . Here g is the coupling

between qubit and resonator, and j is the coupling between qubit

and coupler; T1 and T∗
2 are the relaxation and free induction decay

times measured over 14 h; F1q, Fm, and FCZ are the single-qubit,

measurement, and CZ fidelities, respectively.

Parameter Qubit 1 Qubit 2

fR 6.17 GHz 6.04 GHz

f01 3.82 GHz 4.30 GHz

f12 − f01 −229 MHz −225 MHz
j 29.1 MHz 33.0 MHz

g 53.2 MHz 56.9 MHz

T1 77 µs 55 µs
T∗

2 49 µs 82 µs

F1q 0.9986 0.9993

Fm 0.86 0.95
FCZ 0.986

adiabatic gate (DRAG) components to compensate for the

qubit frequency shift due to the driving. Our rather long

(50 ns) pulses makes leakage from |1〉 to |2〉 minimal

even without DRAG. To find optimal pulse amplitudes and

DRAG coefficients, we use error amplification by apply-

ing varying lengths of trains of π pulses. Qubit drive

frequencies are measured accurately by detuned Ramsey

fringes.

Next, we calibrate our readout fidelities. By collecting

raw voltages of the readout signals (as measured by the

digitizer in the UHFQA), with and without a calibrated π

pulse applied to the qubit (|0〉 and |1〉 states, respectively),

and as a function of readout frequency and amplitude, we

can find the optimal readout parameters. Because of our

rather low coupling strengths, we cannot achieve short

readout times in this device. However, the QAOA does not

require any measurement feedback, so a long readout time

is not an issue as long as the time is shorter than the relax-

ation times of the qubits. Also, longer readout times give

greater signal-to-noise ratios, which allow us to achieve

high readout fidelities even in the absence of a quantum-

limited amplifier. Here, the readout is 2.3 µs long, well

below our relaxation times (several tens of microseconds).

After finding the optimal readout parameters, a voltage

threshold is used to differentiate between |0〉 or |1〉 of the

measured qubit.

To accurately extract state probabilities in the pres-

ence of limited readout fidelity, we collect statistics of the

measured qubit population as a function of qubit drive

amplitude (Rabi oscillations). Since the measured popula-

tion increases monotonically with the expected population,

we can renormalize the populations, similarly to Ref. [31].

This calibration allows us to accurately measure the aver-

age quantities 〈σ z
i 〉, 〈σ 1

i σ 2
i 〉 and state probabilities even in

the presence of limited readout fidelities.
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Our two-qubit gate of choice is the CZ. This interac-

tion is induced by parametrically modulating the resonant

frequency of the coupler at a frequency close to the dif-

ference of |11〉 and |02〉. For our device, this frequency

is 255 MHz. However, due to the frequency modulation

and the nonlinear relationship between flux and frequency,

the transition frequencies are slightly lowered. This fre-

quency shift will also induce deterministic phase shifts on

the individual qubits, which we compensate for by apply-

ing Z gates on both qubits after each CZ gate. We choose

a static bias point and a modulation amplitude that yield a

moderate effective coupling strength of 5 MHz between the

two states. From here, we find the modulation frequency

and time that yield a full oscillation between the |11〉 and

|02〉 states. We then fine tune the frequency and time such

that the controlled phase is π and the leakage to |02〉 is

minimal. Here, the final gate frequency and duration are

253 MHz and 271 ns.

We benchmark our single- and two-qubit fidelities using

randomized benchmarking. A sequence of random gates

drawn from the Clifford group is applied together with a

final recovery gate that should take the system back to the

ground state. The number of random gates is varied and

the probability of measuring the ground state is recorded.

In Fig. 7, we plot these probabilities for each qubit individ-

ually and for the two-qubit case. In the single-qubit case, it

is important to note that it is done simultaneously for both

qubits. Generally, the gate fidelities are higher if they are

done in isolation. However, to reduce the total run time

of algorithms, we usually run single-qubit gates in par-

allel. Therefore, simultaneous randomized benchmarking

fidelities are more relevant metrics than isolated ones.

FIG. 7. Randomized benchmarking of single- and two-qubit
gates. Plotted are the probability of measuring the ground state

as a function of the number of Clifford gates applied. Circles

are data, and lines are fits to extract the gate fidelity. For qubits
1 and 2, the extracted single-qubit fidelities (averaged over all

possible single-qubit Clifford gates) are 0.9986 and 0.9993. For

benchmarking of the two-qubit gate, we take a reference (ran-
dom Clifford gates) and an interleaved (a CZ gate between each

Clifford gate) trace to extract the CZ fidelity (0.986).
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