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ABSTRACT

Model inversion (MI) attacks in the whitebox setting are aimed at reconstruct-
ing training data from model parameters. Such attacks have triggered increasing
concerns about privacy, especially given a growing number of online model repos-
itories. However, existing MI attacks against deep neural networks (DNNs) have
large room for performance improvement. A natural question is whether the un-
derperformance is because the target model does not memorize much about its
training data or it is simply an artifact of imperfect attack algorithm design? This
paper shows that it is the latter. We present a variety of new techniques that can
significantly boost the performance of MI attacks against DNNs. Recent advances
to attack DNNs are largely attributed to the idea of training a general generative
adversarial network (GAN) with potential public data and using it to regularize the
search space for reconstructed images. We propose to customize the training of a
GAN to the inversion task so as to better distill knowledge useful for performing
attacks from public data. Moreover, unlike previous work that directly searches
for a single data point to represent a target class, we propose to model private data
distribution in order to better reconstruct representative data points. Our experi-
ments show that the combination of these techniques can lead to state-of-the-art
attack performance on a variety of datasets and models, even when the public data
has a large distributional shift from the private data.

1 INTRODUCTION

Many attractive applications of machine learning techniques involve training models on sensitive
and proprietary datasets. One major concern for these applications is that models could be subject
to privacy attacks and reveal inappropriate details of the training data. One type of privacy attacks
is MI attacks, aimed at recovering training data form the access to a model. The access could either
be black-box or white-box. In the blackbox setting, the attacker can only make prediction queries to
the model, while in the whitebox setting, the attacker has complete knowledge of the model. Given
a growing number of online platforms where users can download entire models, such as Tensorflow
Hub and ModelDepot, whitebox MI attacks have posed an increasingly serious threat to privacy.

Effective MI attacks have been mostly demonstrated on simple models, such as linear models, and
low-dimensional feature space (Fredrikson et al., 2014; 2015). Recent work (Zhang et al., 2020) has
proposed the most effective MI attack against DNNs thus far by distilling a generic prior from public
data via a GAN and use the GAN to guide the inversion process. However, there still exists a large
room to improve the attack performance. For instance, the top-one identification accuracy of face
images inverted from the state-of-the-art face recognition classifier is 45% and further decreases
when the public data has a large distributional shift from the private data. A natural question is:
Is the underperformance of MI attacks against DNNs because DNNs do not memorize much about
private data or it is simply an artifact of imperfect attack algorithm design?

This paper studies a variety of new techniques to improve the MI attacks against DNNs. Unlike
existing work which applies the canonical training procedure of GANs to distill knowledge from
public data, we propose to tailor the training objective to the inversion task. Specifically, for the
discriminator side, we propose to leverage the target model to label the public dataset and train the
discriminator to differentiate not only the real and fake samples but the labels; for the generator side,
we propose to maximize the confidence of inverted samples coming from the private domain via an
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entropy minimization generator loss. In addition, we propose to explicitly parametrize the private
data distribution in order to better reconstruct a representative data point for a given target class. We
present a differentiate loss to optimize the parameters of the distribution via backpropogation. We
perform experiments on various datasets and network architectures and show that the combination
of these techniques could lead to state-of-the-art performance to attack DNNs, even when the public
data used for knowledge distillation has a large distributional shift from the private data.

2 RELATED WORK

The general goal of privacy attacks against machine learning models is to gain knowledge which
is not intended to be shared, such as knowledge about the training data or information about the
model. Attacks can be categorized into four types according to the specific goals: model extraction,
membership inference, property inference, and model inveresion. Model extraction attacks (Merity
et al., 2016; Krishna et al., 2019; Orekondy et al., 2019; Correia-Silva et al., 2018) try to create a
substitute model that learns same task as the target model while performing equally good or even
better. The other three kinds of attack focus on exposing secrets about training data: membership
inference attacks (Shokri et al., 2017) try to determine whether a given datapoint is used as part of
the training set; property inference attacks (Ateniese et al., 2015; Ganju et al., 2018; Melis et al.,
2019) try to extract dataset properties which are not explicitly correlated to the learning task (e.g.,
extracting the ratio of women and men in a patient dataset where this information is unlabeled). The
goal of MI attacks is to recreate training data or sensitive attributes.

