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Improved Synchronverters with Bounded Frequency

and Voltage for Smart Grid Integration
Qing-Chang Zhong, Senior Member, IEEE, George C. Konstantopoulos, Member, IEEE,

Beibei Ren, Member, IEEE, and Miroslav Krstic, Fellow, IEEE

Abstract—Synchronverters are grid-friendly inverters that
mimic conventional synchronous generators and play an im-
portant role in integrating different types of renewable energy
sources, electric vehicles, energy storage systems, etc., to the
smart grid. In this paper, an improved synchronverter is proposed
to make sure that its frequency and voltage always stay within
given ranges, while maintaining the function of the original syn-
chronverter. Furthermore, the stability region characterised by
the system parameters is analytically obtained, which guarantees
that the improved synchronverter is always stable and converges
to a unique equilibrium as long as the power exchanged at the
terminal is kept within this area. Extensive OPAL-RT real-time
simulation results are presented for the improved and the original
self-synchronised synchronverters connected to a stiff grid and
for the case when two improved synchronverters are connected
to the same bus with one operating as a weak grid, to verify the
theoretical development.

Index Terms—Synchronverters, virtual synchronous machines,
stability, bounded frequency range, bounded voltage range, smart
grid integration

NOMENCLATURE

Ps, Qs real and reactive power of the synchronverter

E RMS synchronverter voltage

Vg RMS grid voltage

Vn RMS rated voltage

ω synchronverter angular frequency

ωg grid angular frequency

ωn, θ̇n rated angular frequency

δ power angle

if field-excitation current

ifn rated field-excitation current

Te electromagnetic torque

Tm (virtual) mechanical torque

Pset, Qset real and reactive power references

Dp frequency droop coefficient
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Dq voltage droop coefficient

Mf maximum mutual inductance

J (virtual) moment of inertia

τf time constant of the frequency loop

τv time constant of the voltage loop

G+ jB complex admittance between the synchronverter

and the grid

Gs+jBs shunt complex admittance of the synchronverter

Gg+jBg shunt complex admittance of the grid

∆ωmax maximum angular frequency deviation

∆ifmax maximum field-excitation current deviation

pc maximum percentage of the voltage deviation

I. INTRODUCTION

N
OWADAYS, due to the rapid increase of renewable en-

ergy systems in the electrical grid, distributed generation

(DG) units play a more and more important role in power

system operation. Their integration is achieved using power

electronic converters and hence, the control design of power

converter-fed units connected to the grid has become a major

issue in control and power research communities [1], [2].

Since most of the conventional power plants are connected

to the electrical grid through synchronous generators, several

researchers have proposed control strategies for the power

electronic inverters of distributed generation units to mimic

some aspects of the conventional synchronous generators [1]–

[11], mainly the external functions of synchronous generators

via droop control. A different approach for inverters to provide

grid support is to use electric springs [12]. Nevertheless,

traditional droop controllers lack of inertia and when applied

to the increasing number of renewables connected to the grid,

they directly affect the stability of the power network. To

this end, virtual synchronous generators (VSGs) have been

proposed to introduce the droop control with an inherent

virtual inertia that can be adjusted according to the power

system requirements [5], [13]–[17]. In particular, a comparison

between the dynamic performance of VSGs and traditional

droop controllers can be found in [18], [19]. The importance

of the inertia for the stability of the system can be observed in

[20], where frequency oscillations are damped by alternating

the moment of inertia in real time.

Although different types of VSGs have been proposed in

the literature, the idea of operating inverters in a grid-friendly

manner in order to mimic the complete dynamic behaviour

of synchronous generators was developed as the concept of
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synchronverters [1], [21], [22]. One of the important ad-

vantages of the synchronverter is that some of the system

parameters, such as the inertia, the friction coefficient, the

field and mutual inductance, can be suitably chosen in order

to improve the dynamic performance. The synchronverter

represents a promising technology in various applications,

such as HVDC transmission [23], [24], MMC [16], rectifier-

fed loads [25], STATCOM [26], and wind power systems [27].

Furthermore, the synchronisation unit that has been believed to

be indispensable for grid-tied converters has been removed for

the first time to form self-synchronised synchronverters [28],

which considerably reduces the complexity of the controller

and improves the performance. Therefore, most of the active

players (power plants, DGs and loads) that are connected to the

grid can operate in the same manner, which forms a promising

architecture for the next-generation smart grid1. This can

significantly improve the stability, scalability, reliability and

security of future power systems.

Although controlling power inverters as synchronverters

creates a universal way of operating all power systems, the

stability of synchronverters and particularly maintaining both

the voltage and the frequency within given ranges have not

been established yet. This is not an easy task due to the non-

linearities of the controller, e.g. the calculation of the real

power and the reactive power, and the coupling between the

frequency and the field-excitation current loops. Although lo-

cal stability results of grid connected inverters can be provided

using the small-signal analysis and linearization [18], [29]–

[31], the non-linear dynamics of the system make non-linear

analysis essential to achieve global stability results. Recently,

a non-linear control strategy with a power-damping property

was proposed to guarantee non-linear system stability [6],

while requiring knowledge of the filter parameters. Several

approaches for maintaining the stability of synchronous gen-

erators have been proposed in the literature, which have the

same dynamics with the synchronverter, but the field-excitation

current is usually considered as constant [32], [33]. As a result,

according to the authors’ knowledge, synchronvertes that can

maintain tight bounds for the output voltage and frequency and

guarantee stability based on the accurate non-linear dynamic

model of the system has not been solved yet. It is worth

mentioning that although saturation units can be applied to

maintain given bounds for the voltage and the frequency, this

often leads to instability due to the problem of integrator

windup [31]. To overcome this issue, anti-windup methods

could be included in the controller to change the original

operation but this can no longer guarantee system stability

in the original form or require additional knowledge of the

system structure and parameters [34], [35].

