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Abstract
In this report we consider the problem of tracking targets, which can
move both on-road and off-road, with particle filters utilizing the road-
network information. It is argued that the constraints like speed-limits
and/or one-way roads generally incorporated into on-road motion mod-
els make it necessary to consider additional high-bandwidth off-road
motion models. This is true even if the targets under consideration
are only allowed to move on-road due to the possibility of imperfect
road-map information and drivers violating the traffic rules. The parti-
cle filters currently used struggles during sharp mode transitions, with
poor estimation quality as a result. This is due to the fact the num-
ber of particles allocated to each motion mode is varying according to
the mode probabilities. A recently proposed interacting multiple model
(IMM) particle filtering algorithm, which keeps the number of particles
in each mode constant irrespective of the mode probabilities, is applied
to this problem and its performance is compared to a previously existing
algorithm. The results of the simulations on a challenging bearing-only
tracking scenario show that the proposed algorithm, unlike the previ-
ously existing algorithm, can achieve good performance even under
the sharpest mode transitions.

Keywords: Target tracking, road network, particle filter, multiple model,
IMM



1 Introduction
Target tracking with road network information requires methodologies which can keep
the inherent multi-modality of the underlying probability densities. The classical frame-
work for handling such problems is the so-called jump-Markov (non)linear systems.
Early studies dealing with the problem used the interacting multiple model (IMM) al-
gorithm [1, 2] with extended Kalman filters (EKFs) as sub-blocks [3, 4, 5]. Since the
different road segments corresponded to different modes in these IMM algorithms,
there were too many of them to be considered at a single step of the multiple model
filter. Hence, these algorithms applied the so-called variable structure interacting mul-
tiple model (VS-IMM) algorithm [6] which adds/removes modes into/from the filter
when necessary. The interest on the problem has steadily increased which lead to a
considerable amount of research, see for example [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17],
a considerable amount of which involves particle filters.

Particle filters provide stochastic sampling based approximate solutions for Bayesian
filtering (See the book [18] or tutorials [19, 20, 21] and the references therein). Multi-
ple model filtering using particle filters is an already explored area in the literature. In
fact, particle filters have been applied to filtering of jump Markov (non)linear systems
in several papers [22, 23, 24, 25, 26, 27, 28] in a short time after their introduction [29].
They are one of the most suitable alternatives in target tracking using road-network
information due to their capabilities in keeping multi-modularity and non-Gaussianity
of the involved densities and in incorporating constraints. To the best of the authors’
knowledge, the first particle filter used in the context of target tracking with road net-
work information was given in [30, 31] which concluded that it significantly improves
the performance of the classical VS-IMM algorithms. Other, more recent examples of
the particle filters in this respect are given in [32, 33, 34, 35, 36, 37].

When the tracking algorithms are required to track targets which can move both on
the road network whose information is supplied by the user, and off-road, the particle
filters use multiple models to cover these different types of motions. Notice here that
on-road target motion might have constraints like upper or lower speed limits on dif-
ferent road segments and/or constraints like one-way roads. The on-road target motion
model used in the algorithm is then selected to include as many of these constraints
as possible. However, most of the times when the algorithm runs on real data, there
could be map-errors which would result in wrong on-road constraints or drivers that
would violate the rules coded in the map information. At those times, the availability
of a high-bandwidth off-road target motion model would make the algorithm capable
of taking care of these unpredicted target motions. A typical example of such a sit-
uation would be the case in which the used map information misses some (possibly
short) road segments the target is traveling. When the target swerves into such road
segments, the on-road model which is significantly constrained cannot track the target.
On the other hand, if a high-bandwidth model which does not have the road constraints
can enable the algorithm to keep its track until the target gets into another road seg-
ment whose information is provided in the road database. Therefore, use of multiple
models might be necessary to track unexpected motions (i.e., motions that do not suit
to assumed on-road target motion model) even if we plan to track only on-road targets.

Multiple model particle filters employed for target tracking with road networks
[31, 32, 33] (except for some recent unconventional ones like [35, 36]) use

1. Bootstrap multiple model particle filter (BS-MMPF) [22] which uses state tran-
sition density to generate predicted particles [31].



