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Improved Technique for Design of Perfect 
Reconstruction FIR QMF Banks with 

Lossless Polyphase Matrices 

P. P. VAIDYANATHAN,_SENIOR MEMBER, IEEE, TRUONG Q. NGUYEN, STUDENT MEMBER, IEEE, 

ZINNUR DOGANATA, STUDENT MEMBER, IEEE, AND TAP10 SARAMAKI 

Abstract-This paper develops an  improved technique for the design 

of analysis filters in an  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM channel maximally decimated FIR perfect 

reconstruction QMF bank, having a lossless polyphase-component ma- 

trix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( z ) .  As in earlier work, the aim is to optimize the parameters 

characterizing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( z )  until the sum of the stopband energies of the anal- 

ysis filters is minimized. There a re  four new ingredients in the proce- 

dure reported here. The first is a technique for efficient initialization 

of one of the M analysis filters, as a spectral factor of an  Mth band 

filter. This factorization itself is done without root-finding techniques, 

in an  efficient manner using the eigenjlters approach. The second com- 

ponent is the initialization of the internal parameters which character- 

ize E ( z ) ,  based on the above spectral factor. In earlier work, the pa- 

rameters characterizing the lossless E (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz )  were rotation angles, which 

resulted in slow convergence of the above-mentioned optimization. The 

third ingredient of the improved approach is a modified characteriza- 

tion, mostly free from rotation angles, of the lossless FIR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( z ) .  The 

fourth component of improvement is the incorporation of symmetry 

among the analysis filters, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso as  to minimize the number of unknown 

parameters being optimized. The resulting design procedure always 

gives better filter responses than earlier ones (for a given filter length), 

and converges much faster. 

I. INTRODUCTION 

N this paper we consider the maximally decimated I M-channel analysis/synthesis system shown in Fig. 1. 
The basic operational principles of this analysis/synthesis 
system and its applications are discussed in a number of 
references [ 11-[ 131. The analysis filters Hk ( z )  split the 
signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n )  into M subband signals which are then deci- 
mated by M and encoded prior to transmission. At the 
synthesis end, the M subband signals are decoded, inter- 
polated, and recombined using the synthesis filters Fk (2). 

Ignoring the nonlinear coding/decoding error and quan- 
tization errors in the filter implementations, the signal 
i ( n )  suffers from three errors [5], viz., aliasing, ampli- 
tude distortion, and phase distortion. Several techniques 
have been discussed in the past for eliminating (partially 

or completely) some or all of these errors (see [1]-[13]). 
In this paper we shall restrict our attention to one such 
technique, and incorporate several improvements. 
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Fig. 1. The M-channel maximally decimated QMF bank 

In the literature, two-channel versions of the system of 
Fig. 1 have been referred to as the quadrature mirrorfil- 
ter (QMF) banks [ 11-[4]. This is because the magnitude 
responses I HI( e'") 1 and I Ho( ej") I are images of each 
other with respect to the frequency a / 2  which is a quarter 
of the sampling frequency 2a .  For the case of general M ,  
the structure of Fig. 1 should not actually be called the 
QMF bank because the traditional 2-channel meaning does 
not hold. However, as the word QMF has been used in 
the past by other authors, we shall retain the same jargon. 

The technique we shall discuss here is the one described 
in [12] (also see [13]). Here, all three distortions men- 
tioned above are eliminated, so that i ( n )  is a delayed ver- 
sion of x ( n ) ,  i.e., i ( n )  = c x ( n  - no) ,  c # 0. This is 
called the perfect reconstruction (abbreviated PR) prop- 
erty, and the QMF bank of Fig. 1 is then said to be a PR 
system. 

The method in [12] is based on the following observa- 
tion. Each analysis filter Hk ( z )  can be written in the form 

H k ( z )  = Cki' z- /Ek l (zM) ,  and each synthesis filter F k ( z )  
can be written in the form F k ( z )  = E M - '  / = 0  

Z F -  - 'h r k ( z M ) .  The quantities E k l ( z ) ,  0 I 1 I M - 
1 are the M polyphase components [14], [2] of the kth 
analysis filter H k ( z ) .  Similarly, R l k ( z )  are the M poly- 
phase components of F k ( z ) .  These components can be 
used to define two M X M matrices E ( z )  = [ Ekl(z)] and 

R ( z )  = [ Rlk ( z )  1, called the polyphase component matri- 
ces for the analysis bank and synthesis bank, respectively. 
With these definitions, the QMF bank of Fig. 1 can al- 
ways be redrawn as in Fig. 2. The method described in 
[12] constrains the matrix E ( z )  to be FIR and lossless 
(i.e.,  E ( e J w )  to be unitary for all U ) .  Under this condi- 
tion, if the matrix R ( z )  is chosen as' R ( z )  = I ? ( , ) ,  then 

'See the end of this section for meanings of A', A,  etc 
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Fig. 2 .  Redrawing of Fig. 1 in terms of polyphase matrices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( z )  and R ( z ) .  

the system of Fig. 1 is forced to be a PR system. With 
lossless E ( z ) ,  this choice of R ( z )  is equivalent to choos- 
ing the synthesis filters as 

so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfk( n )  are time-reversed (and conjugated) versions 
of h, (n ) .  Thus, once the analysis filters h k ( n ) ,  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 k 5 

M - 1 are known, we can findfk(n), 0 5 k 5 M - 1, 
of the PR system easily, without matrix inversions. No- 
tice that, with this setup { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF k ( z )  } are also FIR filters of 
the same lengths as { Hk ( z )  } zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA's .  

The central problem in such a design of a PR QMF 
bank is therefore the design of analysis filters Hk ( z )  under 
the constraint that E ( z )  be lossless. With E ( z )  con- 

strained to be lossless, the aim is to minimize the sum of 
stopband energies 

M5' k = O  j stopband IHk(elw)12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdw ( 2 )  

by optimizing the parameters characterizing E (  z ) .  The 
passbands of Hk ( z )  automatically come out to be good for 
reasons mentioned in [12]. 

A .  Summary of Past Designs 

In the above optimization, the objective function (2) is 
highly nonlinear with respect to the parameters of E ( z ) .  
Moreover, no convenient initialization point for the pa- 
rameters of E ( z )  was available in the past. Finally, the 
parameters in E ( z )  were rotation angles 1121, which re- 
quired the computation of several cosines and sines in or- 
der to evaluate (2) for a given parameter set. These facts 
resulted in very slow convergence of the optimization 

process. Because of the possibility of multiple minima, it 
was also necessary to perform optimization with several 
random initial points. For these reasons, the designs in 
[ 121 were restricted to low-order analysis filters. For ex- 
ample, the three channel design in [ 121 has analysis filters 
of length 15, each filter having a stopband attenuation of 
only about 20 dB. 

B. Some Recent Improvements 

It was soon observed 1151 that, if the analysis filters 
were further constrained to have painvise image property 

( 3 )  (H, (e i " ) (  = I H M - I - ,  ( e;(w - "') 1 
this reduces the number of degrees of freedom [i.e.,  the 
number of parameters in E ( z ) ]  for a given filter length, 
resulting in faster optimization and better filters. Such a 
design example for M = 3,  with analysis filter lengths 
equal to 62, can be found in [ 151, providing stopband at- 

tenuations of about 35 dB. The initialization of parame- 
ters in [15], however, continued to be random. 

Subsequent to this, it was realized that the initialization 
of parameters can actually be done more judiciously [ 161. 
This is based on several facts. First, if E ( z )  is lossless, 
then each analysis filter H k ( z )  is a spectral factor of an 
Mth band filter (i.e.,  Hk(z) Hk(z) are Mth band filters). 
Second, if any one of the analysis filters, say, H o ( z ) ,  is 
fixed at a certain value, then the lossless constraint of 
E ( z )  takes away most of the freedom available for the 
choice of H k ( z ) ,  1 I k I M - 1. Finally, if H o ( z )  is 
somehow initialized, there exists a synthesis procedure to 
find (i.e., initialize) the majority of parameters of E ( z ) .  
This leads to a substantial improvement in the design 
speed, and in the filter performance upon convergence. 
The design example for M = 3,  reported in [ 161, is based 
on this scheme, coupled with the imposition of the sym- 
metry property (3). The analysis filters have length 56 and 
stopband attenuations exceeding 70 dB. 

The final phase of improvement is based on a renewed 
characterization of an FIR lossless matrix E ( z ) .  The ear- 
lier characterizations [ 171, [ 181 were in the form of a cas- 
cade of constant unitary-matrix building blocks, separated 

by delay elements. The unitary matrices are themselves 
characterized by rotation angles 1171. Even though this 
characterization is completely general [ 181 (in the sense 
that every lossless FIR matrix can be realized in this form) 
and canonic (i.e., has the minimum number of delay ele- 
ments and parameters for a given filter length), the pres- 
ence of angles makes it necessary to compute several co- 
sines and sines, during each computation of (2). On most 
general purpose computers, the computation of a cosine 
(or sine) is about 20 times slower than a multiplication 
operation. This is, therefore, a major computational over- 
head, while carrying out the optimization on most ma- 
chines. A second characterization of FIR lossless matri- 
ces was recently outlined [ 191, which again is general and 
canonic, but is mostly free from rotation angles. This, 

coupled with the initialization techniques, and the impo- 
sition of symmetry (3), has now emerged into a more ef- 
ficient algorithm for the design of analysis filters Hk ( z )  
of an FIR PR system. 