In this paper, an improved version of the synchronverter

connected to the grid with an LCL filter is proposed. The non-

linear model of the system is firstly derived using the Kron-

reduced network approach [36]. Then, both the frequency

loop and the field-excitation current loop are implemented

by using a bounded controller, inspired by the bounded

1http://smartgrid.ieee.org/september-2013/973-how-to-achieve-completely-
autonomous-power-in-the-next-generation-of-smart-grids

integral controller recently proposed in [37]. The improved

synchronverter approximates the behaviour of the original syn-

chronverter under normal operation (near the rated value) and

guarantees given bounds for both the frequency and the voltage

independently from each other, without the need of additional

saturation units that will complicate the proof of stability.

Hence, depending on the grid voltage and the parameters of

the synchronverter, the area where a unique equilibrium exists

is obtained and the convergence to the equilibrium is proven

for the given voltage and frequency bounds. According to the

analysis, the stability of the self-synchronised synchronverter

[28], where the synchronisation unit is no longer required, is

proven as well. This may shed new light on establishing the

stability of next-generation smart grids, which are dominated

by power-electronic converters. A preliminary version of the

proposed approach was presented in [38], where the bounded

control structure was only implemented in the field-excitation

current loop of the original synchronverter and the stability in

the sense of boundedness was shown. This paper extends the

method to maintain given bounds for both the field-excitation

current and the frequency, which leads to a specific bound of

the synchronverter voltage that is analytically calculated, and

guarantees the asymptotic stability of the closed-loop system

and the uniqueness of a desired equilibrium point based on

non-linear dynamic modeling. Additionally, small variations

of the grid voltage and frequency are also considered such as

in the case of a weak grid. It should be noted that the improved

version of the synchronverter presented in this paper and the

stability analysis does not obsolete the existing methods; in

contrary it can be combined with some of them, e.g. the

alternating inertia [20], to further enhance the dynamic per-

formance. Extensive real-time simulation results are obtained

from an OPAL-RT real-time digital simulator comparing the

original and the improved self-synchronised synchronverter to

verify the proposed strategy under both normal and abnormal

conditions (e.g., with errors in the measurement and sudden

disturbances) as well as the case of two synchronverters

connected to a common bus with one operating in the droop

mode as a weak grid. The second scenario investigates both

the stand-alone operation of the proposed method as well as

the operation with a weak grid.

In this paper, the grid is initially assumed to be stiff

for the stability analysis. Later, some analysis and results

are presented here when the grid voltage and frequency are

varying or when two improved synchronverters are connected

to the same bus with one operating as a weak grid to give

some flavor of this problem.

II. OVERVIEW OF SYNCHRONVERTERS

The complete dynamic model of the synchronverter consists

of a power part and a control part [1], [21]. The power part of

the synchronverter consists of a three-phase inverter connected

to the grid through an LCL filter. Using the Kron-reduced

network approach [36], the node of the capacitor bank can

be eliminated, which results in the per-phase system of the

synchronverter connected to the grid as shown in Fig. 1. In this

representation, the synchronverter and the grid are connected
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Figure 1. Per-phase diagram with the Kron-reduced network approach

via a complex admittance Y = G + jB with conductance G
and susceptance B, while Gs, Gg and Bs, Bg are the shunt

conductance and susceptance of the synchronverter and the

grid, respectively. These values can be found using the star-

delta transformation of the LCL filter. Thus, the real power

and reactive power at the output of the synchronverter can be

found as

Ps = 3 (Gs +G)E2 − 3EVg (G cos δ +B sin δ) (1)

Qs = −3 (Bs +B)E2 − 3EVg (G sin δ −B cos δ) ,(2)

where the power angle δ= θ − θg is the phase difference

between e and vg, and it is often small [39].

The control part of the synchronverter consists of a fre-

quency ω = θ̇ loop and a field-excitation current Mf if loop.

The dynamics of the frequency ω are given by [1], [21]:

ω̇ =
1

J
(Tm − Te)−

Dp

J
(ω − ωr), (3)

where Te is the electromagnetic torque (hence Ps = Teω),

Tm is the mechanical torque corresponding to the desired real

output power Pset = Tmωn, the reference frequency ωr is

either equal to the grid frequency ωg > 0 or to the rated

frequency ωn > 0 when the frequency droop is disabled or

enabled, respectively. Both J and Dp are positive constants.

The time constant of the frequency loop is given as τf = J
Dp

[1] and therefore the inertia J is calculated as

J = Dpτf , (4)

where τf can be chosen similar or much smaller compared to

the case of a physical synchronous generator. The dynamics

of the field-excitation current if are given by [1], [21]:

i̇f =
1

KMf

(Qset −Qs) +
Dq

KMf

(Vn − Vg), (5)

where K and and Dq are positive. Note that the capacitor

voltage Vc, instead of Vg , can be used [21].

The time constant of the field excitation current loop is given

as τv ≈ K
ωnDq

[1] and therefore the gain K is calculated as

K = ωnDqτv, (6)

where τv is often chosen much larger than τf . This will be

further explained in Subsection III-C.