2. Sampling Importance Resampling (SIR) multiple model particle filter (SIR-MMPF)
which uses the optimal proposal density to generate predicted particles [33, 34].

Both of the algorithms above use variable number of particles for each model which
changes according to the current posterior probability of the modes. As an example,
suppose one of the algorithms uses Np particles in total for two modes r = 1, 2 where
the modes r = 1 and r = 2 correspond to on-road particles and off-road particles,
respectively. Then, at an arbitrary time k in the process of estimation, the number of
on road particles in the algorithm will be approximately N1

p = NpP (rk = 1|y0:k)
where P (rk = 1|y0:k) is the posterior probability that the target is on the road at time
k. The remaining particles of the algorithm are then assigned to the off-road target
motion model. This varying number of particles in the operation of the algorithm has
the advantage that most of the computational resources are allocated automatically to
the most probable model the algorithm uses. On the other hand, it has quite important
drawbacks. When the target remains on-road or off-road for a long time, the corre-
sponding posterior mode probability gets very close to unity. Therefore almost all
particles in the algorithm concentrate in the dominant mode. If then the target makes
a swift mode switch, the particles representing the new mode might be initially too
few to obtain a satisfactory estimation performance. This problem is especially crucial
when the overall number of particles used in the algorithm is constrained by the com-
putational resources available. In many cases, degraded estimation performance might
be unavoidable which can even lead to track loss. In applications like fault detection,
the exact time of fault onset might be blurred by this low performance estimation.

A second disadvantage of using the above filters in road network estimation is the
waste of computation resources. In estimation with road network information available,
the on-road model requires much less particles than required by the off-road model.
This is evident in most applications where a lower order model is used for on-road
motion. The constrained motion characteristics of the on-road motion makes large
number of particles used in general unnecessary. The total number of particles used in
the filters mentioned above is selected to accommodate good estimation performance in
the off-road estimation. However, these algorithms would use almost all the particles
available for the on-road model when the target posterior probability of the on-road
mode is close to unity.

In order to overcome the difficulties described above, in this report, we apply the in-
teracting multiple model particle filter (IMM-PF) proposed by Driessen and Boers [26]
to this estimation problem. This filter uses interacting multiple model type [1, 2] ap-
proximations to handle multiple models and it has the flexibility to choose the number
of particles allocated to each mode independent of the posterior mode probabilities.

2 Problem Definition
Suppose we would like to track a target which can move both on the road network
whose information is given and off-road. We will use IRN to denote the road network
information. Then we consider two different state space representations corresponding
to on-road and off-road target modes,

xr
k+1 = fr(xr

k, IRN , ηr
k+1, ν

r
k+1), (1)

xg
k+1 = fg(xg

k, ηg
k+1), (2)
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where the vectors xr
k ∈ Rnr

x and xg
k ∈ Rng

x represent the state vector of the tar-
get in on-road and off-road (global) coordinates, respectively. The functions fr(.)
and fg(.) are in general nonlinear functions. The continuous process noise terms
ηr

k ∈ Rnr
x and ηg

k ∈ Rng
x are assumed to be white. The discrete process noise

νr
k+1 ∈ {1, 2, . . . , Nr(xr

k)} determines which road segment the target will follow in
the next sampling interval in case more than one alternative exists. We assume the
availability of prior probability density functions (or probability mass functions in the
discrete case) pηr

k
(.), pηg

k
(.) and pνr

k
(.) for the random variables ηr

k, ηg
k and νg

k , re-
spectively. In order to be able to use both models at the same time, one always needs
the appropriate functions to convert the state vectors given in one of the representa-
tions into the other representation. For this purpose we assume the availability of two
transformation functions named T gr(.) (transformation from road coordinates to global
coordinates) and T rg(.) (transformation from global coordinates to road coordinates).
The function T gr(.) converts a state vector given in on-road coordinates to off-road
(global) coordinates. This is generally an easy task, assuming that the road network
information is available. The function T rg(.), on the other hand, has to find the closest
on-road coordinate state corresponding to a state vector in global coordinates. This is
more involved in that one generally has to search in a large road database for the closest
point on the road network to the position component of the global state vector and has
to project the velocity and other quantities onto their equivalents in the road network.