The first MI attack algorithm was proposed in (Fredrikson et al., 2014), which follows the Max-
imum a Posterior (MAP) principle and constructs the input feature that maximizes the likelihood
of observing a given model response and other possible auxiliary information. The authors applied
the algorithm to attacking a linear regression model that predict medical dosage and showed that
the algorithm can successfully invert genetic markers which are used as part of the input features.
Fredrikson et al. (2015) applied the MAP attack idea to more complex models, including decision
trees and shallow neural networks. Specifically, for neural networks with high-dimensional input
features, the authors proposed to utilize gradient descent to solving the optimization problem un-
derneath the attack. Although the algorithm significantly outperform random guessing when tested
on some shallow networks and single-channel images, the reconstructions are blurry and can hardly
reveal private information. Besides, the algorithm completely fails when tested on DNNs and three-
channel images.

To improve the attack performance for DNNs with high-dimensional input, Zhang et al. (2020) pro-
posed a two-pronged attack approach which first trains a GAN on public data (which could have no
class intersection with private data an no labels), and then uses the GAN to impose a distributional
prior for the search space of the attack optimization. The authors showed that this approach can
achieve the state-of-the-art attack performance for attacking various deep neural neural networks.
Despite significantly improve over existing baselines, this approach still has large room to be im-
proved. For instance, the face images reconstructed from the state-of-the-art face recognition model
can be identified as the target individual with only success rate of 46%. Inspired by this work, we
also leverage GAN to regularize the search space for the attack optimization problem; however, in-
stead of applying the generic training algorithm, we propose customized training of GAN that can
distill private knowledge from the target network. We also propose to model the distribution of pri-
vate data and learn it from end-to-end. We show that the combination of the techniques can greatly
improve the attack performance over (Zhang et al., 2020).

3 OUR APPROACH

3.1 PRELIMINARIES

Attack model. This paper focuses on the whitebox MI attack, in which the attacker has complete
access to the target network f . The goal of the attacker is to discover the distribution of input feature
X associated with a specific label y. We will use face recognition as a running example for the target
network. Face recognition classifiers label an image containing a face with a label corresponding to
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the identity depicted in the image. The corresponding attack goal is to recover the face images for
some specific identity based on the target classifier parameters.

Background on one-to-one MI attack. Existing MI attacks boil down to synthesizing the most
likely input for the target network. Specifically, the following optimization problem is solved to
synthesize the input for a given label y: maxx log Ty(x), where Ty(x) is the probability of label y
output by the model T given the input x. When T is a deep neural network and x is high-dimensional
(e.g., images), the corresponding optimization becomes nonconvex and performing gradient descent
easily gets stuck in local minima. The local minima might not be semantically meaningful at all.
For instance, when the model input is an image, such local minima could be meaningless patterns
of pixels. The current state-of-the-art approach to attacking DNNs (Zhang et al., 2020) addressed
the challenge by extracting general information about the private data distribution from public data
and leveraging the information to regularize the attack optimization problem. Consider the example
of attacking face recognition classifiers. There exist ample face images on the internet, which may
not contain the target individuals but still provide rich knowledge about how a face image might be
structured. Extracting such information is beneficial to synthesize realistic face images. Particularly,
the existing work adopts a two-step attack alogrithm: The first step is to train a GAN on public data
using the caononical WGAN loss; and the second step is to minimize the following loss which seeks
for the synthesize input with high likelihood to produce the target label while remaining realistic:
maxx=G(z)D(x) + log Ty(x), where D is the discriminator output the probability that x comes
from the real data and G is the generator.

3.2 ONE-TO-MANY MODEL INVERSION ATTACK ALGORITHM

Inspired by Zhang et al. (2020), our proposed attack algorithm consists of two steps. The first
step is also to extract the general information related to private data distribution from public data.
However, instead of training a generic GAN, we customize the training objective for both generator
and discriminator so as to maximally distill the information related to the private domain from
public data. In the second step, we make use of the generator learned in the first step and estimate
the parameters of the private data distribution. The overall architecture of our method is shown in
Figure1.