According to [1], [21] the RMS phase output voltage of the

synchronverter is

E =
ωMf if√

2
. (7)

The complete dynamic model of the synchronverter is given

by (3) and (5), together with (1), (2) and (7), taking into

account also that δ̇ = ω − ωg .

III. SYNCHRONVERTERS WITH BOUNDED FREQUENCY

AND VOLTAGE

In this section, an improved synchronverter is proposed

to maintain given bounds around the rated values for the

voltage and the frequency at all times (transients, disturbances,

etc.) and guarantee the stability of the closed-loop system.

Particularly, a bounded dynamic controller is designed for

the frequency and field-excitation dynamic loops to achieve

the desired bounded performance without introducing any

additional saturation units or suffering from integrator windup.

These continuous-time bounded dynamics allow the investiga-

tion of the area of existence of a unique equilibrium point and

facilitate the stability proof for convergence to the point.

A. The proposed controller

According to utility regulations, the frequency ω of a

synchronverter should be maintained within a range around the

rated frequency ωn, i.e., ω ∈ [ωn −∆ωmax, ωn +∆ωmax],
where there is normally ∆ωmax ≪ ωn. A common approach

is to use a saturation unit at the output of the integrator (3) but

this can cause integrator windup and instability [31]. In this

paper, the recently proposed bounded integral controller [37]

is modified to suit the needs of the frequency dynamics for

the synchronverter. The frequency loop (3) is then modified

and implemented as

ω̇=−k

(

(ω−ωn)2

∆ω2
max

+ω2
q−1

)

(ω−ωn)+ω2
q

(

1

J
(Tm−Te)−

Dp

J
(ω−ωr)

)

(8)

ω̇q=−k

(

(ω−ωn)2

∆ω2
max

+ω2
q−1

)

ωq−
ωq(ω−ωn)

∆ω2
max

(

1

J
(Tm−Te)−

Dp

J
(ω−ωr)

)

(9)

with the initial control states ω0 = ωn, ωq0 = 1, and k being

a positive constant gain.

In order to understand the controller (8)-(9), consider the

Lyapunov function

W =
(ω − ωn)

2

∆ω2
max

+ ω2
q . (10)

Taking the time derivative of W while considering (8)-(9), it

results after some calculations in

Ẇ = −2k

(

(ω − ωn)
2

∆ω2
max

+ ω2
q − 1

)

W.

Given the initial conditions ω0 = ωn and ωq0 = 1, there is

Ẇ = 0 ⇒W (t) =W (0) = 1, ∀t ≥ 0.

Hence, ω and ωq will start and stay thereafter on the ellipse

Wω =

{

ω, ωq ∈ R :
(ω − ωn)

2

∆ω2
max

+ ω2
q = 1

}

.

Note that the ellipse Wω is centered at (ωn, 0) on the

ω − ωq plane as shown in Fig. 2(a), which means the fre-

quency is bounded within a range around the rated value,

i.e. ω ∈ [ωn −∆ωmax, ωn +∆ωmax], independently from

the field-excitation current if and the function 1

J
(Tm − Te)−

Dp

J
(ω − ωr) that needs to be regulated to 0.
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Using the mathematical transformation ω = ωn +
∆ωmax sinφ and ωq = cosφ and taking into account that

ω and ωq operate on Wω , then from (8) it yields

φ̇ =
ωq

∆ωmax

(

1

J
(Tm − Te)−

Dp

J
(ω − ωr)

)

, (11)

which means that ω and ωq will travel on Wω with angular

velocity φ̇. Hence, when 1

J
(Tm − Te) − Dp

J
(ω − ωr) = 0,

as required at the steady state [21], there is φ̇ = 0 and both

controller states ω and ωq will converge at the equilibrium

point (ωg, ωqe) as shown in Fig. 2(a). It should be highlighted

that starting from point (ωn, 1), both ω and ωq are restricted

only on the upper semi-ellipse of Wω, since if at any case (e.g.

during transient), the trajectory tries to reach the horizontal

axis, then ωq → 0 and from (11) there is φ̇→ 0 independently

from the non-linear expression 1

J
(Tm − Te) − Dp

J
(ω − ωr).

This means that the controller states will slow down until the

system reacts, changes the sign of the angular velocity from the

term 1

J
(Tm − Te)− Dp

J
(ω − ωr) and forces them to converge

to the desired equilibrium. Hence, no oscillation around the

whole ellipse can occur, which is an important property.

1

Wω 

ωq

ω Δωmax
ωg

ωqe

φɺ

ωn

}

1

Wi 

ifq

if Δifmax
ife

ifqe

ψɺ

ifn
}

(a) (b)

Figure 2. Phase portrait of the frequency and field-excitation current dynam-
ics: (a) on the ω − ωq plane and (b) on the if − ifq plane, respectively

Since ω and ωq operate on the upper semi-ellipse of Wω and

there are ω ≈ ωn and ωq ≈ 1 around the nominal operational

point, then equation (8) becomes

Jω̇=ω2
q ((Tm−Te)−Dp(ω−ωr)) ≈ Tm−Te−Dp(ω−ωr) .