The measurements associated with the target are modelled according to relations

yk = hg(xg
k) + vg

k, (3)

where hg(.) is in general a nonlinear function of the global state of the target and vg
k

is white measurement noise. Note that with this notation, the measurements related to
on-road coordinates of the target can be written to satisfy

yk = hg (T gr(xr
k, IRN )) + vg

k. (4)

In the following, we are going to denote the hypothesis (event) that the target is moving
on-road or off-road by a discrete variable rk ∈ {1, 2} where events {rk = 1} and
{rk = 2} correspond to the hypotheses that the target is on-road (represented by (1))
and off-road (represented by (2)), respectively. According to the value of the variable
rk the corresponding dynamics of the target given in (1) and (2) must be used. It is
assumed that rk is a homogeneous1 Markov chain with transition probability matrix
denoted as Π = [πij ] where

πij , P (rk = j|rk−1 = i). (5)

3 Existing Particle Filters
In estimation theory, it is well known that all of the information about a random variable
can be propagated by calculating its posterior density given all the measurements. Par-
ticle filters do this by keeping a number of particles and their corresponding weights for
the posterior density. In estimation applications as described above, one keeps the par-
ticles {x(i)

k , r
(i)
k }Np

i=1 and their weights {w(i)
k }Np

i=1 where x
(i)
k is the state of the particle

1Although the Markov chain is assumed to be time-invariant, the corresponding transition probabilities
might always be selected in a time-varying way based on state or environment conditions in the algorithms
presented in this document.
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with respect to either road coordinates (xr,(i)
k ) or global coordinates (xg,(i)

k ) according
to the value of the on-road/off-road hypothesis variable r

(i)
k i.e.,

x
(i)
k =

{
x

r,(i)
k , r

(i)
k = 1

x
g,(i)
k , r

(i)
k = 2

(6)

Having these particles one can always calculate the density of the state of the target in
global coordinates as

p(xk|y0:k) =
N∑

i=1

w
(i)
k δ

T g(x
(i)
k ,r

(i)
k )

(zk) (7)

where T g(., .) is the globalization function defined as

T g(x(i)
k , r

(i)
k ) ,

{
T gr(x(i)

k ) r
(i)
k = 1

x
(i)
k r

(i)
k = 2

(8)

Using the density function (7), the minimum mean square error estimate of the target
state in global coordinates is given by

x̂k|k =
Np∑

i=1

w
(i)
k T g(x(i)

k , r
(i)
k ) (9)

with a covariance

Pk|k =
Np∑

i=1

w
(i)
k

(
T g(x(i)

k , r
(i)
k )− ẑk

)

×
(
T g(x(i)

k , r
(i)
k )− ẑk

)T

(10)

A particle filter then needs to calculate with each measurement the updated particles
{x(i)

k , r
(i)
k }Np

i=1 and their weights {w(i)
k }Np

i=1 from the corresponding previous particles
{x(i)

k−1, r
(i)
k−1}Np

i=1 and weights {w(i)
k−1}Np

i=1.
The most basic form of a particle filter is the so-called bootstrap filter [29]. Its

application to estimation with road networks was presented in [22]. We give a brief
description of its single step below.

Algorithm 1 (BS-MMPF) Suppose we have the previous particles {x(i)
k−1, r

(i)
k−1}Np

i=1

and weights {w(i)
k−1}Np

i=1 available and we have received a new measurement yk.

1. Resampling: Sample {x̃(i)
k−1, r̃

(i)
k−1}Np

i=1 from {x(i)
k−1, r

(i)
k−1}Np

i=1 according to weights

{w(i)
k−1}Np

i=1 such that

P (x̃(i)
k−1 = x

(j)
k−1, r̃

(i)
k−1 = r

(j)
k−1) = w

(j)
k−1 (11)

for each i = 1, . . . , Np.