C. Outline of the Paper 

The purpose of this paper is to give a comprehensive 
presentation of these results. As many of these improve- 
ments have been reported only in conference proceedings 

[ 161, [ 191, 1201 (which are incomplete due to space con- 
straints), our presentation here will be self-contained (with 
the exception that the results in the recent TRANSACTIONS 
paper [15] will be freely used). Section I1 describes our 
technique to initialize an analysis filter of the PR QMF 
bank. Section I11 develops a new minimal characterization 
for M X M FIR lossless systems and for M X 1 FIR loss- 
less vectors. Section IV derives the number of degrees of 
freedom available in the design of an M x M FIR lossless 
system, if one row is fixed (corresponding to fixing or 
initializing an analysis filter). Section V ties up these im- 
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provements with the imposition of pairwise symmetry of 

analysis filters [15]. A design example is presented in 
Section VI. 

Notations: The downgoing and upgoing arrows in Fig. 
1 represent decimators and interpolators as defined in any 
one of [2], [ I  11-[13]. Boldfaced italic letters denote ma- 
trices. The symbol Z denotes the identity matrix, whose 
dimensions will be clear from the context (if not, a sub- 
script will be used to indicate it). The notations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAT, A*, 
and At denote transposition, conjugation, and transposed- 
conjugation, respectively. For an M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 1 vector U ,  the 
norm is denoted as ( 1  U 1 1 .  A p X M matrix A ( p 1 
M )  is said to be orthogonal if ATA = CZ, and unitary if 
AtA = CZ, where c # 0 is scalar. Subscript * denotes 
conjugation of coefficients only. Thus, if E ( z )  = eo + 
e , z - ' ,  then E,(z)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe: + efz- ' .  Finally, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(z) stands 
for H i ( z - I ) .  For real-coefficient systems, A(z) = 

H * ( z - I ) .  In any case, on the unit circle, we have A(z) 
= Ht(z).  A p x M transfer matrix E ( z )  is said to be 
lossless if a) its entries & ( z )  are stable and b) E ( e J " )  is 
unitary for all W .  For p = M ,  this property is a discrete- 
time version of the well-known property of scattering ma- 

trices of LC multiports in electrical network theory [29], 
[30]. (A lossless matrix with real coefficients is said to be 
LBR.) Such a system automatically satisfies the property 

E ( z )  E ( z )  = cz for all z ,  (4) 

where c # 0 is a constant. For E ( z )  to be lossless, we 
require p I M .  If p = M ,  note that (4) is equivalent to 
E ( z )  E ( z )  = cZ. Note that product of lossless matrices 
is lossless. The M components of an M X 1 lossless vec- 
tor are said to be power complementary (since the mag- 
nitude-squares add up to a constant for all U). Note that 
every column of a lossless system is lossless (hence power 

complementary). 
The degree of a p X M system (also called McMillan 

degree [22]) E (  z )  is equal to the number of scalar delays 
( i .e . ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI-' building blocks) required to implement it. Even 
though it is difficult to find the degree by inspection, it is 
simple to find in some cases. For example, the degree of 

an M x 1 FIR transfer matrix ~ ( z )  G c:=~ h(n )z - "  
with h ( K )  # 0 is equal to K.  The degree of an M X M 
system of the form zP1A is equal to the rank r of A be- 

cause we can write z -  ' A  = B[z-~Z,] C where B is M X 

r and C is r x M .  

11. INITIALIZATION OF A N  ANALYSIS FILTER 

The set of M analysis filters H k ( z ) ,  expressed in terms 
of the polyphase components Ekl ( z ) ,  can be represented 
as in Fig. 3(a). Since H k ( z )  are FIR, the entries of E ( z )  
are FIR. In our method, we constrain E ( z )  to be lossless. 
The discussions in this section assume & ( z )  [hence 
E ( z ) ]  to have real coefficients. A structural representa- 
tion for E ( z ) ,  developed in [17] and [IS], is shown in 
Fig. 3(b). This is a cascade of N (real) orthogonal matri- 
ces Rk,  0 I k 5 N - 1 [where N - 1 is the degree of 

E(z) 

(b) 

Fig. 3. Implementation of FIR lossless E ( z )  as a cascade of unitary ma- 
trices separated by delays. 

(b) 

Fig. 4. Details of the building blocks in Fig. 3(b). In Fig. 4(b), Tk is a ( k  
+ 1 )  X ( k  + 1 )  matrix with appearance as in Fig. 4(a). The matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATk 
has k criss-crosses. 

E ( z ) ]  separated by diagonal matrices of the form 

0 * * -  0 

1 . * * *  . 0 .]. 
. . .  . . .  

1 0 . . .  
Recall (Appendix D) that an arbitrary M x M real or- 
thogonal matrix requires (:) real parameters (rotation an- 
gles) for complete characterization. The N - 1 matrices 
Rk,  0 I k 5 N - 2 are special types of orthogonal ma- 
trices with M - l planar rotations, as shown in Fig. 4(a). 
In this figure, each criss-cross represents a planar rotation 
operation of the form 

cos 0 sin 0 [ sin 0 -cos 0 1. 
The rightmost matrix RN- on the other hand, is a general 
orthogonal matrix characterized by ( :) planar rotations 
(see Appendix D) as in Fig. 4(b). It is shown in 1181 that 
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every zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAreal-coefficient FIR lossless system E (  z )  of degree 
N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 can be represented as in Fig. 3(b) with matrices as 
in Fig. 4. Conversely, the structure of Fig. 3(b) with ma- 

trices as in Fig. 4 necessarily represents a real-coeffi- 
cient FIR lossless system. Thus, the angles in Fig. 4 form 
a complete set for characterizing real-coefficient FIR loss- 
less E ( z ) .  Moreover, the representation in Fig. 3(b) is 
canonic (i.e., minimal in number of delays, and in num- 
ber of planar rotation parameters). 

A. The Parameter Space and the Number of Degrees of 
Freedom 

The total number of planar rotation angles in Fig. 3(b) 

is 

In order to minimize the objective function (2), it is nec- 
essary to optimize these Np parameters. From Fig. 3(b), 
the maximum length of an analysis filter with this setup 
is 

L' = M ( N  - 1)  + M .  (7)  

Clearly, the number of parameters N,, grows linearly with 
respect to L' and quadratically with respect to M .  For ex- 

ample, with M = 3 and analysis filters of length L' = 57, 
we have Np = 39. We thus have a large parameter space, 
and a very nonlinear objective function. With no clue for 
initialization of angles in Fig. 3(b), the optimization task 
is formidable indeed. 

In Section 111 we shall show that if we can make an 
initial guess of one of the length L' transfer functions, say 
H O ( z ) ,  then almost all the Np parameters can be initialized 
based only on H o ( z ) .  To be more specific, once H O ( z )  is 
fixed, only 

N f =  (r) - ( M  - 1)  

parameters are still undetermined in Fig. 3(b). Equation 
(8) therefore measures the number of degrees of freedom 
available for the design of H k ( z ) ,  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI k I M - 1, once 
H O ( z )  has been fixed. This is a consequence of the fact 
that losslessness of E ( z  ) puts a constraint on Hk ( z ) ,  k # 
0, once H O ( z )  is fixed. 

For example, with M = 2, we have Nf = 0 which shows 
that we have no freedom of choice of H , ( z )  once H o ( z )  
is fixed. This is consistent with the earlier observations 
[5], [12] that, for the M = 2 case, losslessness of E ( z )  
completely constrains H , ( z )  to be H , ( z )  = 

zp'""HO( -zpi) .  For the M = 3 case, Nf = 1 so that, 
once H O ( z )  is fixed, only one degree of freedom can be 
exercised in choosing Hl(z) and H 2 ( z ) .  It is important to 
realize that Nf is independent of the filter length L'. Con- 

sequently, if H O ( z )  is known, we have to optimize only 
the remaining Nf parameters, regardless of filter length, 
to obtain Hk(z), 1 I k I M - 1. (In practice, we have 
the option of reoptimizing all the parameters, after ini- 

tialization of a subset of parameters based on the initial 
choice of Ho( z ). ) 

In order to exploit this to our advantage, it is first nec- 
essary to find an appropriate initialization for H o ( z ) ,  
which is the purpose of this section. We can mathemati- 

cally express Fig. 3(a) as 

(9)  

where 

and 

( 1 1 )  (qz) = [ I  
z - l  . . . z - ( M - I ) ] q  

From the fact that E ( z )  is lossless, it can be proved (see 
Appendix A) that the function 

Gk(Z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfik(Z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHk(z) (12) 

is an Mth band filter [23], [32], i.e., it satisfies 

M -  1 

c Gk(zW') = c 
/ = O  

where W = e-J2a/M and c is a nonzero constant. Con- 
versely, given an arbitrary FIR filter Ho( z )  such that GO( z )  
is an Mth band filter, there will exist FIR filters Hk(z), 1 
I k I M - 1, such that the resulting E ( z )  is lossless 
(as we shall see in Section IV). 