(12)

A direct comparison of this equation with (3) implies that

the proposed synchronverter approximates the dynamics of the

original synchronverter around the nominal operational point,

while additionally guarantees a given bound for the frequency

at all times. Note also that when ω → ωn ±∆ωmax, i.e. the

frequency tries to reach the upper or lower limits, then from

(12) it holds that ω̇ → 0 which means that the integration

slows down. Therefore, the proposed controller (8)-(9) inherits

an anti-windup structure in a continuous-time manner that

facilitates the investigation of stability, while at the same

time maintains the original performance of the synchronverter

around the rated values.

Utility regulations also require the RMS output voltage

E of a synchronverter to be maintained within a range

around the rated voltage Vn, i.e. E ∈ [Emin, Emax] =
[(1−pc)Vn, (1+pc)Vn], where pc is often around 10%. In

other words, according to (7), the condition

(1− pc)Vn ≤ ωMf if√
2

≤ (1 + pc)Vn (13)

should hold. Since the frequency ω is proven to satisfy ω ∈
[ωn−∆ωmax, ωn+∆ωmax] by (8), there is,

(1− pc)Vn
√
2

(ωn +∆ωmax)Mf

≤ if ≤ (1 + pc)Vn
√
2

(ωn −∆ωmax)Mf

. (14)

This can be rewritten as

|if − ifn| ≤ ∆ifmax, (15)

with

ifn =
Vn

√
2 (ωn + pc∆ωmax)

Mf (ωn +∆ωmax) (ωn −∆ωmax)
(16)

and

∆ifmax =
Vn

√
2 (pcωn +∆ωmax)

Mf (ωn +∆ωmax) (ωn −∆ωmax)
. (17)

Since ∆ωmax ≪ ωn normally, there are

ifn ≈ Vn
√
2

ωnMf

and ∆ifmax ≈ pcVn
√
2

ωnMf

.

In order to achieve (15), similarly to the frequency dy-
namics, the field-excitation loop (5) can be modified and
implemented as

i̇f = −k

(

(

if − ifn
)2

∆i2
fmax

+ i2fq − 1

)

(if − ifn)

+ i2fq

(

1

KMf

(Qset −Qs) +
Dq

KMf

(Vn − Vg)

)

(18)

i̇fq = −k

(

(

if − ifn
)2

∆i2
fmax

+ i2fq − 1

)

ifq

−

ifq(if − ifn)

∆i2
fmax

(

1

KMf

(Qset−Qs)+
Dq

KMf

(Vn−Vg)

)

(19)

with initial control states if0 = ifn and ifq0 = 1.

A similar Lyapunov analysis can show that the states if and

ifq will start and stay thereafter on the ellipse

Wi =

{

if , ifq ∈ R :
(if − ifn)

2

∆i2fmax

+ i2fq = 1

}

centered at (ifn, 0) on the if−ifq plane, as shown in Fig. 2(b),

which means the field-excitation current is bounded within the

range given by (15), independently from the frequency ω and

the function 1

KMf
(Qset −Qs)+

Dq

KMf
(Vn − Vg) that needs to

be regulated to 0. In the same framework, if and ifq will travel

only on the upper semi-ellipse of Wi with angular velocity

ψ̇ =
ifq

∆ifmax

(

1

KMf

(Qset −Qs) +
Dq

KMf

(Vn − Vg)

)

,

as shown in Fig. 2(b).

The above design has actually resulted in an improved

synchronverter with its frequency ω and voltage E sat-

isfying ω ∈ [ωn −∆ωmax, ωn +∆ωmax] and E ∈
[(1− pc)Vn, (1 + pc)Vn], respectively. These are crucial prop-

erties for guaranteeing the system stability.

Since the given bounds are established independently from

the non-linear functions of the field-excitation current loop and

the frequency loop, this fact also applies to the boundedness of

the self-synchronised synchronverter proposed in [28], which

no longer requires a PLL. This can be achieved, as shown

in Fig. 3, by replacing the dynamics of the frequency loop
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and the field-excitation current loop of the self-synchronised

synchronverter with the control laws (8)-(9) and (18)-(19),

respectively. Since the proposed dynamics (8)-(9) and (18)-

(19) introduce bounded outputs independently from the inputs

(zero gain property) [37], the voltage and frequency bounds

are guaranteed independently from the PI control block at the

frequency loop or the first-order system used to create the

virtual current is shown in Fig. 3.
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Figure 3. The control part of the proposed improved self-synchronised
synchronverter

B. Existence of a unique equilibrium

It has been shown that the improved synchronverter has a

bounded closed-loop solution for the frequency and the voltage

(resulting from the field excitation current). Here, the existence

of a unique equilibrium (with frequency ωe and voltage Ee)

and the convergence to this point will be shown analytically.

1) Theoretical analysis: Assume that the grid is stiff with

constant grid voltage Vg and constant frequency ωg to facilitate

the analysis. Then, at the steady state, there should be ωe = ωg

because the frequency of the complete system should be

the same. It has been shown that the control laws do not

change the synchronverter operation at the steady state under

normal operation. Then, from the equations of the improved

synchronverter control part at the steady state, i.e., (18)-(19)

and (8)-(9) or (5) and (3) respectively, the real power Ps and

reactive power Qs delivered by the synchronverter are

Ps =
ωg

ωn

Pset −Dpωg (ωg − ωr) , (20)

Qs = Qset +Dq (Vn − Vg) , (21)

which are constant for given constant references Pset, Qset.