2. Prediction Step:
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x
(i)
k =





fr
(
x̃

(i)
k−1, IRN , η

r,(i)
k , ν

r,(i)
k

)
, r̃

(i)
k−1 = 1, r

(i)
k = 1

fg
(
T gr(x̃(i)

k−1, IRN ), ηg,(i)
k

)
, r̃

(i)
k−1 = 1, r

(i)
k = 2

fr
(
T rg(x̃(i)

k−1, IRN ), IRN , η
r,(i)
k , ν

r,(i)
k

)
, r̃

(i)
k−1 = 2, r

(i)
k = 1

fg
(
x̃

(i)
k−1, η

g,(i)
k

)
, r̃

(i)
k−1 = 2, r

(i)
k = 2

(13)

(a) Sample r
(i)
k from r̃

(i)
k−1 such that

P (r(i)
k |r̃(i)

k−1) = π
r̃
(i)
k−1r

(i)
k

(12)

for each i = 1, . . . , Np.

(b) Generate x
(i)
k from x̃

(i)
k−1, r

(i)
k and r̃

(i)
k−1 by using samples from the process

noise sequences η
r,(i)
k ∼ pηr

k
(.), η

g,(i)
k ∼ pηg

k
(.) and ν

r,(i)
k ∼ pνr

k
(.) as

shown in Equation (13) at the top of next page. for each i = 1, . . . , Np.

3. Update Step: Set w
(i)
k as

w
(i)
k ∝ pvg

(
yk − h

(
T g(x(i)

k , r
(i)
k )

))
(14)

such that
∑Np

i=1 w
(i)
k = 1.

As seen in the algorithm, the user cannot directly control the number of particles
which have r

(i)
k = 1. The same is true for the particles which have r

(i)
k = 2. The

values of the mode state r
(i)
k are sampled from the previous mode state r̃

(i)
k−1 using

transition probabilities and they are resampled using the likelihoods. One can make an
approximate guess that the number particles for each mode would be approximately

N j
p ,

Np∑

i=1

I{r(i)
k = j} ≈ NpP (rk = j|y0:k−1) (15)

where I{A} is the indicator function of the event A.
Notice that the BS-MMPF algorithm samples the particles {x(i)

k , r
(i)
k }Np

i=1 from the
previous particles {x̃(i)

k−1, r̃
(i)
k−1}Np

i=1 independent of the measurement yk. This is a man-

ifestation of the fact that the Bootstrap filter samples {x(i)
k , r

(i)
k } according to

{x(i)
k , r

(i)
k } ∼ p(xk, rk|x̃(i)

k−1, r̃
(i)
k−1) (16)

One can make this sampling scheme better guided by using the following sampling
method

{x(i)
k , r

(i)
k } ∼ p(xk, rk|x̃(i)

k−1, r̃
(i)
k−1, yk). (17)

This is the method selected in [33] to apply the SIR-MMPF filter to the problem. In
this case, one has to obtain the samples from the sequences as

r
(i)
k , η

r,(i)
k , η

g,(i)
k ν

r,(i)
k ∼ prk,ηr

k,ηg
k,νr

k
(.|yk, x̃

(i)
k−1, r̃

(i)
k−1). (18)
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Calculation of this density function makes prediction and weight calculation steps more
complicated than the bootstrap filter, but since the inclusion of the measurements in
sampling enhances the quality of the selected particles, the number of particles can
typically be significantly reduced. This type of algorithm can be useful, especially in
high signal to noise ratio applications. It can, on the other hand, result in low perfor-
mance with low quality measurements because the density function used to select the
new particles might force the particles into wrong regions in the road database due to
high measurement noise. The algorithm might also have a disadvantage in the case
where the measurements need to be associated to targets in multi-target applications.
In that case, since the predictions are required before the measurements are processed,
the algorithm might require multiple prediction steps.