Thus, one way to initialize H O ( z )  would be to first de- 

sign a low-pass Mth band filter GO(z )  and then compute a 
spectral factor H o ( z )  of Go(z) .  Of course, it is necessary 
to ensure that G O ( e J w )  is nonnegative for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ,  so that a 
spectral factor H O ( z )  exists. Such an Mth band filter can 
be obtained as follows: first design an Mth band equirip- 
ple zero-phase FIR filter G ( z )  as in [23], by using the 
McClellan-Parks program [24]. Then define Go( z )  = 

G ( z )  + 6 where 6 is the peak stopband ripple of G ( e J w ) ,  
so that G0(e1@) has all the desired properties. Finally, 
compute the coefficients of H o ( z )  such that G O ( z )  = 

HO(z- l )  H o ( z )  (this is the spectral factorization step). 
If H o ( z )  is required to have a stopband attenuation of 

70 dB (as an arbitrary example), then GO( z )  has stopband 
attenuation 140 dB. This implies that G ( z )  has large or- 
der, and has several zeros in the stopband. Under such 
conditions, the spectral factorization is an inaccurate pro- 

cess, and gives rise to numerical difficulties even when 
clever techniques such as [25] are employed. In this sec- 
tion we show how Ho( z )  with the above properties can be 

directly designed, thereby eliminating the spectral facto- 
rization step. According to our experience, this direct ap- 
proach always gives rise to more accurate and faster de- 
signs for the filter HO( z ) .  

B. The Eigenjlter Approach for Initialization of Ho( z )  
Any FIR transfer function H o ( z )  can be written as 

HO(Z) = f&(z) HOI(Z) (14) 
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where Hol(z) has all zeros on the unit circle, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHoo(z)  
has none on the unit circle. If Ho( z )  is a spectral factor of 
Go(z) ,  then we can write 

Go(z) = G d z )  (15) 

where Go0(z) has no zeros on the unit circle. The form 
(15) reflects the fact that zeros of Go(z)  on the unit circle 

must be double so that Go(ej") is nonnegative for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW .  

Since Go(z)  has zero phase, Goo(z) has zeros occurring 
in reciprocal pairs. 

Our aim is to design H o ( z )  such that its stopband energy 

is minimized under the constraint that H O ( z - l )  H o ( z )  is 
an Mth band filter. This is equivalent to minimizing the 
quantity 

E = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"S IGm(eJ")l IHol(eJ")12 dw (17) 

under the constraint that Go( z )  be an Mth band filter. The 
advantage of writing Go(z )  in the form (15) and opti- 
mizing (17) is that the resulting design will automatically 
reveal the coefficients of H o l ( z )  and Goo(z). If we take 
Hoo(z)  to be a spectral factor of Goo(z), the design of 
H o ( z )  is complete. This involves finding only the spectral 
factor of Goo( z )  which is a much lower order polynomial 
than Go(z).  In addition, Goo(z) has no zeros on the unit 
circle. It is therefore easy to find a spectral factor Hoo(z)  

In what follows, we shall denote the orders of Hoo(z)  
and Ho,( z )  by lo and 11, respectively. Accordingly, Goo( z )  
has order 210 and G o ( z )  has order 2(  lo + l I ) .  Notice that 
in the above setup Goo(z) and Hol(z) are linear-phase 
transfer functions. Assume, for a moment, that the coef- 
ficients of Go&) are known. Given the function Goo(z), 
this task of finding the linear-phase polynomial Ho,( z )  to 
minimize ( 17) is precisely the weighted eigenjilter design 
problem described in [28] (to be elaborated below). While 
minimizing (17) we shall impose a constraint that avoids 
the trivial solution Hol(z) = 0. 

Now assume that, for a given Goo(z),  we have found 
the coefficients of Hal( z )  using the eigenfilters approach. 
With Hol(z) fixed at this value, we can recompute the 
coefficients of Goo(z) such that the quantity Go(z)  in (15) 
is indeed an Mth band filter. With this new Goo(z), we 
can again solve for Hol(z) to minimize (17). A few rep- 
etitions (typically four or five) result in an Mth band filter 
Go( z )  with excellent stopband attenuation. Once Goo( z )  
and Hol(z) are found in this manner, it is only necessary 

to find a spectral factor Hoo(z )  of Goo(z). The analysis 
filter H o ( z )  is then obtained as in (14). Summarizing, the 
steps in the design of H o ( z )  are as follows. 

of Goo( z 1. 

1) Initialize Goo( el") to be unity for all w .  
2) For this Goo(z),  find the linear phase transfer func- 

tion H o , ( z )  of order I ,  such that (17) is minimized (under 
appropriate constraints to be elaborated). 

3) With H O , ( z )  so fixed, find the linear phase transfer 
function Goo(z) of order 210 such that the product (15) is 
an Mth band filter. 

4) If the result Go(z)  is not satisfactory, go to step 2. 
Even though there is no formal proof that this approach 

converges, excellent designs for Go( z )  could be obtained 
in every case attempted. At most, five iterations between 
steps 2 and 3 were necessary in all cases. The details of 
steps 2 and 3 are described next. 

The Eigenjilter Approach (281 for Step 2: Let H o , ( z )  
be a real-coefficient linear-phase FIR filter [26] of the form 

/I 

& I ( z )  = C hol(n)z-" (18) 

h01(n) = hOl(,l - .I. (19) 

I1 = 0 

with 

Assume first that l I  is even and let MI = 11/2. We can 
express the frequency response as [26], [27, p. 721 

MI 

HoI(e'") = e-JMIw C b,, cos (con). (20) 

The coefficients b,, are given by bo = h ( M , )  and b,, = 

2h(M1 - n ) ,  n # 0. If we define the vectors 

,1=0 

c ( w )  = [ l  cos ( U )  * * - cos ( M , w ) ] '  (21)  

we can express (20) as HoI(e . j " )  = e-/'"""b'c(w). Now 
consider the quantity 

where W ( e J w )  is a nonnegative real function of W .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASup- 
pose we wish to minimize (22) under the constraint 

b'b = 1 .  (23 1 
We can rewrite (22) as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G = b'[ j T  W ( e / " )  c ( w )  c ' ( w )  dw b. (24) 

The integral in (24) is an (M I  + 1 )  x (MI  + I )  matrix 
P. We can rewrite (24) as 

"Y 1 

E = b'Pb. ( 2 5 )  

Clearly, the matrix P ,  which is real and symmetric, is 
positive definite (except under trivial situations such a5 
ws = T ,  or W ( e J " )  I Hol( e J w )  1'  = 0 for all U ) .  The vector 
b minimizing (25) under the constraint (23) is the eigen- 
vector of P corresponding to its minimum eigenvalue. 
Once b is found in this way, the coefficients of H o l ( z )  
which minimize (22) can be obtained. For obvious rea- 
sons, H o l ( z ) ,  so found, will be called an eigenfilter. It is 
clear that with W (  e'") taken as I Goo( el") 1 ,  we can find 
the optimal linear-phase Hol( z )  using this eigenfilter ap- 
proach. 
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If the order lI is odd, the procedure differs in some mi- 
nor details, which can be inferred from [28, p. 131. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Details of Step 3: Given a linear-phase transfer func- 

tion GOl(z)  H i l ( z )  of order 21,, the task here is to find 

the coefficients of a linear phase filter GUo(z) of order 210 
such that the product Go( z )  in (15) is an Mth band filter. 
It is well known [23] that the Mth band property (13) of 
GO(z)  is equivalent to the condition 

With goo( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn )  and gal( n )  denoting the coefficients of GOO( z )  
and GOl( z ) ,  respectively, we see that the coefficients go( n )  
of Go(z)  are obtained by convolving goo(n) with the 
known coefficients gol(n).  As a result, the condition (26) 
gives rise to a set of linear equations from which we can 
solve for the coefficients goo( n )  of GOO( z ) .  

To be more specific about the number of equations and 
variables, recall that the order of GO(z)  is 2(Z0 + I I ) .  
Express ( l o  + Z I  ) in the form 

( l o  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11) = POM + PI (27a 1 
where 0 I p 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 M - 1. Then the Mth band constraint 
(26) of GO( z )  gives rise to po + I equations. This implies 
that we require po + 1 independent coefficients in the lin- 
ear-phase filter GOo(z) .  From this, we deduce that the or- 
der of Goo(z) should be 2p0. In other words, lo = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApO.  
This, along with (27a), yields 

Summarizing, given an arbitrary positive integer 11, we 
pickp,  in the range 0 5 p 1  I M - 1 such that the ratio 
(27b) is an integer. Clearly, p I  and 1, come out to be 
unique. This gives the smallest lo such that GO(z)  satisfies 
(26). We then solve for the coefficients of goo(n) by in- 
verting an approprite ( l o  + 1 )  X ( l o  + 1 )  matrix. The 
details are readily developable and can be found in the 
paper by Nguyen et al. [20]. 