From the controller operation, it is guaranteed that

ω ∈ [ωn −∆ωmax, ωn +∆ωmax]. Since ωe = ωg at the

steady state, the maximum frequency deviation ∆ωmax =
2π∆fmax should be selected so that the grid frequency,

which usually slightly deviates from ωn, falls into the range

[ωn −∆ωmax, ωn +∆ωmax], although a smaller ∆fmax can

guarantee a tighter frequency bound. Usually, it is enough to

choose ∆fmax = 0.5Hz.

Moreover, the steady-state value of the voltage Ee, resulting

from the field excitation current value ife and the frequency ωe

from (7), should be unique and remain inside the given range

E ∈ [Emin, Emax] = [(1− pc)Vn, (1 + pc)Vn]. To this end,

rewrite (1) and (2) as

Ps − 3 (Gs +G)E2 = −3EVg (G cos δ +B sin δ) , (22)

Qs + 3 (Bs +B)E2 = −3EVg (G sin δ −B cos δ) . (23)

Taking the sum of the squares of (22) and (23), then it yields

(

Ps − 3 (Gs +G)E2
)2

+
(

Qs + 3 (Bs +B)E2
)2

= 9E2V 2
g

(

B2 +G2
)

, (24)

which results in the following second order equation of E2

with respect to Ps and Qs:

9
(

(Gs +G)
2
+ (Bs +B)

2
)

E4

−
(

6Ps (Gs +G)− 6Qs (Bs +B) + 9V 2
g

(

B2 +G2
))

E2

+P 2
s +Q2

s = 0.
(25)

As a result,

E2 =
2γPs − 2ηQs + 3αV 2

g

6β
±

√
∆

6β
, (26)

where

∆=−4 (γPs + ηQs)
2+αV 2

g

(

12γPs − 12ηQs + 9αV 2
g

)

≥ 0 (27)

in order to obtain a real solution Ee. Here, α = B2 + G2,

γ = Gs+G and η = Bs+B with β = γ2+ η2. Note that for

a typical LCL filter there is γ > 0 and η < 0. Since ∆ ≥ 0,

then if
2γPs − 2ηQs + 3αV 2

g

6β
> 0, (28)

the solution with the + sign, denoted as E2
+, is positive and

hence, E+ exists. The negative one (−E+) is not of interest
and can be ignored. In order for E+ to fall into the given
range, there should be

(1− pc)
2
V

2
n ≤

2γPs − 2ηQs + 3αV 2
g

6β
+

√
∆

6β
≤(1 + pc)

2
V

2
n .

(29)

Since a unique solution is required in the given range, then if

0 <
2γPs − 2ηQs + 3αV 2

g

6β
≤ (1− pc)

2V 2
n , (30)

which includes inequality (28), then the solution with the −
sign, denoted as E2

−

, satisfies

E2
−

≤ (1− pc)
2V 2

n .

Hence, if E
−

exists then it will be outside of the range.

As a result, under conditions (27), (29) and (30), there

exists a unique equilibrium Ee inside the given range

[(1− pc)Vn, (1 + pc)Vn] with 0 ≤ pc < 1 for the synchron-

verter voltage E and it is

Ee = E+ =

√

2γPs − 2ηQs + 3αV 2
g

6β
+

√
∆

6β
.
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Note that, when pc is large, from (30) it may result in an

area on the Ps − Qs plane that does not contain the origin

Ps = Qs = 0, at which E+ = Vg
√

α
β

and E
−
= 0. Practically,

the origin should be included to represent the operation before

connecting to the grid. For Ps = Qs = 0, the inequality (30)

can be simplified as

0 ≤ pc ≤ 1− Vg
Vn

√

α

2β
< 1, (31)

which provides a maximum practical value for pc.

Since Ps = Qs = 0 results in E+ = Vg
√

α
β

, this also

gives important information for the LCL filter design, i.e. there

should be α
β
≈ 1 in order to have a smooth connection with

the grid (E+ ≈ Vg). For the parameters in Table I, there is
α
β
= 1.0006. Indeed this is the case.

Table I
SYNCHRONVERTER PARAMETERS

Parameters Values Parameters Values

Ls 0.15mH Lg 0.15mH

Rs 0.045Ω Rg 0.045Ω

C 22µF nominal frequency 50Hz

R (parallel to C) 1000Ω Vn 12Vrms

rated power 100VA DC-link voltage 42V

2) A numerical example: According to conditions (27), (29)

and (30), for a given voltage range, the unique solution Ee

of the synchronverter voltage inside the voltage range can

be calculated from the values of Ps and Qs. Then the area

where there exists a unique equilibrium can be plotted on the

Ps−Qs plane. In order to demonstrate this further, the system

with parameters given in Table I is taken as an example. Both

solutions E+ and E
−

are plotted for different values of Ps

and Qs and shown in Fig. 4. The white curve between the

surfaces of E+ and E
−

defines the values of Ps and Qs for

which E+ = E
−

, i.e. ∆ = 0.