4 IMM-PF Approach
In this section, we are going to apply the interacting multiple model particle filter
(IMM-PF) proposed by Driessen and Boers in [26] to our problem. In this approach,
one fixes the number of the particles in each mode to predetermined values2. In this
way, even if the posterior probability of one or more of the modes gets too small, the
number of particles in that mode does not shrink. Compared to the algorithms given in
the previous section, IMM-PF also keeps and updates the posterior mode probabilities

µj
k , P (rk = j|y0:k), (19)

for j = 1, 2 along with particles and their weights. Below, we give a brief description
of a single step of the algorithm.

Algorithm 2 (IMM-PF) Suppose we have the previous on-road particles {xr,(i)
k−1}

Nr
p

i=1

and their weights {wr,(i)
k−1}

Nr
p

i=1, off-road particles {xg,(i)
k−1}

Ng
p

i=1 and their weights {wg,(i)
k−1 }

Ng
p

i=1

and the mode probabilities {µj
k}2j=1 available and we have received a new measure-

ment yk.

1. Resampling Step:

(a) Sample {x̃r,(i)
k−1}

Nr
p

i=1 from {xr,(i)
k−1}

Nr
p

i=1 according to weights {wr,(i)
k−1}

Nr
p

i=1 such
that

P (x̃r,(i)
k−1 = x

r,(j)
k−1 ) = w

r,(j)
k−1 (20)

for i = 1, . . . , Nr
p .

(b) Sample {x̃g,(i)
k−1}

Ng
p

i=1 from {xg,(i)
k−1}

Ng
p

i=1 according to weights {wg,(i)
k−1 }

Ng
p

i=1 such
that

P (x̃g,(i)
k−1 = x

g,(j)
k−1 ) = w

g,(j)
k−1 (21)

for i = 1, . . . , Ng
p .

2. Mixing Step:

2Actually, in its most general form, one can select the number of particles in each mode arbitrarily.
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(a) Calculate mixing probabilities µ`j
k−1 , P (rk−1 = `|rk = j, y0:k−1) as

µ`j
k−1 =

π`jµ
`
k−1∑2

s=1 πsjµs
k−1

(22)

for 1 ≤ `, j ≤ 2.

(b) Sample {rr,(i)
k−1}

Nr
p

i=1 and {rg,(i)
k−1 }

Ng
p

i=1 such that

P (rr,(i)
k−1 = `) = µ`1

k−1 (23)

P (rg,(i)
k−1 = `) = µ`2

k−1 (24)

for ` = 1, 2.

(c) Sample {x̄r,(i)
k−1}

Nr
p

i=1 and {x̄g,(i)
k−1}

Ng
p

i=1 such that

x̄
r,(i)
k−1 ∼





1
Nr

p

∑Nr
p

j=1 δ
x̃

r,(j)
k−1

(xk−1), r
r,(i)
k−1 =1

1
Ng

p

∑Ng
p

j=1 δ
T rg(x̃

g,(j)
k−1 ,IRN )

(xk−1), r
r,(i)
k−1 =2

(25)

x̄
g,(i)
k−1 ∼





1
Nr

p

∑Nr
p

j=1 δ
T gr(x̃

r,(j)
k−1 ,IRN )

(xk−1), r
g,(i)
k−1 =1

1
Ng

p

∑Ng
p

j=1 δ
x̃

g,(j)
k−1

(xk−1), r
g,(i)
k−1 =2

(26)

3. Prediction Step:

(a) Generate {xr,(i)
k }Nr

p

i=1 and {xg,(i)
k }Ng

p

i=1 from {x̄r,(i)
k−1}

Nr
p

i=1 and {x̄g,(i)
k−1}

Ng
p

i=1 us-

ing samples from the process noise sequences η
r,(i)
k ∼ pηr

k
(.), η

g,(i)
k ∼

pηg
k
(.) and ν

r,(i)
k ∼ pνr

k
(.).

x
r,(i)
k = fr(x̄r,(i)

k−1, IRN , η
r,(i)
k , ν

r,(i)
k ) (27)

x
g,(i)
k = fg(x̄g,(i)

k−1 , η
g,(i)
k ) (28)

4. Update Step:

(a) Set w
r,(i)
k and w

g,(i)
k as

w
r,(i)
k ∝ pvg

(
yk − hg

(
T gr(xr,(i)

k , IRN )
))

(29)

w
g,(i)
k ∝ pvg

(
yk − hg(xg,(i)

k )
)

(30)

such that
∑Nr

p

i=1 w
r,(i)
k = 1 and

∑Ng
p

i=1 w
g,(i)
k = 1 .