111. NEW CHARACTERIZATIONS FOR FIR LOSSLESS 
SYSTEMS 

Recall that E ( z )  is an M X M matrix. Its McMillan 
degree (or simply the degree) is, by definition, the mini- 

mum number of delay elements (i .e. ,  z-I elements) re- 
quired to implement E ( z ) .  It is known [17] that any real- 
coefficient M x M FIR lossless matrix with degree N - 
1 can be realized as in Fig. 3(b). As mentioned in Section 
11, the building blocks in Fig. 3(b) are orthogonal matri- 
ces, which in turn are combinations of planar rotations. 

In this section we shall obtain a second type of char- 
acterization (or realization) of FIR lossless matrices, 
which are free from planar rotations. We find this char- 
acterization to be more convenient for optimization of (2). 
This realization shares the minimality property of Fig. 

3(b) (both in terms of number of delays and number of 
parameters). 

We shall obtain the results for the general case where 

E ( z )  has complex coefficients, as it turns out to be no 
more complicated than the real case. Two crucial prop- 
erties of FIR lossless systems are required in the devel- 
opments, and are stated next. 

Property 3. I: Let H ( z )  be an M x M causal FIR loss- 
less transfer matrix of degree N - 1. Then 

(28) 
- ( N -  I )  det H ( z )  = cz 

where c is a nonzero constant. As a result, the degree N 
- 1 of H ( z )  is equal to the degree of the determinant of 

H ( z ) :  
deg H ( z )  = deg det H ( z ) .  (29) 

This property, which is not true for arbitrary linear time 
invariant systems, is true for FIR and IIR lossless systems 
with complex or real coefficients. For the FIR case with 
real coefficients, the proof can be seen by noting that the 
determinant of E ( z )  is the product of the determinants of 

the M X M elements in the cascade of Fig. 3(b), which 
is clearly of the fonn C Z - ( ~ - ' ) .  For the FIR case with 
complex coefficients, a representation as in Fig. 3(b) is 
valid with minor modifications (with ''complex rotators" 
taking the place of the real ones). The result (28) again 
follows. Even though IIR systems are not considered in 

this paper, we note for completion that in this case det 
H ( z )  = c A ( z ) ,  where A ( z )  is an allpass function with 
degree equal to that of H (  z ) .  

Property 3.2: Let H ( z )  be any FIR lossless system 
with 

K 

H ( z )  = c h ( n ) z - "  (30) 
n = O  

with h ( 0 )  # 0 and h ( K )  # 0. Then h t ( 0 )  h ( K )  = 0, 
unless K = 0. In particular, for the M X M case, both 
h ( 0 )  and h ( K )  are singular, and h ( 0 )  h ' ( K )  = 0 as 
well. 

The proof follows immediately from the paraunitary 
property A(z) H ( z )  = I by equating like powers of z .  
The first result we shall derive in this section is the fol- 
lowing. 

Lemma 3.1: An M X M causal FIR system H ( z )  is 
lossless of degree one if and only if it can be represented 
in the form 

H ( z )  = [ I  - VU+ + z-Iuu'IR (31 1 
where R is an arbitrary M X M unitary matrix and U is an 
M X 1 column vector with unit norm. 

We shall then show that any arbitrary M x M FIR loss- 
less system of degree N - 1 can be expressed as a cascade 
of N - 1 degree-one systems. To be more specific, we 
shall prove the following. 

Theorem 3.1: Let H N P l ( z )  be an M x M causal FIR 
system. Then, it is lossless of degree N - 1 if and only 
if it can be written in the form 

"-1(z) = V N - d Z )  V N - d Z )  * * VI(Z)HO (32) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo is a constant M x M unitary matrix, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV k ( z )  
are M x M degree-one FIR lossless matrices of the form 

V,(z) = [ I  - ULUl + u , u p ]  (33) 

and where uL are M x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 column vectors of unit norm. 
Notice that the parameters characterizing the lossless 

system now are the N - 1 unit-norm vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuk and the 
unitary matrix Ho. Matrices of the form VU' appearing in 
(31) and (33) are diadic matrices. Because of their im- 
portance in many of our proofs, Appendix B reviews some 
properties of diadics. The proof of the above theorem will 
automatically give rise to a synthesis procedure, which 
can be used to compute the parameters vk and Ho for a 
given FIR lossless H (  z ) .  For the case of lossless systems 
with real coefficients, we see that the number of parame- 
ters in the characterization of Ho is ( y )  since it is real 
orthogonal (Appendix D). Moreover, each of the unit- 
norm vectors uk has M - 1 degrees of freedom. The total 
number of parameters therefore works out to be Np in (6), 
so that (32) is a minimal characterization. In (32), only 
( y )  parameters are planar rotation angles, unlike in Fig. 
3(b), where all N,, parameters are rotations. We shall use 
the above form for the polyphase matrix E ( z )  of Fig. 2. 
We shall now prove the above Lemma and Theorem. One 
proof can be obtained by starting with some of the char- 
acterizations in [29] for continuous-time lossless scatter- 
ing matrices, applying the bilinear transform, and setting 
all pole locations to z = 0 (because of the FIR nature). 
We shall, however, give a self-contained proof, working 

entirely in the z-domain. 
Proof of Lemma 3.1: The "if" part can be proved 

by proving H ( z )  R(z)  = I .  This follows immediately 
from (3 I )  by noting that product terms of the form uutuut 
simplify to vut (because uiu = 1 ). To prove the "only 
i f"  part, note that any M X M causal FIR system of de- 
gree one can be written as 

H ( z )  = h ( 0 )  + h(  1)z-I (34) 

where h (0 )  and h ( 1 ) are M X M matrices, with h ( 1 ) # 
0. Note, however, that (34) does not always represent a 
degree-one matrix. (For example, with h ( 1 ) = I ,  the de- 
gree of (34) is M .  ) The degree-one condition imposes fur- 
ther restrictions on h ( 0 )  and h (  1 ). Thus, from Property 
3.2, both h ( 0 )  and h (  1 )  are singular. Moreover (see 
comment at the end of Section I), the rank of h (  1 )  is 
required to be equal to unity. 

Since H ( z )  is lossless, we know, in particular, that 

H ( z )  is unitary for z = 1. So we can write 

H ( z )  = ( 1  - z - ' ) S  + R (35) 

where R is a constant unitary matrix. Losslessness of (34) 
implies, in particular, the condition h (0 )  h' ( 1 ) = 0. In 
view of (35), this condition is equivalent to 

RS' = -SS'. (36) 

(37) 

Substituting (36) in (35) and rearranging, we get the form 

H ( z )  = [ I  - SS' + z - ' S S ' ] R .  

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"-,(Z) t 

(b) 

Fig. 5. Implementation of M X M lossless FIR H , + , ( Z )  as a cascade of 
degree-one lossless systems. (a) Degree-reduction step. (b) Overall cas- 
cade. 

From (37) we see that h ( 1 ) = SS'R. Since h ( 1 ) has rank 
one, and since R is unitary, SS' has rank one. So we can 
rewrite 

SS' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.'u: (38) 

where U is an M x 1 column vector. We therefore arrive 
at the form (31) for H ( z ) .  It remains to be shown that U 

has unit norm. For this, note that the quantity inside the 

square brackets in (31), which is H ( z )  R', is lossless (in 
particular, unitary for z = - 1 ) so that Z - 2uu' is uni- 
tary. From Appendix B (property 3) it follows that U 

should have unit norm. This completes the proof of 
Lemma 3.1. 

Proof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Theorem 3. I :  The "if" part follows trivi- 

ally because (32) is a product of lossless systems and is 
hence lossless. Consider next the "only if" part. Suppose 
Hk ( z )  is an M X M causal FIR lossless system with de- 

gree k .  Let the impulse response coefficients be h , ( n )  so 
that H k ( z )  = E",=, h k ( n ) z - " .  (Notice that h k ( k )  could 
be null even though H k ( z )  has degree k . )  We will show 
that it can be realized as 

H,(z )  = [ I  - v,v; + qu, tZ- ' ]H, - , (z) ,  (39) 

i.e., as in Fig. 5(a), where 

vector with unit norm, and 

degree k -  1. 