Figure 4. E+ surface (upper) and E− surface (lower) with respect to Ps

and Qs

The contour curves of the surface are shown in Fig. 5 on

the Ps − Qs plane for pc = 10% around the rated voltage

Vn. Note that pc = 10% satisfies (31), which gives pc ≤
0.2927 when Vg = Vn. In the area inside the green lines,

E+ falls into the range and in the area inside the red lines

E
−

falls into the voltage range. Conditions (27), (29) and

(30) characterize that the area in which there exists a unique

equilibrium point E+ = Ee and is inside the area between the

green lines and below the gray dashed line in Fig. 5. The area

where E
−

exists is excluded by the gray dashed line because

it would lead to excessive power that exceeds the capacity of

the synchronverter.
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n

E
+
=V

n

Condition (30)

Figure 5. Illustration of the area where E+ (inside the green lines) and E−

(inside the red lines) exist and fall inside the voltage range

The area where there exists a unique equilibrium Ee inside

the voltage range is zoomed in and shown in Fig. 6(a) for two

different voltage ranges with pc = 0.05 and pc = 0.1, i.e. 5%
or 10% around the rated voltage Vn, respectively, when the

grid voltage is equal to the rated voltage (Vg = Vn). The 5%
range corresponds to the area within the blue lines, while the

10% range corresponds to the area within the green lines.

When the grid voltage is 5% lower than the rated voltage,

the area where there exists a unique equilibrium Ee inside the

voltage range is shown in Fig. 6(b). It can be seen that the area

is shifted towards the first quadrant, which means for the same

voltage range more power could be sent out but less power

could be drawn. This is expected and reasonable. When the

grid voltage is 5% higher than the rated voltage, the area shifts

towards the third quadrant, as shown in Fig. 6(c). Hence, in

practice, when determining the capacity of the synchronverter

the maximum variation of the grid voltage should be taken

into account as well. This provides a flavor of the weak-grid

case where the grid RMS voltage can slightly vary.

C. Convergence to the equilibrium

Based on the analysis of Subsections III-A and III-B with

Ps and Qs satisfying conditions (27), (29) and (30), it has been

shown that by using the improved synchronverter (8)-(9) and

(18)-(19), it is guaranteed that the synchronverter connected

to the grid results in a bounded voltage E(t) and frequency

ω(t) in a given range where a unique equilibrium (Ee, ωe)
exists. Additionally, by choosing τf ≪ τv , then according to

[40, Chapter 11], the frequency and field excitation current

dynamics can be viewed as a two-time-scale dynamic system

where the frequency dynamics are fast and the field-excitation

dynamics are slow with respect to each other. The stability of

these dynamics can be shown below.
1) Stability of the fast dynamics: According to (3), (1) and

(7), the fast frequency dynamics around the equilibrium point
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Figure 6. Illustration of the area where a unique equilibrium exists in the voltage range when the grid voltage is (a) at the rated value, (b) 5% lower than
the rated value and (c) 5% higher than the rated value

(δe, ωg) are given as

[

∆δ̇
∆ω̇

]

=





0 1
3Mf ifVg(B cos δe−G sin δe)

√

2J
−
(

Dp

J
+

3(Gs+G)M2

f i2f
2J

)





[

∆δ
∆ω

]

,

(32)

because according to the two-time-scale analysis and the

boundedness of if from (18), if > 0 and can be regarded as a

constant with respect to ω. Hence, for δe ∈
(

tan−1
(

B
G

)

, π
2

]

,

the equilibrium point of the fast frequency dynamic system

(32) can be easily proven to be asymptotically stable uniformly

in if because if is restricted in a positive set. Note that B < 0
for typical LCL filters. Based on the fact that the bounded

system (8) maintains the asymptotic behavior of the original

system [37] with a given tight bound for the frequency ω, the

equilibrium point of the fast frequency dynamics (8) is asymp-

totically stable since ω, ωg ∈ [ωn −∆ωmax, ωn +∆ωmax] ,
i.e., the equilibrium point exists inside the given bound.

2) Stability of the slow dynamics: Once the frequency

settles down quickly, according to (32), there is δ̇ = 0 and

ω̇ = 0. As a result, ω = ωg . For the field excitation dynamics

(18)-(19), the slow dynamics of if in (18)-(19) result in an

autonomous system
[

i̇f i̇qf
]T

= f (if , iqf ) having the same

equilibrium point as the original non-linear system, because

it is unique inside the bounded range. The structure of the

field excitation current (18)-(19) prohibits the existence of

limit cycles across the whole closed curve Wi, as explained

in Subsection III-A, and the fact that if and ifq operate

on the ellipse Wi and stay exclusively above the horizontal

axis, i.e. ifq ≥ 0. If if and ifq pass the equilibrium point

and try to reach the horizontal axis, as shown in Fig. 2(b),

their angular velocity approaches zero, i.e. they slow down

until the system acts and changes the sign of the angular

velocity, forcing the states to oscillate around the equilibrium

point and not continuously oscillate around the whole ellipse

Wi. As a result, the field-excitation current dynamics (18)-

(19) are described by a second-order autonomous system

which cannot have a periodic solution, corresponding to a

closed orbit on the if − ifq plane. Additionally, no chaotic

solution exists according to the Poincare-Bendixon theorem

[41] and the solution of the system asymptotically converges

to the unique equilibrium point (ife, ifqe) corresponding to

the desired equilibrium of the system with (Ee, ωe) [40].

As a result, for τf ≪ τv and for Ps and Qs given

from (20)-(21) and satisfying conditions (27), (29) and (30),

which can be achieved from the synchronverter design, the

improved grid-connected synchronverter is stable with given

bounds for the voltage E ∈ [(1− pc)Vn, (1 + pc)Vn] and the

frequency ω ∈ [ωn −∆ωmax, ωn +∆ωmax] and asymptot-

ically converges to a unique equilibrium point, when ωg ∈
[ωn −∆ωmax, ωn +∆ωmax] and pc satisfies (31).