(b) Set µj
k as

µ1
k ∝




Nr
p∑

s=1

pvg

(
yk − h

(
T gr

(
x

g,(s)
k , IRN

)))



×
[

2∑
s=1

πs1µ
s
k−1

]
(31)

µ2
k ∝




Ng
p∑

s=1

pvg

(
yk − h(xg,(s)

k )
)



[
2∑

s=1

πs2µ
s
k−1

]
(32)
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such that µ1
k + µ2

k = 1.

Remark 1 The use of optimal proposal densities is much easier for the IMM-PF algo-
rithm. For an efficient distribution of particles among the modes, BS-MMPF filter must
make the selection of the mode samples r

(i)
k according to the optimal density given in

(18). On the other hand, by its construction, IMM-PF filter has already enough num-
ber of particles in each of its modes and therefore, it is not necessary for it to consider
mode sequences in sampling from the optimal importance density. The IMM-PF can be
modified to employ optimal proposal density by selecting the process noise terms used
in (27) and (28) as

η
r,(i)
k , ν

r,(i)
k ∼ pηr

k,νr
k
(.|yk, x̄

r,(i)
k−1), (33)

η
g,(i)
k ∼ pηg

k
(.|yk, x̄

g,(i)
k−1 ). (34)

The densities in the above equations are easier to obtain and involve less combinations
than the one in (18). ¥

Remark 2 Since the IMM-PF algorithm’s filtering units for each mode are decoupled,
one can replace the filter of each mode with any other possible nonlinear filter, e.g.,
Gaussian sum filter, in the literature as long as transformations from empirical (parti-
cle) representation to analytical (parametric) representation of the densities and vice
versa are available. In this way, one can obtain hybrid filters which can run particle
filters for some of the modes and analytical approximation based filters (like EKF, UKF,
Gaussian sum filter) for the others. ¥

5 Simulation Results
In this section, we compare the performance of the BS-MMPF algorithm to that of the
IMM-PF filter using two examples. In the examples, we consider same map and target
information given in Figures 1 and 2, respectively. The map is composed of linear
road segments separated by dots in Figure 1. The true target positions are shown with
crosses along with their time stamps at their upper right corners in Figure 2. Target
moves with approximately constant speed on the road segments for 75 seconds and
then it swerves into an off-road region and stays off-road about 20 seconds. At the 95th
second it again enters the road with a sharp swerve and continues on-road until the
end of the scenario. Notice that this type of sharp on-road/off-road switchings could
be commonly encountered in the case that the map information is missing some road
segments.

For the on-road motion, we use the state variable xr
k = [pr

k, vr
k, irk]T where the

scalar variables pr
k, vr

k denote the position and speed values of the target on the road
segment which is identified by the integer index irk. The following model is used for
the dynamics of xr

k.



pr
k+1

vr
k+1

irk+1


 = fr







pr
k+1

vr
k+1

irk


 , IRN , νr

k+1


 (35)

where
[

pr
k+1

vr
k+1

]
=

[
1 T
0 1

] [
pr

k

vr
k

]
+

[
T 2

2
T

]
ηr

k+1 (36)
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Figure 1: Map and sensor positions used in the examples.