1) The quantity uk is an appropriate M x 1 column 

2) H k _ , ( z )  is an M X M causal FIR lossless system of 

This step is equivalent to extracting a lossless system 

Vk(Z)  = [ I  - UkU/:  + u,u/:z- ' ]  (40) 

of degree one from H k ( z )  to obtain the reduced degree 
lossless system Z l - ' ( z ) .  The system H k - ' ( z )  will be 
called the remainder of the extraction process. If we be- 
gin with k = N - l and repeat this extraction process a 
finite number of times, we obtain the representation of 
(32) [i.e., the structure of Fig. 5(b)], for H N - ' ( z ) .  The 
final remainder H,,(z)  is a zero-degree lossless system 

(i.e., constant unitary matrix), and is denoted by H,,. 
Given a causal FIR M X M lossless Hk ( z )  with degree 

k ,  it only remains to show how to construct U ,  of unit 
norm, such that H k - l ( z )  is a causal FIR M x M lossless 
matrix of degree k - 1 .  With vk restricted to have unit 
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norm, V k ( z )  in (40) is clearly lossless (by Lemma 3. l ) ,  
so that V, ' (z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= v ( z ) .  As a result, (39) is equivalent to 

[ I  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvkvl + vpvlz ]Hp(z)  = H L - l ( z ) .  (41)  

From (41) we see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHp-,(z)  is FIR for FIR H L ( z ) .  
Since H p ( z )  is also causal, we see that H p - l ( z )  is causal 
if and only if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAup is such that 

V/; :hk(0) = 0 (42 1 
where h , ( O )  is the 0th impulse response coefficient of 
Hp(z) .  The losslessness of Hp(z)  ensures that h,(O) is 
singular (Property 3.2), so that there exists a unit-norm 
column vector up satisfying (42). Assume that v k  has been 
so chosen. Since V&) and H k ( z )  are paraunitary, it is 
clear from (41) that H p - , ( z )  is paraunitary. In summary, 
Hp-,(z)  is a causal lossless FIR system. It only remains 
to show that its degree is k - 1. For this, we invoke Prop- 
erty 3.1, which says that for M X M causal FIR lossless 
systems, the determinant has the form (28) where N - 1 
is the degree. Accordingly, we have det H p ( z )  = cIz-', 

and det Vk ( z )  = c2z-I .  Taking determinants on both sides 
of (41), we immediately see that det H k - l ( z )  = c ~ - ( ~ - ' ) ,  
so that the degree of Hk- l (z )  is k - 1 indeed. This com- 
pletes the proof of Theorem 3.1. 

Theorem 3.1 gives us the most general form of M x M 
causal FIR lossless system. This form can therefore be 

used in place of E (  z )  in Fig. 3(a). The elements of up and 
Ho are then optimized to minimize the objective function 
(2). In this way, we are guaranteed that the search will be 

conducted over the set of all FIR lossless systems of a 
given degree. Even though this property was shared by 
the method in [17], we find that the method just described 
is more convenient and leads to faster convergence. 

As mentioned in Section 11, it is of great interest to be 
able to initialize one of the analysis filters, say H o ( z ) .  
This is equivalent to initializing one column of E T ( z )  and 
seeking to find the remaining columns such that E T ( z )  is 
lossless and (2) is minimized. In the next section, details 
of this will be presented. In preparation for this, we now 
derive the most general form of M X 1 causal FIR lossless 
vectors. 

Consider an M X 1 column vector P , - , ( z )  of the form 

N -  I 

p N - , ( z )  = C pN-, (n)z- '  (43 1 
n = O  

where p N P l ( n )  are M X 1 constants, with p N P I ( N  - 1 )  

# 0. Clearly, P N - , ( z )  can be implemented with N - 1 
scalar delays so that its degree is N - 1. We say that 

P N - , ( z )  is lossless if p N - I ( z )  P N - I ( z )  = 1 for all z .  This 
is equivalent to the power-complementary property of the 
M - 1 components of P N P I ( z ) .  The following result will 
be used in the next section. 

7'heorem 3.2: Let P N P I ( z )  be an M X 1 causal FIR 
system. Then it is lossless of degree N - 1 if and only if 
it can be written in the form 

P N - I ( Z )  = U N - I ( Z )  U N - d Z )  * * . Ul(Z)PO (44)  

where Po is a constant M X 1 vector of unit norm, and 
Up ( 2 )  are M x M degree-one FIR lossless matrices of the 
form 

(45) 
t Up(z) = [ I  - UpUk + u ,u , : z - ' ] ,  

where up are M x 1 unit-norm vectors. 
The proof of the above Theorem is again based on a 

repeated application of the degree-reduction step. There 
is, however, a fundamental difference because determi- 
nants are not meaningful anymore. Given a causal FIR M 
X 1 lossless system P k ( z )  of degree k # 0, the degree- 
reduction step seeks to generate a remainder Pk- I (  z )  such 
that it is a lower degree causal FIR M X 1 lossless sys- 
tem. This is done by attempting to express P p ( z )  as 

The choice of uk is crucial in the degree reduction pro- 
cess. Since Uk has unit norm, (45) is lossless so that (46) 
can be rewritten as 

P,- , (z)  = [ I  - upup t + zu,u, ]Pp(z) .  t (47) 

Tly  remainder function P k P l ( z )  is causal if and only if 
u k p k ( 0 )  = 0. Since p k ( 0 )  is a column vector, there exist 
many unit-norm vectors U,! satisfying this condition. In 
particular, the following choice: 

worksIbecause, due to losslessness of P k ( z ) ,  the condi- 
tion p a ( k )  p k ( 0 )  = 0 holds (Property 3.2). With up so 
chosen, the coefficient of z - ~  in (47) becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[ Z  - UkUktIPk(k> = IIPkII [ I  - ~ k u h  

which proves that Pp- z )  has degree k - 1. In summary, 
the choice of up according to (48) ensures that P p - l ( z )  is 
a causal M x 1 lossless system of degree k - 1. Repeated 
application of this step results in the form (44), proving 
the theorem. 

One consequence of Theorem 3.1 is that a causal M x 
M FIR lossless system H N P I ( z )  of degree N - 1 can be 
realized as in Fig. 6(a) where Ho is M x M unitary and 
V ( z )  is a special form of M X M lossless system of de- 
gree N - 1, viz., 

with V k ( z )  as in (40). Similarly, Theorem 3.2 says that a 
causal M x 1 FIR lossless system P N P l ( z )  of degree N 
- 1 can be realized as in Fig. 6(b) where Po is a unit- 
norm vector and where U (  z )  is an M X M lossless system 
of degree N - 1, with exactly the same form as V ( z ) ,  
i.e., 

Both realizations of Fig. 6 are clearly minimal in delays. 
Uniqueness of the Factorization of Phi- I( z ) :  Except for 

a scale factor of unit magnitude, (48) is the only choice 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ( z )  is as in (50) ,  and Po is an M X 1 unit-norm 
vector. If we construct an M x M unitary matrix 

* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ho = [Po PI * * * P M - , ]  ( 5 3 )  

H N - , ( z ) +  - Pp.-,w- 

(a) (b) 
with 0th column equal to Po (say, by using Gram-Schmidt 
procedure), then the M x M FIR system 

Fig. 6 .  Overall representation of the factorization of H , b - , ( z )  and P N - , ( z ) .  

Fig. 7. Implementation of V A ( z )  using one scalar delay and 2 M  scalar 
multipliers. 

that results in a reduced order causal lossless system Ph- I .  

This is because [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU:] has rank M - 1, so that there 
is precisely one vector U (except for a scale factor) such 
that [Z - U ~ U ; ]  U = 0. Since the choice U = cuk works, 
it is the only possibility. The scale facto; c of unit mag- 
nitude disappears in the expression U k q  so that U k ( z ) ,  
and hence U (  z ), are unique for a given Phi- I (  z ) .  From 
(44) we see that PN- I (  1 ) = Po, so that the vector Po is 
unique as well. 

Nonuniqueness of the Factorization of HN-  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI (2): Notice 
that the choice of vx according to (42) is necessary and 
sufficient to obtain a lower degree causal lossless system 
HkP1(z )  from H! , ( z ) .  Unless the rank of h k ( 0 )  is pre- 
cisely M - 1, the choice of vk  is not unique, so that vh ( z )  
in (33)  are not unique. So the realization of HN-I (z )  as 
in Fig. 5(b) is, in general, nonunique. However, from (32)  
we see that 1) = Ho, so that Ho is unique. This 
implies that V ( z ) ,  which is equal to H N P I ( z )  H i 1 ,  is 
unique. Summarizing, an M x M causal FIR lossless sys- 
tem of degree N - 1 can be factorized as HN-I(z)  = 
V ( z ) H o ,  where Ho and V ( z )  are unique, even though the 
building blocks V x ( z )  may be nonunique. 

Implementation of (33) with Minimum Number of De- 
lays: It is possible to implement each building block of 
the form (33)  with only one delay because the degree of 
V k ( z )  is unity. Fig. 7 shows an implementation of V k ( z )  
with one scalar delay and 2 M  multipliers. A cascade of 
building blocks of this form, terminated on the left with 
Ho, completes the minimal implementation of (32) .  