Step 1: Building an Inversion-Specific GAN. To make the distribution learned from public data
more attuned to the private domain, we propose to adopt a discriminator that is able to differentiate
not only real data from the fake but the class labels associated with the target network. Suppose that
the target network classifies a data point into one of K possible classes. Our discriminator D is a
(K + 1)-classifier, where the first K classes correspond to the labels of the target network and the
(K + 1)-th class represents fake samples. To train such a discriminator, we use the target network
T to generate a soft label T (x) for each image from the public dataset.

Formally, the training loss for D has two parts:

LD = Lsupervised + Lunsupervised (1)

where

Lsupervised = −Ex∼pdata (x)

K∑
k=1

Tk(x) log pdisc(y = k | x) (2)

and

Lunsupervised = −{Ex∼pdata (x) logD(x) + Ez∼noise log(1−D(G(z)))} (3)

where pdata is the distribution of public data, pdisc(y|x) is the probability that the discriminator pre-
dicts x as class y, and Tk(x) is the k-th dimension of the soft label produced by the target network.
D(x) outputs the probability of x being a real sample and therefore D(x) = pdisc(y < K + 1|x).

Intuitively, using these data with soft-labels to train the discriminator will encourage the generator
to produce image statistics that help infer what class an image represents. Such image statistics are
also likely to present in the private training data distribution. Hence, the proposed training process
can potentially guide the generator to produce images that share more common characteristics with
the private training data.
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Figure 1: Overall architecture of the proposed attack algorithm. Step 1. Build an inversion-specific
GAN to distill private information. Step 2. Recover the distribution of private domain. Note that
both the generator and discriminator are fixed at Step 2.

The proposed training process partially resembles the process of using GAN to perform semi-
supervised learning (Salimans et al., 2016), which also leverage a classifier augmented with a new
class of fake samples as the discriminator. The proposed training process differs from (Salimans
et al., 2016) in that we use soft-labels generated by the target network to train the discriminator,
whereas in the semi-supervised learning, there already exists a small set of labeled data instances
which can be used to train the discriminator directly.

For training the generator, we introduce an entropy regularizer into the canonical feature matching-
based training objective (Salimans et al., 2016):

LG = ‖Ex∼pdataf(x)− Ez∼noise f(G(z))‖22 + λhLentropy (4)

where f(x) denotes activation on an intermediate layer of the discriminator and

Lentropy = H(pdisc(1 ≤ y ≤ K|G(z))) = −
K∑

k=1

pdisc(y = k|G(z)) log pdisc(y = k|G(z)). (5)

The intuition of the entropy regularization term is simple. Because the target network is trained on
the private data, the private data should have high confidence when fed into the target network and
in turn should get low prediction entropy. In order to encourage the data distribution learned from
public data to mimic the private data, we explicitly constrain the entropy in the loss function so that
the generated data will have low entropy under the target network.

Step 2: Distributional Recovery. Given the GAN trained above on the public data under the
guidance of the target network, the second step of the attack tries to find a model for the private data
distribution which achieves maximum likelihood under the target network while containing realistic
images. Specifically, we model the private data distribution by G(z), where G is the generator
trained in the first step and z ∼ pgen := N (µ,Σ). We then solve the following optimization problem
to generate the samples of class k from the private classifier T by estimating µ and Σ:

L = Lprior + λiLid (6)
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where

Lprior = −Ez∼pgen logD(G(z)) (7)

Lid = −Ez∼pgenTk(G(z)) (8)

The prior loss Lprior penalizes unrealistic images and the identity loss Lid encourages the estimated
private data distribution to have high likelihood of the generated samples G(z), z ∼ pgen being
assigned to class k under the targeted network T .