The continuous process noise ηr
k is a scalar white Gaussian acceleration noise with

zero mean and 0.2m/sec2 standard deviation and T = 5secs. The predicted position
and speed values pr

k+1, vr
k+1 might not be on the road segment indicated by irk. The

function fr(.) therefore projects the values pr
k+1, vr

k+1 into the road segment denoted
by irk+1. If there are more than one candidate for the next road segment index irk+1,
the function also selects a random one according to the value of the discrete on-road
process noise term νr

k+1 ∈ {1, 2, . . . , Nr(xr
k)}where Nr(xr

k) is the number of possible
road segments that the target with on-road state xr

k might go in the following T seconds.
The off-road target model is a two dimensional constant velocity model given as




pg,x
k+1

pg,y
k+1

vg,x
k+1

vg,y
k+1


 =

[
I2 T I2

0 I2

]



pg,x
k

pg,y
k

vg,x
k

vg,y
k


 +

[
T 2

2 I2

T I2

]
ηg

k+1 (37)

where ηg
k is a two dimensional white Gaussian noise with zero mean and covariance

52I2 and In is the identity matrix of dimension n.

5.1 Example 1: Stationary Sensor with Range and Bearing Mea-
surements

In this first example, we assume that the range and bearing measurements given as

yk =
[

rk

φk

]
=

( √
(pg,x

k − px
S)2 + (pg,y

k − py
S)2

arctan2 pg,y
k −py

S

pg,x
k −px

S

)
+ vk (38)

are collected by a stationary sensor at [px
S , py

S ] = [−200m, 0m] illustrated in Figure
1. Here, vk is a white Gaussian measurement noise with zero mean and covariance R
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Figure 2: Map and true target positions used in the examples.

given as

R =
[

252 0
0 0.012

]
. (39)

The transition probability matrix of the underlying Markov chain is selected to be

Π1 =
[

0.9 0.1
0.1 0.9

]
. (40)

With the given model information, we make 1000 Monte-Carlo runs with a standard
particle filter (PF) which does not use any map information 3 and BS-MMPF, IMM-PF
algorithms which use the available map. PF and BS-MMPF use Np = 200 particles
each. IMM-PF uses Nr

p = 75 and Ng
p = 125 particles. Note that when both range and

bearing measurements are given, the number of particles used in the algorithms can be
reduced to until even Np = 75 with negligible or small performance degradation as
also observed in the literature [33].

Figures 3(a) and 3(b) show the RMS position and velocity errors of the particle
filters respectively and Figure 4 illustrates the average mode probabilities obtained by
the multiple model particle filters.

As seen in the figures the performances of IMM-PF algorithm obtains a perfor-
mance much below that of standard PF at most of the times and slightly worse perfor-
mance around the switchings. The BS-MMPF filter can get slightly better performance
than IMM-PF until and after the mode-switches. This is the effect of the IMM-type
approximations made in the IMM-PF. On the other hand, between mode switchings,
BS-MMPF estimates can excessively deteriorate even to values much worse than the
standard filter due to the particle deficiency phenomenon mentioned in the previous
parts of the document.

3This particle filter uses only the off-road model to track the target.
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Figure 3: Example 1: RMS position and velocity errors of the particle filters.
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Figure 4: Example 1: Average posterior mode probabilities µ1
k of the multiple model

particle filters.
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5.2 Example 2: Moving Sensor with Bearing Only Measurements
In this second example, we assume that an UAV flying with constant speed 300km/h
around the region collects bearing only measurements of the target given as

yk = φk = arctan2
pg,y

k − py
S(k)

pg,x
k − px

S(k)
+ vk (41)

vk is a white Gaussian measurement noise with zero mean and standard deviation
0.01rads. The UAV trajectory is assumed to be perfectly circular in clockwise di-
rection with center [500m, 500m] and radius 1km which is illustrated in Figure 1. The
initial position of the UAV is [−500m, 500m].