IV. THE DEGREE OF FREEDOM AFTER INITIALIZATION 

Assume that we have designed a causal FIR filter Ho( z )  
as in Section 11, so that it is a spectral factor of an Mth 
band filter Go( z ) .  This completely determines the 0th row 

of E ( z ) . Because of the Mth band property of Go( z ), the 
M X 1 column-vector e&) turns out to be lossless (Ap- 
pendix A). Let N - 1 denote the degree of e,(z). We 

know from Theorem 3.2 that eo(z) can be represented as 

eo(z> = W P O  ( 5 2 )  

S ( z )  = U ( z ) H o  (54) 

is clearly lossless with degree N - 1. We can now define 
the lossless polyphase matrix as E (  z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA S T (  z )  and obtain 

the FIR analysis filters H k ( z )  according to Fig. 3(a). This 
shows that once a spectral factor H o ( z )  of an Mth band 
filter Go( z) of arbitrary order is obtained, it is easy to find 
a set of analysis filters Hk(z), 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI k I M - 1 of the 
perfect-reconstruction system. The number of freedoms 
that can be exercised in the above construction of H k ( z ) ,  
1 5 k I M - 1 ,  is equal to the number of freedoms 
available in constructing an M x M unitary matrix, whose 
0th column is fixed. This number is given by 

Nj = M 2  - 2M + 1 ( 5 5 )  

if the filter coefficients (and hence H o )  are complex, 
whereas if the coefficients are real, this number is pre- 
cisely equal to Nf given in (8) (see Appendix D for de- 

tails). 
Given the FIR filter H o ( z ) ,  does this technique cover 

every possible set of causal FIR filters H k ( z ) ,  1 5 k I 
M - 1, such that E (  z )  is lossless? In general, the answer 
is no, as demonstrated by the following counterexample: 
consider the trivial transfer function H o ( z )  = 1; then 

e,,(z> = 11 o - - e  0 1 ~  ( 5 6 )  

so that we have U ( z )  = Z in (52). This means that Hh ( z ) ,  
1 I k 5 M - 1 have degrees equal to 0. Evidently, this 
does not cover the PR system [ 131 given by 

H,(z )  = z r k ,  

, 0 I k I M - 1, ( 5 7 )  - ( M -  I - L )  F ~ ( z )  = z 

for which E ( z )  = Z (which is lossless). 
According to Theorem 4.1, which we shall see next, 

the answer to the above question is yes, provided the de- 
gree of H&) is equal to the maximum possible degree it 
can have, based on the implementation of Fig. 3 ( i . e . ,  
degree of H o ( z )  = M ( N  - 1) + M - 1). Since this is a 
reasonable assumption, in practice, we shall assume so 
for the rest of the paper. This is equivalent to the state- 
ment that the degree of e o ( z )  is equal to that of E ( z ) .  The 
main result to be proved is the following. 

7'heorem 4.1: Let H N - I ( z )  be any M x M causal FIR 
lossless system with degree N - 1, whose 0th column 
PNPI (z )  has degree N - 1. Let (44) be the unique facto- 
rization of P N P I ( z )  where U x ( z )  are as in (45) with unit- 
norm uk's. Let (32)  be an arbitrary factorization of 

H N - I ( ~ )  with v!,(z) as in (33 )  with unit-norm vh's. Then 

V ~ ( Z )  = U ~ ( Z ) ,  1 I k 5 N - 1, (58) 

and Po is the 0th column of H,,. 
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Proof: Since the degrees of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP N P I ( z )  and H N - I ( z )  are 
both equal to N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1, they have realizations of the forms 
(44) and (32), respectively, with vk # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 and uk # 0 for 
any k .  This implies, in particular, that PNPI(z) can be 

written in two forms, viz. (44), and the following: 

P N - l ( Z )  = VN- l (Z> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV N - d Z )  ‘ * vl(z)~oo (59) 

where Hoo is the 0th column of H,. By uniqueness of the 
factorization for PN- I (  z )  (see the end of Section III), the 
relation (58) immediately follows. Moreover, by unique- 
ness of Po, it is clear that we have Po = Hoo. This com- 
pletes the proof. 

The theorem obviously holds if the phrase “0th col- 

umn” is replaced with “any column.” The consequence 
is that if any column PN-I(z) of an M X M causal FIR 
lossless system H N - I ( z )  of degree N - 1 has degree N - 
1, then we have to synthesize (or factorize) only this col- 
umn, in order to obtain the factorization of the entire 
HN-  I ( z ) .  The factorization of this column PN- I ( z )  places 
in evidence the degree-one building blocks V k ( z ) ,  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 N - 1. The terminating matrix Ho is evaluated as Ho 
= H N -  ( 1 ), completing the factorization of HN-  I ( z  ). It 
is clear that if the column P N P I ( z )  of degree N - 1 is 
fixed a priori, the number of degrees of freedom available 
in the choice of the remaining columns of HN- z )  is equal 
to the number of freedoms available in choosing the uni- 
tary matrix H,, one of whose columns is fixed. 

Recall from Section I11 that the factorization of HN- I (  z )  
is in general not unique, because the choice of v k  satis- 
fying (42) is not unique unless the rank of hk (0)  is pre- 
cisely M - 1. The above theorem, on the other hand, 
implies that the factorization of HN- ( z )  is indeed unique 
if one of the columns has the full degree N - 1. The 
corollary is that whenever there exists a column of 
H N - I ( z )  which has degree N - 1, the 0th coefficient 
hNPI(O) of HNPI(z) must have rank M - 1. A second 
proof of this fact, which removes the mystery associated 
with such a coincidence, is given in Appendix C. 

V. IMPOSING PAIRWISE SYMMETRY ON THE ANALYSIS 
FILTERS 

The final phase of improvement in our design of per- 
fect-reconstruction FIR QMF banks is the recognition 
that, in many applications, the responses of the analysis 

filters H k ( z )  and HIMpl - k ( z )  are not arbitrary. To be spe- 
cific, it is often acceptable to let 1 HM-l-k(eJw) I be an 
image of I H k ( e J w )  1 with respect to w = a/2. We can 
exploit this to our advantage for the reason that if Hk ( z  ) 
and HM- I -k  ( z )  are related in this manner, then the num- 
ber of independent elements in the parameterization of the 

polyphase matrix E ( z )  is reduced almost by a factor of 
two. This feature, combined with the initialization scheme 
described in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, results in an improved design pro- 
cedure forHk(z) ,  0 I k I M - 1. 

The appropriate step now would be to identify a struc- 
tural form for E ( z )  so that it will reflect the symmetry of 
pairs of analysis filters, while at the same time being loss- 
less. Two such structures are presented in considerable 

. .  . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. - P, * 
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Fig. 8. An FIR analysis bank structure which imposes the relation (62)  
while retaining E ( r )  to be lossless. 

details in [15]-one for odd M and the other for even M .  
As in [15], the filter coefficients are assumed to be real. 
The design example to be presented in the next section 
pertains to odd M ,  so we shall restrict our discussions to 
odd M here. 

Fig. 8 is a reproduction of Fig. 9 in [ 151. Here L = ( M  
- 1)/2 and E ’ ( z )  is an FIR lossless matrix with real 
coefficients. The matrix B is L x L real orthogonal and 
PI is the permutation matrix 

PI = 

- 
0 0 * * .  0 1 

0 0 * * *  1 0  
. .  . . .  . .  . . .  . .  . .  L 1 0 * . .  0 0 - 

Finally, R is given by 

It is shown in [15] that under this condition, the conven- 

tional polyphase matrix E ( z )  defined according to Fig. 
3(a) is guaranteed to be lossless, and that the analysis fil- 

ters are automatically related by 

Hk(z )  = HM-l-k( - z ) .  (62) 

The FIR synthesis bank which results in perfect recon- 
struction can be obtained in the usual way [i.e., by using 

The FIR lossless matrix e’(,) in Fig. 8 contains the 
majority of parameters to be optimized during the design 
of analysis filters. (The matrix B has only (i) parame- 
ters.) Comparing the structure of Fig. 8 to the conven- 
tional structure of Fig. 3(a), we see that for a given 2rder 
of the analysis filters, the number of parameters in E’( z )  
is about half the number in E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I  ) because of the appear- 
ance of z 2 M  rather than z M  in Fig. 8. This is precisely due 
to the fact that the symmetry of (62) is structurally im- 
posed by Fig. 8 .  Consequently, in minimizing (2), fewer 
parameters need to be optimized than if Fig. 3(a) were 
directly used. Moreover, due to the relation (62), the ob- 

(I)]. 
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jective function (2) can be simplified to have only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL + 1 
terms. 