In practice, the capacity of a synchronverter, which can be

represented as a circle centered at the origin of the Ps − Qs

plane, is limited and pre-defined at the design stage. If this

circle, e.g. the ones shown in red in Fig. 6, falls into the

area where a unique equilibrium exists, then the stability of

the synchronverter is always guaranteed within the voltage

range. If the real power and/or the reactive power of the

synchronverter exceed the circle but still remain inside the

bounded voltage area then the synchronverter is still stable

but it could damage the synchronverter itself. In order to

avoid damage due to overloading, the power handled by the

synchronverter should be limited, e.g. to 125% for 10 minutes,

150% surge for 10 seconds. This is an excellent property that

could be adopted to enhance the fault-ride through capability

of grid-connected inverters, e.g. when there is a need to send

(controlled) reactive power to the grid in case of a fault on

the grid and to maintain the safe operation of power systems.

This offers the potential for all synchronverters to work at the

maximum capacity without causing instability issues.

IV. VALIDATION VIA REAL-TIME SIMULATIONS

A. One synchronverter connected to a stiff grid

In order to verify the proposed strategy, the original grid-

tied self-synchronised synchronverter as reported in [28] is

compared to the improved self-synchronised synchronverter

shown in Fig. 3 using an OPAL-RT real-time digital simulator.

The system parameters are the same as those shown in Table I

and the scenario tested is the same as the one described in [28]

to facilitate direct comparison. The controller parameters are

chosen as k = 1000, ∆ifmax = 0.15ifn (15% difference of

the rated value) and ∆ωmax = π rad/s, i.e., ∆fmax = 0.5Hz.

This leads to Emax ≈ 1.15Vn and Emin ≈ 0.85Vn as the

upper and lower bounds for the synchronverter voltage.

The system starts operating in the self-synchronization

mode with Pset = 0 and Qset = 0 at t = 5 s, with the

switch SC (Fig. 3) set at Position 1, SP turned ON, SQ
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Time: [5 s/div] 

SV 
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SV 

Ps: [50 W/div] 

SV 
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(a) (b) (c)

Figure 7. Real-time simulation results comparing the original (SV) with the improved self-synchronised synchronverter (improved SV): (a) real power Ps

and reactive power Qs, (b) frequency f and field-excitation current (Mf if ) and (c) voltage E (normalised) and the amplitude Vc − Vg

turned OFF and the circuit breaker turned OFF. The initial

transient observed is due to the initial conditions and the

calculation of the amplitude but it does not affect the system

since both synchronverters have not been connected to the grid

yet. Note that the grid voltage is set to be 2% higher than the

rated value in order to test the case where the grid voltage

differs from the rated voltage. As it can be seen from Fig.

7(b), during the self-synchronisation mode, the synchronverter

frequency is quickly synchronised with the grid frequency. At

t = 6 s, the circuit breaker is turned ON, thus connecting the

synchronverter to the grid, and SC is changed to Position 2.

Very little transient is observed. At t = 10 s, the real power

reference is changed to Pset = 80W and at t = 15 s, the

reactive power reference is changed to Qset = 60Var. Both

types of synchronverters respond to the reference values well,

as shown in Fig. 7(a). At t = 20 s, a 0.2% step increase at

the grid frequency fg , i.e., from 50Hz to 50.1Hz, is assumed.

Both types of synchronverters respond to the frequency change

well. The transient change in the real power is small. At

t = 25 s, Switch SP is turned OFF to enable the frequency

droop mode, which leads to a drop of the real power Ps.

Switch SQ is turned ON at t = 30 s to enable the voltage

droop mode, which results in a drop of the reactive power

Qs. This forces the synchronverter voltage to regulate closer

to the rated value (1 pu) as it is clearly shown in the normalised

voltage amplitude E in Fig. 7(c). At t = 35 s, the grid

frequency is changed back to 50Hz. Both synchronverters

behave similarly to increase the real power. Actually, during

the first 40 s, both the original and the improved synchronverter

have behaved almost the same, which verifies the fact that the

improved synchronverter maintains the original performance

during normal operation. At t = 40 s, an increasing error is

assumed at the grid voltage sensor with the rate of 10%/sec,
i.e. the measured voltage becomes 10%/sec less than its actual

value, which constitutes an abnormal operation and forces

the power to increase, leading the original synchronverter to

instability. As shown in Fig. 7(b), the frequency of the original

synchronverter starts diverging away from the grid frequency,

and the field-excitation current increases dramatically. On the

other hand, the frequency and the field-excitation current of

the improved synchronverter remain inside the given bounded

range as expected. Particularly, the field excitation current
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Figure 8. Phase portraits of the proposed controller states for the field-
excitation loop (Mf if ) and the frequency loop (f )
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Figure 9. Two synchronverters connected to the same bus

and the voltage smoothly converge to their upper bounds as

shown in Fig. 7(b) and 7(c), respectively. The frequency of

the improved synchronverter is still maintained equal to the

grid frequency, opposed to the original synchronverter, and

the reactive power converges to the upper limit as described

in Fig. 6 due to the convergence of the field-excitation current

to the upper bound. Hence, both the frequency and the field-

excitation current remain inside their given bounds at all times.