This example poses real challenges for the algorithms. Compared to the previous
example, the particles used in the filters spread out to a large region because the single
sensor observations are not enough to localize the target. Therefore, the particle filters
had to use large number of particles compared to Example 1. The standard particle
filter used 2000 particles and it has been seen that it totally diverges in most of the
Monte Carlo runs and therefore its results has been excluded from the figures. BS-
MMPF and IMM-PF algorithms use Np = 2000 and Nr

p = 500, Ng
p = 1500 particles

respectively.
Since both on-road and off-road particles in the filters can spread to a large re-

gion, different modes of the algorithm can degrade the performance of the overall filter
when posterior mode probabilities can assume values similar to 0.9–0.1 in their steady
state as observed in Figure 4. A simple example of this phenomenon was observed
especially when the target is moving off-road. The on-road particles in the filters then
could have quite wrong position values which can survive the resampling processes due
to the localization incapability of single measurements. These very wrong position val-
ues, then, can affect the overall estimates of the algorithm if the mode probabilities can
take values other than (close to) zero or unity. One method to force the mode probabil-
ities towards those values is to use a highly diagonally dominant transition probability
matrix. The one selected for this example is given as

Π2 =
[

0.99 0.01
0.01 0.99

]
(42)

A total of 1000 Monte-Carlo runs has been made with the algorithms. Divergence has
been observed on some of the runs for both filters. For this reason, the Monte Carlo
runs in which the filtered position estimates differ from the true position of the target
(at any estimation step) more than 1km are discarded as divergent runs. Out of 1000
Monte Carlo runs the number of divergent runs are 64 and 6 for BS-MMPF and IMM-
PF algorithms respectively. The RMS position and velocity estimation results for the
remaining runs are shown in Figures 5(a) and 5(b) respectively. Figure 6 shows the
posterior average mode probabilities µ1

k obtained in the multiple model particle filter
which are closer to values 0 and 1 in the steady-state as opposed to the ones shown in
Figure 4.

The performances of the algorithms are quite similar until the first switching in-
stant. When the first switching occurs the BS-MMPF filter loses 100m’s more accu-
racy than IMM-PF. After the switchings both filters have difficulty reducing the errors,
however, it takes about 50 seconds longer for BS-MMPF to reduce the errors to the
level that is achieved before the switchings. Slower transient characteristics of the BS-
MMPF posterior mode probabilities after the switching also confirms the observation
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Figure 5: Example 2: RMS position and velocity errors of the particle filters.
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Figure 6: Example 2: Average posterior mode probabilities µ1
k of the multiple model

particle filters.
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Figure 7: Example 2: One of the runs where BS-MMPF filter diverges and IMM-PF
filter does not lose the track.

that the filter has difficulty adjusting mode probabilities due to particle depletion in the
modes. These and the larger number of divergent cases of BS-MMPF show its suscep-
tibility to especially sharp switchings which can, in turn, even lead to divergence. An
example of this divergent behavior is illustrated in Figure 7 where estimated target tra-
jectories for the particle filters in one of the discarded divergent runs of the BS-MMPF
filter are shown. During the second transition (from off-road to on-road) BS-MMPF
algorithm cannot catch the target due to particle deficiency in on-road mode. For the
same scenario, the IMM-PF filter does not lose track and continue successfully until
the end of the data. Finally, the results observed in Examples 1 and 2 are summarized
in Table 1 where the average RMS position and velocity errors (along time) are also
given.

6 Conclusions
The current particle filters applied to the problem of target tracking with road network
information uses varying number of particles for each mode in the filter which changes
according to the posterior mode probabilities. The drawbacks of such approaches are
discussed and an available alternative in the literature, called IMM-PF, is instead pro-
posed to avoid such drawbacks. The algorithm keeps a constant number of particles
for all modes in the filter irrespective of the posterior mode probabilities. The algo-
rithm details are given along with simulation results comparing it with the standard
BS-MMPF algorithm. Results suggest the preference of IMM-PF over BS-MMPF in
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Table 1: Summary of the results obtained in Example 1 and Example 2.
PF IMM-PF BS-MMPF

Total # of Particles 200 200 200
Ex-1 Avg. Pos. RMSE (m) 31.95 20.67 20.66

Avg. Vel. RMSE (m/sec) 16.41 9.06 8.82
Total # of Particles 2000 2000 2000

Avg. Pos. RMSE (m) 388.77 68.14 105.67
Ex-2 Avg. Vel. RMSE (m/sec) 35.24 9.62 12.52

Total # of MC Runs 1000 1000 1000
# of Divergent Runs 928 6 64

especially sharp and often switching scenarios.
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