We adopt the reparameterization trick (Kingma & Welling, 2013) to make Lprior and Lid differen-
tiable:

z = Aε+ b, ε ∼ N (0, I) (9)

We can now form Monte Carlo estimates of expectations of Lprior and Lid as follows w.r.t. A and b
as follows:

Lprior = − 1

L

L∑
l=1

logD(G(Aεl + b)) (10)

Lid = − 1

L

L∑
l=1

log Tk(G(Aεl + b)) (11)

where εl ∼ N (0, I) for l = 1, . . . , L.

4 EXPERIMENT

In this section, we will evaluate our proposed attack in terms of the performance to recover a rep-
resentative input as well as the distribution of input for any given label. The baseline that we will
compare against is the generative MI attack (GMI) proposed in (Zhang et al., 2020), which achieved
the-state-of-the-art result to attack DNNs.

4.1 EXPERIMENTAL SETTING

Dataset. We study attacks against models built for different prediction tasks, including face recog-
nition, digit classification, object classification, and disease prediction. For face recognition, we use
(1) the CelebFaces Attributes Dataset (Liu et al., 2015) (CelebA) containing 202,599 face images
of 10,177 identities with coarse alignment, (2) Flickr-Faces-HQ (FFHQ) Dataset containing 70,000
high-quality images with considerable variation in terms of age, ethnicity and image background,
(3) FaceScrub consisting of 106,863 face images of male and female 530 celebrities, with about 200
images per person. We use aligned version of above face datasets, and crop the images at the center
and resize them to 64 × 64 so as to remove most background. For digit classification, we use the
MNIST handwritten digit data (Lecun et al., 1998). For object classification, we adopt the CIFAR-
10 datasete (Krizhevsky et al.). For disease prediction, we use the Chest X-ray Database (Wang
et al., 2017) (ChestX-ray8).

Models. Following the settings in (Zhang et al., 2020), we implement several different target net-
works with varied complexities. Some of the networks are adapted from existing ones by adjusting
the number of outputs of their last fully connected layer to our tasks. For the face recognition task,
we use three different architectures for network: (1) VGG16 adapted from Simonyan & Zisserman
(2014); (2) ResNet-152 adapted from He et al. (2016); (3) face.evoLve adpated from Cheng et al.
(2017). For digit classification on MNIST, we use a network which consists of 3 convolutional
layers and 2 pooling layers.For object classification, we use VGG16. For the disease prediction on
ChestX-ray8, we use Resnet-18 adapted from He et al. (2016).

Attack Implementation. We split each dataset into two disjoint parts: one part used as the private
dataset to train the target network and the other as a public dataset. The public data, throughout
the experiments, do not have class intersection with the private training data of the target network.
Therefore, the public dataset in our experiment only helps the adversary to gain knowledge about
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features generic to all classes and does not provide information about private, class-specific features
for training the target network. For CelebA, we use 30,027 images of the first 1000 identities as
private set and randomly choose 30,000 images of other identities as public set to train GAN. For
MNIST and CIFAR10, we use all of the images with label 0, 1, 2, 3, 4 as private set and rest images
with label 5, 6, 7, 8, 9 as public set. For ChestX-ray8, we 10,000 images with label ”Atelecta-
sis”, ”Cardiomegaly”, ”Effusion”, ”Infiltration”, ”Mass”, ”Nodule”, ”Pneumonia” as private set and
10,000 images belongs to other 7 classes as public set. We train the target networks using SGD op-
timizer with learning rate 10−2, batch size 64, momentum 0.9 and weight decay 10−4. For training
GAN, we use Adam optimizer with learning rate 0.004, batch size 64, β1 = 0.5 and β2 = 0.999
as (Kingma & Ba, 2014). And the weight for entropy regularization term is λh = 1e−4. For distri-
bution recovery in stage 2, we set λi = 100, the distribution is initialized with µ = 0,Σ = 1 and
optimized for 1500 iterations.

Evaluation Protocol. For our proposed attack, we draw 5 random samples of ε and generate
corresponding images G(Aε + b). For the baseline attack, we re-start the attack for 5 times with
random initialization. To evaluate the reconstruction of a representative input, we compute the
average of attack performance on the 5 reconstructed images.