Initialization: It is important to adapt the initialization 
scheme, described in Section 11, to the more efficient 
structure of Fig. 8. Notice that, in view of (62), the trans- 
fer function H L ( z )  is its own image, i.e., H,(z; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
HL( - z ) .  In other words, H L ( z )  has the form H i ( z  ). It 
turns out to be more convenient to initialize this transfer 
function rather than Ho( z ). The first step would therefore 
be to design H L ( z )  as a bandpass filter centered around 
~ / 2 .  This is equivalent to designing a low-pass filter of 
half the order and replacing z with - z 2 .  This can be done 
by using the eigenfilters approach of Section 11. Once 
H L ( z )  is known, the Lth row i ? l ( z )  of the matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 ’ ( z )  is 
completely known, because of the form (61) of R in Fig. 
8. By using the technique of Section 111, we can synthe- 
size i?,(z) as 

where U ( z )  is the special lossless matrix (50) (but with 
real coefficients). The complete lossless matrix e’(,) is 
then given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8 y z )  = U ( z ) H , .  (64) 

Here Ho is a real constant orthogonal matrix whose Lth 
column is Po, and whose remaining columns are free. This 
gives us Nfdegrees of freedom [(S)] in the structure. These 
parameters, and the ( k )  parameters in the choice of B ,  are 
available as free parameters in the design of the remaining 
M - 1 analysis filters. In practice, these parameters can 
be randomly initialized and optimized. In fact, the param- 
eters which were initialized because of the knowledge of 
HL(z) can also be reoptimized so that all the M filters 
come out to be good. Further details will be presented 
along with the design example in the next section. 

It should be noted that in the structure of Fig. 8, the 
lengths of the filters h k ( n ) ,  k # L are typically higher 
than hL( n )  by a few samples, because of the extra delay 
elements to the right of t ( z Z M ) .  However, the transfer 
functions at the output of E ’ ( z ~ ~ )  have typically the same 
order. It is therefore not a serious loss of generality to 
assume that the degree of 8 ‘ ( z )  is equal to that of its Lth 
row. 

VI. A DESIGN EXAMPLE 
Consider a three-channel QMF bank (i.e.,  M = 3). We 

shall design a perfect-reconstruction system with real coef- 
ficient FIR analysis filters H&), H , ( z ) ,  and H 2 ( z )  of or- 
ders 55, 52, and 55, respectively. The design will be based 
on the structure of Fig. 8. The first step is to design a 3rd 
band zero-phase filter Gl(z )  of order 104, with Gl(eJ”) 
L 0 for all U ,  and obtain a spectral factor Hl(z) .  This 
step can be simplified by noting that Gl(z) has the form 
G;( -2’) where G;(z) is a 3rd band zero-phase Zow-pass 
filter of order 52 with G;(eJ“) 2 0. With H i ( z )  denoting 
a spectral factor of G;(z) (so that H ; ( z )  has order 26), 
we have Hl(z)  = Hi(  - z 2 ) .  

In terms of the notations in Section 11, let H ; ( z )  be of 
the form H ; ( z )  = H i o ( z )  H;,(z) where H;,(z)  has order 
lo and H;,(z) has order l l .  Clearly, we have lo + l1 = 26 
so that from (27a), pl = 2. Thus, from (27b) we obtain 
210 - l1 = -2. These relations give the unique values lo 
= 8, and I ,  = 18. We can now proceed to design the low- 
pass filter H ; ( z )  of order 26 in the manner described in 
Section 11, and obtain Hl(z) = Hi( - z 2 ) .  The objective 
function analogous to (16) to be minimized is 

1’ ~ ~ ~ o ( e ’ ” ) ~ 2 j H ; 1 ( ~ ’ ” ) 1 2  dw. 

In the example, E = 0.27~ was used. Notice that the order 
of Gi(z) is 52, whereas that of Gi0(z) is only 16. The 
spectral factorization of G;,(z), which is required in the 

procedure of Section 11, is therefore much simpler than a 
direct factorization of G ; ( z ) .  Fig. 9 shows the response 
of the bandpass filter Gl(z) and its spectral factor H l ( z ) .  

Note that Gl(z)  has several zeros on the unit circle, and 
has about 140 dB stopband attenuation. 

With the above Hl(z) used as an “initial value” for the 
transfer function HI( z )  in Fig. 8, the middle row [ e1(z) ]  
of the 3 x 3 matrix & ( z )  is completely determined. We 
then synthesize &l (z )  as i?l(z) = U(z)P l ,  thereby initial- 
izing the vectors uk Fnd P I .  

Wecanexpress [E’(z)]*as [ 8 ’ ( z ) I T  = U(z)Howhere 
the 3 X 3 matrix Ho is Ho = [Hoe P1 H O 2 ] .  Thus, Ho is 
a real orthogonal matrix with middle column determined. 
It has only one extra degree of freedom (by Appendix D). 
Since B is 1 X 1, it has no free parameters. (The matrices 
B and PI are not necessary for M = 3. ) In the example, 
the extra freedom in Ho was randomly initialized, and all 
the parameters [including the uk vectors in & ( z ) ]  were 
reoptimized to minimize (2). Fig. 10 shows the complete 
lattice structure, where v k ( z )  are 3 x 3 degree-one loss- 
less sections as in (33). The resulting analysis filter re- 
sponses are shown in Fig. 11, whereas the impulse re- 
sponse coefficients are given in Table I. The convergence 
of the optimization was found to be much faster than our 
earlier techniques (in fact comparable to the design of a 
single-rate linear-phase lowpass filter of same order using 

s/3 + t 

~ 4 1 ) .  

VU. CONCLUDING REMARKS 

The main purpose of this paper has been to provide an 
improved approach for designing M-band perfect-recon- 
struction FIR QMF banks based on lossless polyphase 
matrices. The improvements arise from judicious initial- 
ization of the analysis filters in the optimization process, 
more efficient characterization of FIR lossless systems by 
avoiding rotation operators, and finally the incorporation 
of symmetry between pairs of analysis filters. The im- 
provements obtained are in terms of faster convergence of 
the optimization procedure, and in terms of better stop- 
band attenuation of analysis filters for a given filter length 
and transition bandwidth. The techniques developed in 
this paper work for arbitrary M (i.e., arbitrary number of 
channels). 
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Fig. 9. The 3rd band filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG , ( z )  and its spectral factor H , ( z ) .  

Fig. 10. The cascaded lossless structure for the analysis bank of the design 
example. 
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Fig. 11. Responses of the reoptimized analysis filters 

APPENDIX A 
LOSSLESSNESS OF E ( z )  AND MTH BAND PROPERTY OF 

Rk(z) Hk(z) 
The analysis filter H o ( z )  can be written as 

H&) = [ 1  z-'  . . . z - ( M - l )  leo(zM> ( A . 1 )  

where e L ( z )  is the 0th row of E(z). By replacing z with 
z W - ~  for 0 I k I M - 1, we can amve at M equations 
like ( A .  1). Stacking these together, we obtain 

= WA(z) eo(zM ( A . 2  

where W is the M x M DFT matrix, and A (  z )  is a di- 
agonal matrix of delays: 

r l  . . .  O 1  
. .  . . .  
0 0 0 . . . Z - ( M - ' )  1 

Since E ( z )  is lossless, the vector e , (z )  is lossless. The 
matrices W and A ( z )  are clearly lossless. The product in 
( A . 2 )  is therefore lossless (i.e., power complementary), 
so that 

M -  I 

k = O  c fio(ZW-k) H o ( W k )  = c ('4.4) 

where c is a nonzero constant. This proves that Go(z) 
i?,,(z) H o ( z )  is an Mth band filter. In other words, 

H o ( z )  is a spectral factor of an Mth band filter. The same 
is evidently true of Hk(z), 1 I k I M - 1. 

Conversely, we see that if Go(z) is an Mth band filter, 
then H&) satisfies ( A . 4 ) ,  so that the left-hand side of 
( A . 2 )  is lossless. It can then be verified that eo(z)  is loss- 
less as well. 

APPENDIX B 
PROPERTIES OF DIADICS 

Let v be an M X 1 column vector, v # 0. Then UZI' is 
said to be a (Hermitian-)diadic. Some important proper- 
ties of diadics are listed below. 

1) The rank of such a matrix is unity (since all the col- 
umns are scalar multiples of U )  so that M - 1 of the M 
eigenvalues are equal to zero. The only nonzero eigen- 
value is equal to viv,  with corresponding eigenvector 
equal to v (proof: vvtv = vtvu by associativity ). 

2) Let v be of unit norm so that ZI'U = 1. Then the 
matrix Z - vut has rank M - 1. The only nonnull w such 
that [ Z  - vu']w = 0 has the form w = CZI, where c # 
0 is a scalar. 

3) Consider a matrix of the form A = Z - 2 v v t ,  with 
v # 0. Assume that v is such that A is unitary. Thus, A 
is unitary and Hermitian so that its eigenvalues are f 1. 
Since 1 - 2vtv is an eigenvalue, it should equal k 1. 
With v # 0, this eigenvalue must be - 1, so that ZI'U = 
1. In summary, if a matrix of the form Z - 2vv' is unitary 
where v is a column vector, then v has unit norm. 

4) Let U and v be unit-norm vectors such that 

utv # 0. ( '4.5) 

A [ I  - ZIV'][Z - U U ' ] .  (A .6 )  

Consider the matrix 

Clearly, Au = 0 by property 2. It turns out that any non- 
null vector w for which 

Aw = 0 (A.7)  

w = cu,  c # 0. ( A . 8 )  

is such that 
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m Coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(n) 
0 -1.4128229067239 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx lo-' 
1 0. 