In order to further verify the theory, the trajectories of the

control states Mf if , Mf ifq and f = ω
2π

, fq = ωq are shown

in Fig. 8 using the data from the real-time simulations. It is

shown that they indeed stay on the desired ellipses as explained

in Subsection III-A.
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Figure 10. Real-time simulation results of two improved self-synchronverters (improved SV1 and SV2) connected at the same bus: (a) real power Ps1, Ps2

and reactive power Qs1, Qs2, (b) frequency f and field-excitation current (Mf if ) and (c) voltage E and voltage difference Vc − Vo (normalised)
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Figure 11. Controller states of the field-excitation loop (Mf if ) and the
frequency loop (f ) for the case with two improved synchronverters connected
to the same bus

Table II
SYSTEM PARAMETERS FOR THE CASE WITH TWO SYNCHRONVERTERS

Parameters Values Parameters Values

Ls 2.2mH Lg 2.2mH

Rs 0.5Ω Rg 0.5Ω

C 22µF nominal frequency 50Hz

R (parallel to C) 1000Ω Vn 110Vrms

rated power 1 kVA DC-link voltage 500V

B. Two synchronverters connected to the same bus with one

operating in the droop mode as a weak grid

To further evaluate the performance of the improved syn-

chronverter, the case of two self-synchronised synchronverters

connected to the same bus together with a local load (three-

phase resistive load) is investigated using the real-time digital

simulator. The diagram of the system is shown in Fig. 9. The

system parameters, which are the same for both synchron-

verters, are shown in Table II. The maximum allowed field-

excitation current deviation is chosen as ∆ifmax = 0.02ifn
(2% around the rated value) and the maximum frequency

deviation ∆fmax = 0.25Hz (0.5% of the rated frequency)

is used for both improved synchronverters. This leads to

an approximately 2.5% range for the RMS voltage (much

smaller than that in the previous simulation). The rest of the

controller gains and coefficients are k = 1000, Dp = 2.0264,

Dq = 222.68, K = 1400 and J = 0.0041, which have been

obtained with the time constants τf = 0.002 s and τv = 0.02 s.

Initially, the first synchronverter is connected to a local load

with resistance RL = 100Ω to investigate the case of stand-

alone operation. With its droop functions enabled during the

whole operation with Pset1 = 0W and Qset1 = 0Var to

provide frequency and voltage support, it functions as a weak

grid for the second synchronverter. The system starts operating

at t = 5 s and both the output voltage and the frequency of

improved synchronverter 1 are regulated close to the rated

values due to the droop functions, as shown in Fig. 10(b).

The frequency drops while the real power Ps1 increases to

feed the load and the reactive power Qs1 compensates the

reactive power of the filter. During this period, the second syn-

chronverter is operated in the self-synchronization mode and

is synchronised very quickly with the voltage and frequency

of the first synchronverter. At t = 10 s, the circuit breaker

closes and the second synchronverter is connected to the same

bus, with Pset2 = 0W, Qset2 = 0Var in the set mode. As

shown in Fig. 10(a), the real and reactive power of the second

synchronverter are regulated to zero after a short and small

transient. At t = 15 s, Pset2 changes to Pset2 = 800W and

at the time instant t = 20 s, Qset2 = 100Var leading the real

and reactive power of the second synchronverter to smoothly

converge to the desired values. The first synchronverter acts

as a weak grid and absorbs the excessive power to reach

power balance, which causes the frequency to exceed the rated

value. At t = 25 s, the frequency droop mode is enabled

for the second synchronverter, leading to a drop of the real

power. At t = 30 s, the voltage droop is enabled, forcing the

reactive power to slightly drop as well. Both functions assist

the frequency and the field excitation current to regulate closer

to their rated values, as shown in Fig. 10(b). In order to verify

the boundedness of the frequency and the voltage of the system

and the stable operation under extreme scenarios, at t = 35 s,

another three-phase load with resistance 10Ω is added in

parallel with RL and is disconnected at t = 36 s. This creates

a sudden disturbance and requires excessive power from both

synchronverters, as can be seen from Fig. 10(a). The field-

excitation currents of both synchronverters are regulated at the

maximum allowed value and the frequency at the minimum

value according to the theory and hence the whole system

stability is ensured, as shown in 10(b). Additionally, when

the system returns to the original condition (at t = 36 s) then

one-by-one the synchronverter frequencies and field-excitation

currents return to their original values, verifying that the

proposed design does not suffer from integrator windup that

can destabilize the entire system. The frequencies recover

much faster than the field-excitation currents, as expected.

As can be seen from in 10(c), the voltage E remains within
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the tight bound all the times for both synchronverters. The

controller states, as shown in Fig. 11, once again, operate

on the desired ellipses, verifying the theoretical development.

The improved self-synchronised synchronverter can indeed

maintain the voltage and frequency within given bounds at all

times and guarantee the stability of the entire system under

both normal and abnormal scenarios.

V. CONCLUSIONS

In this paper, an improved synchronverter with bounded

frequency and voltage has been proposed. It is proven that

the original behavior of the synchronverter is maintained

near the rated value and additional bounds are guaranteed

for the frequency and the field-excitation current (voltage).

The stability and convergence to the unique equilibrium are

established for a given voltage range using the non-linear

model description and the complete area where the unique

equilibrium exists is characterized.

Although it is assumed that the grid is stiff to derive the

existence condition of an equilibrium point, the variations of

the grid voltage and their effect on the desired equilibrium

have been also investigated, with several real-time simulation

results provided even when two synchronverters are connected

to the same bus. The theoretical stability analysis for the case

of practical large-scale systems with various synchronverters

connected to the same network is of great significance and is

being investigated.
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