Evaluation Metrics. Evaluating the MI attack performance requires gauging the amount of private
information about a target label leaked through the synthesize images. We conduct both qualitative
evaluation through visual inspection as well as quantitative evaluation. The quantitative metrics that
we use to evaluate the attack performance largely follow the existing literature, including attack ac-
curacy and K-nearest neighbor feature distance. They are generally aimed at measuring the semantic
similarity between private data and reconstructions. In addition, we incorporate a metric for image
quality, namely, Fréchet Inception Distance (FID) (Heusel et al., 2018), as part of our evaluation.
The metrics are expounded as follows.

• Attack Accuracy (Attack Acc). We build an evaluation classifier that predicts the identity
based on the input reconstructed image. If the evaluation classifier achieves high accu-
racy, the reconstructed image is considered to expose private information about the target
label. The evaluation classifier should be different from the target network because the
reconstructed images may incorporate features that overfit the target network while being
semantically meaningless. Moreover, the evaluation classifier should achieve high per-
formance. The attack accuracy is measured by the prediction accuracy of the evaluation
classifier when fed with reconstructed images. For all the face image datasets, we use
model in Cheng et al. (2017) which is pretrained on MS-Celeb-1M Guo et al. (2016) and
fine-tuned on the training set of the target network. For MNIST, we trained evaluation net-
work which consists of 5 convolutional layers and 2 pooling layers on all of the 10 digits.
For ChestX-ray8, the evaluation classifier is adapted from Simonyan & Zisserman (2014).
For CIFAR10, we use ResNet-18 adapted from He et al. (2016).

• K-Nearesr Neighbor Distance (KNN Dist). KNN Dist is the shortest feature distance from
a reconstructed image to the real private training images for a given class. The feature
distance is measured by the l2 distance between two images when projected onto the feature
space, i.e., the output of the penultimate layer of the evaluation classifier.

• FID. FID score measures feature distances between real and fake images, and lower FID
values indicate better image quality and diversity. We found that reconstructed images
which the evaluation classifier predicts into the target label tends to achieve lower FID
scores. Hence, the FID score and attack accuracy are correlated with one another. To
make FID a complementary metric to attack accuracy, we only calculate the FID score of
those reconstructions which are successfully recognized as the target class by the evaluation
classifier. The idea of this FID score is to measure how much detailed information is leaked
from a reconstruction that can successfully recover the semantics.

4.2 RESULT

Comparison with previous state-of-the-art. Table 1 compares the attack performance of our at-
tack and the baseline on various datasets. We can see that our method outperforms the GMI by
a large margin. One interesting finding is that, when attacking digit recognition model trained on
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MNIST, GMI generates digits that can mislead target classifier but cannot mislead evaluation classi-
fier, which leads to 0 average accuracy. A specific example is that GMI generates ”7” when attacking
digit ”1”, which the generated sample can achieve a very low identity loss under target network. Our
method can overcome this problem to some extent and has better performance. We also compare our
attack with the baseline for attacking various models built on the same dataset, namely, CelebA. The
models include VGG16, ResNet152, and face.evolve, which have increased complexity. Among
these models, face.evolve achieves state-of-the-art face recognition performance. The results for
attacking these models are shown in Table 2, showing that our approach significantly improves the
baseline on all the target models. The performance improvement achieved by our attack is further
corroborated by Figure 2, which exhibits ground truth private images and corresponding reconstruc-
tions given by our attack and the baseline. We can see that our reconstructions can mostly better
preserve the facial features of a given identity than the baseline.

CelebA MNIST ChestX-ray8 CIFAR10
GMI Ours GMI Ours GMI Ours GMI Ours

Attack Acc .21±.0020 .72±.0018 0 .56±.0208 .21±.0163 .47±.0155 .56±.0264 .96±.0072
KNN Dist 2996.91 2987.05 126.61 72.54 360.32 220.30 139.09 123.07

FID 52.51 23.72 93.06 88.39 295.44 258.81 319.27 233.65

Table 1: Attack performance comparison on various datasets.

face.evolve IR152 VGG16
GMI Ours GMI Ours GMI Ours

Acc .31±.0039 .81±.0016 .32±.0027 .81±.0015 .21±.0020 .72±.0018
Acc5 .53±.0015 .96±.0004 .57±.0005 .96±.0001 .43±.0014 .92±.0003

KNN Dist 2991.75 2981.49 3006.37 2985.51 2996.91 2987.09
FID 33.81 25.28 50.11 26.35 52.51 23.72

Table 2: Attack performance comparison on various models trained on CelebA.