2 2.1414058710181 x lo-' 

3 9.1308218484911 x IO-' 
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Coefficients hl(n) Coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhz(n) 

0. 0. 

0. -9.1308218484911 x lo-' 

1.5056378297974 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx -1.4128229067239 x 

6.6399724053250 x 2.1414058710181 x 10-2.  

4 

5 

6 

2.2641530391958 x lo-' 8.8793526437529 x lo-' 2.2641530391958 x lo-' 
3.9757826027754 x lo-' 0. -3.9757826027754 x lo-' 
5.1966245198362 x lo-' -1.6061927086436 x lo-' 5.1966245198362 x lo-' 

t 7 11 4.9519441407873 x lo-' I 0. I -4.9519441407873 x lo-' 1 
8 

9 

10 

2.9453172543002 x-10-l -5.9188010394438 x lo-' 2.9453172543002 x lo-' 
5.2368950426968 x lo-' 0. -5.2368950426968 x lo-' 

-2.0994092811453 x lo-' 8.2758834028361 x lo-' -2.0994092811453 x lo-' 
t 11 It -2.3111384039953 x lo-' I 0. I 2.3111384039953 x lo-' 1 

I 

16 -5.8686064368913 x lo-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 
17 -1.1225434647491 x lo-' 0. 1.1225434647491 x lo-' 
18 -5.4550575653918 x lo-' 1.4722039145031 x lo-' -5.4550575653918 x lo-' 

________ I 15 11 7.4057850344872 x lo-' I 0. I -7.4057850344872 x lo-' 1 

20 

21 

22 

7.7614334886641 x lo-' -1.1233905811727 x lo-' 7.7614334886641 x lo-' 

3.4995958094679 x lo-' 0. -3.4995958094679 x lo-' 
-3.0376976569541 x lo-' -2.1645331175599 x lo-' -3.0376976569541 x lo-' 

t 19 11 4.0281521826881 x lo-' I 0. I -4.0281521826881 x lo-' 1 

__ t 23 11 -5.1824955200610 x lo-' 0. 10-2 - 
-1.9388392668025 x lo-' 4.7813912371864 x lo-' 10-1 

2.3116098694287 x lo-* I 0. -2.3116098694287 x y  

3.2571783564021 X lo-' I -1.0294204447447 X lo-' I 3.2571783564021 x lo-' 
27 

29 

28 

E 
8.5801203815075 x lo-' 0. -8.5801203815075 x lo-' 

-1.8667164769370 x lo-' 0. 1.8667164769370 x lo-' 
-1.6753271999023 X lo-' -7.7918425976633 x lo-' -1.6753271999023 x lo-' 

174791812 x lo-' 1.0751032541568 x lo-' -2.2382174791812 x lo-' I 3 0  11 -2.2382. 

' 31 1.1096519113841 x lo-' 0. -1.1096519113841 x lo-* 
32 9.4068169151632 X lo-' 6.7499047357221 x 9.4068169151632 x lo-' 

33 -6.9083772961599 x lo-' 0. 6.9083772961599 x lo-' 

34 -6.5014160081924 x lo-' -1.8443792714387 x lo-' -6.5014160081924 x 
35 

36 

37 

38 

I 
~~ 

~ 

-3.8902922683508 x lo-' 0. 3.8902922683508 x lo-' 

1.4380900534430 x 2.2127681299343 x lo-' 1.4380900534430 x lo-' 

3.2229563292928 x lo-' 0. -3.2229563292928 x lo-' 

1.1229696945844 x -6.1951636758746 x 1.1229696945844 x lo-' 

39 1)71284909200 i( 0 1.1471284909200 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
140 - i .z4825660iO62810 3 1 . 3 8 z 6 1 3 2 1 9 8 0 8 0  x ~ - - . ~  
I 4 1  11 -5.8375452585888 A 10 5.8375452585888 10 5-' 

42 

43 

44 

45 J 
46 

5.9489610310688 x lo-' 5.6761980190258 x lo-' 5.9489610310688 x lo-' 

3.0406128784832 x lo-' 0. -3.0406128784832 x lo-' 

-1.5404701840277 x lo-' -5.5034960832577 x lo-' -1.5404701840277 x lo-' 

-1.9182526916816 x lo-' 0. 1.9182526916816 x lo-' 

1.3642678226151 x 3.5985541240956 x lo-' 1.3642678226151 x 

47 8.4501036966324 x 0. -8.4501036966324 x 
48 2.4216033174065 X -1.5882736075304 x lo-' 2.4216033174065 x 
47 8.4501036966324 x 0. -8.4501036966324 x 
48 2.4216033174065 X -1.5882736075304 x lo-' 2.4216033174065 x 

1 50 11 -6.5174428259106 x 1 4.2746400100218 x lo-' I -6.5174428259106 x I 
, 49 

~ ~~ ~ 

-1.3132483913474 

-3.4346594598878 x 0. 3.4346594598878 x 1 , 49 

I 
54 1 0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-7 0. 0 .  
55 I/ 4.1622921997806 x 1 0. 1 -4.1622921997806 x lo-' 

-3.4346594598878 x 0. 3.4346594598878 x 1 

Property 4 implies that A has rank zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM - 1. To prove is either an eigenvector of vu' (with unit eigenvalue) or 
the null vector. If the former is true then property 4, note that (A.7) implies 

51 

52 

53 

[ I  - U U + ] W  = uu+[z - U U + ] W  (A.9) 

I ______ 
1.3132483913474 x 0. X 1 0 5  
7.6751821402677 x -5.0339744493869 x lo-' 7.6751821402677 x lo-* 

-3.5344439963839 x 0. 3.5344439963839 x 

[ I  - U U + ] W  = cu ( A . l l )  

which shows that 

[ I  - U . + ] W  

by Property 1.  However, (A. 11) implies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu'u = 0 violat- 
ing (A.5) unless c = 0. The vector (A.lO) is thus null, 
proving, by Property 2, that w has the form (A.8). (A . lO)  
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APPENDIX C 

ON THE RANK OF hNPl(O) 
Let HN- I (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz )  be an M X M lossless system of degree N 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 given by H N - , ( z )  = C f = O h N - l ( n ) ~ - n .  We then have 
K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI N - 1. We know from Property 3.2 that h ( 0 )  is 
singular. If there exists a column of HNPI(z) ,  denoted 
PN-I(z) ,  such that its degree is N - 1, then at least one 
column of h N - I ( N  - 1 )  is nonzero, so that K = N - 1. 
This means that in the factorization (32) with V k ( z )  as in 
(33), the product 

(A .  12) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt , t VN-1VN-IvN-2vN-2 * ’ * vlvl 

is a nonnull vector. This in turn implies the following: 

t 
~ k ~ k - 1  # 0, 2 I k I N - 1. (A.13) 

Now consider the expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhN- I (  0)  in terms of the 
representation (32) 

t t 
hN-I(O)  = [ I  - VN- IVN- I I [ z  - UN-2vN-21 

. * . [ I  - vlv:]Ho. (A .14)  

Since H,, is unitary, the rank of hN- l (0)  is equal to that 
of hNPI(O)H:. It turns out that under the condition 
(A. 13), this rank is precisely equal to M - 1. This can 
be proved by repeated application of the argument given 
in Property 4 of Appendix B. 

APPENDIX D 
EXPRESSIONS FOR Nf A N D  Ni 

Let U = [ u o  ul * * * u , + - ~ ]  be an M x M unitary ma- 
trix. The unitary property can be expressed in terms of 
the ( y )  constraints 

t 
U ~ U /  = 0, 0 I k I M - 1, 

k + 1 I I I M - 1 (A.15)  

and the M constraints 

u;uk = 1, 0 I k I M - 1. (A.16) 

The left-hand sides of each of the ( 7 )  constraints in (A. 15) 
are, in general, complex, whereas those in (A. 16) are real. 

Altogether, we therefore have a total of 2 (7 )  + M real 
constraints because of (A. 15) and (A. 16). An arbitrary M 
x M matrix with complex entries has 2 M 2  real-valued 
degrees of freedom. Subtracting the 2(Y) + M con- 
straints due to unitariness, we arrive at the number of de- 
grees of freedom [2 l] NunirurY = M 2  for an M x M unitary 
matrix. A similar calculation with real matrices shows that 
the number of real-valued degrees of freedom for an M x 
M real orthogonal matrix is equal to ( y ) .  These freedoms 
are commonly expressed as planar rotation angles [21], 
[181. 

Now assume that one particular column, say uo, of the 
M x M unitary matrix U is fixed. In the complex case, 
this takes away 2 M  - 1 real-valued degrees of freedom 
(because the column has M complex entries constrained 
by u:uo = 1). This leaves behind Nj  = M 2  - 2 M  + 1 
freedoms which is (55) .  For the case of real matrices, a 
similar calculation shows that the number of degrees of 

freedom in a real orthogonal matrix with a fixed column 
is equal to Nf = ( 7 )  - ( M  - 1 ) which is (8). 
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