Figure 2: Qualitative comparison for attacking a face recognition model. The first row shows the
ground truth image for a target identity. The second and third rows demonstrate the reconstructions
produced by the GMI attack and our attack, respectively.

Cross-dataset experiment. We study the effect of distribution shift between public and private
data on the attack performance. We train our GAN on Flickr-Faces-HQ Dataset (FFHQ) (Karras
et al., 2019) and FaceScrub (Ng & Winkler, 2014) to attack the target network VGG16 trained on
CelebA. The attack results are presented in Table 3, which shows that both GMI and our attack
suffer from a performance drop while ours still outperforms GMI. We notice that the performance
drop on FaceSrub is larger than that on FFHQ. One possible reason is that images in FaceScrub has
much lower resolution (64× 64), and there are quite a few images are under poor lighting condition
or only show part of the face.

Ablation study. As we proposed a couple of ideas to improve the GMI attack in (Zhang et al.,
2020), including (1) soft-label discrimination (SD), which enables the discriminator to differentiate
soft-labels produced by the target network, (2) entropy minimization (EM), which minimizes the
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FFHQ→CelebA FaceScrub→CelebA
GMI Ours GMI Ours

Acc .15±.0015 .36±.0015 .03±.0004 .13±.0008
Acc5 .35±.0017 .61±.0012 .11±.0011 .30±.0015

KNN Dist 3014.45 2994.32 3003.90 2997.52
FID 69.12 36.02 112.83 60.05

Table 3: Attack performance comparison where there is large distributional shift between public and
private data. A → B represents the setting when the target network is trained on dataset B and the
GAN is trained on dataset A to distill a generic prior for reconstructions.

prediction entropy of images produced by the generator, and (3) distribution recovery (DR), which
explicitly models and estimates the private data distribution. We have shown that the combination
of these ideas can lead to significant attack performance improvement over the baseline. Here, we
conduct an ablation study to investigate the improvement introduced by each individual idea. Table 4
presents the result of attacking VGG16 trained on the CelebA dataset. We observe that both the
attack accuracy and image quality get improved when we apply the idea of soft-label discrimination
and adding entropy minimization or distributional recovery can further improve the performance.

GMI SD SD+EM SD+DR SD+EM+DR
Acc .21±.0020 .35±0042 .43±.0035 .62±.0028 .72±.0018

Acc5 .43±.0014 .60±.0013 .68±.0017 .87±.0003 .92±.0003
KNN Dist 2996.91 2992.54 2987.12 2994.79 2987.09

FID 52.51 33.75 31.09 23.82 23.72

Table 4: Ablation study of ideas introduced in this paper, including soft-label discrimination (SD),
entropy minimization (EM), and distributional recovery (DR).

Runtime. We test the efficiency of our attack and compare it with GMI. Once the GAN is trained,
it takes around 180 seconds for GMI to generate one reconstruction for attacking VGG16. Our
attack needs 200 seconds to estimate the parameters of the private data distribution yet only needs
0.3 second to generate one reconstruction once the distribution is learned.

5 CONCLUSION

In this paper, we propose several techniques that can significantly improve the most effective attack
algorithms against DNNs thus far. Specifically, we propose to customize the training of a GAN to
better distill knowledge useful for performing attacks from public data. Additionally, we propose to
build an explicit parameteric model for the private data distribution and present methods to estimate
its parameters. Our experiments show that the combination of the proposed techniques can lead to
the state-of-the-art atttack performance on various datasets, models, and even when the public data
has a large distributional shift from private data.

For future work, we will investigate the potential application of these techniques to improve the MI
attack in the blackbox setting.
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