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ABSTRACT 

This paper presents an improved method of assessing power 
system voltage stability using energy techniques. The concept of 
an energy function providing a localized measure of voltage 
security in a particular portion of the system is developed. Also an 
improved method of locating power flow altemative solutions with 
low associated energy measures is presented. Techniques are 
demonstrated on IEEE 118 bus system and a 415 bus system. 

m: Voltage stability, voltage collapse, power flow. 

I. Introduction 

Increased loads and larger inter-utility power transfers coupled 
with fewer additions to the transmission system have resulted in 
an increasing danger of voltage instability and collapse for many 
utilities. Actual incidents of voltage collapse indicate the potential 
magnitude of the problem [1],[2]. Also, an imprecisely quantified 
threat of voltage collapse often constrains economic operations of 
systems to maintain reliability [3],[4]. In order to operate systems 
with maximum economy and reliability, utilities need an accurate 
indicator of the proximity of their system to voltage collapse. 

A large portion of recent literature analyzing the problems of 
voltage instability and voltage collapse has focused on the use of 
multiple power flow solutions, and in more formal mathematical 
analyses, on bifurcation phenomena in which multiple solutions 
approach one another and ultimately disappear under the influence 
of changing network parameters. The non-uniqueness of power 
flow solutions is first discussed in depth in [5]. Usually only one 
of the power flow solutions corresponds to a practical stable 
equilibrium point (SEP) for the power system. This solution will 
be denoted as the "operable" solution. The other solutions 
typically correspond to unstable equilibrium points (UEPs) of the 
power system. For voltage collapse analysis, these solutions are 
often characterized by low bus voltage magnitudes, and will be 
referred to as the "low voltage" solutions. An algorithm for 
locating multiple solutions is presented in [6]. The relationship 
between voltage instability and multiple solutions is shown in [7]. 
In [8] and later in [9] concepts of static bifurcation theory are used 
to formally show the relationship between bifurcation of the power 
flow equations in a multibus system and voltage instability 
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More recently in [lo] and [ll] indices which attempt to quantify 
the distance between the operable solution and a low voltage 
solution are presented. In [12] a technique for rapidly locating a 

The use of energy function methods to determine proximity to 
voltage collapse is presented by the authors in [13] and [14]. In 
this method, a closed form voltage security measure (or energy 
measure) is defined by integrating a power mismatch expression 
between the operable solution and a low voltage solution. A 
crucial factor in the use of the energy function method is the ability 
to rapidly determine the appropriate low voltage solution to use in 
the energy measure calculation. 

The goal of this paper is to address the determination of these 
low voltage solutions, and consequently to demonstrate the 
practicality of using energy methods to assess voltage security in a 
large scale power system. The paper is organized as follows. 
First, the use of energy function methods in the problem of 
voltage collapse is discussed, with emphasis on the attributes of 
the low voltage solutions. Second. an algorithm to rapidly locate 
the appropriate low voltage solutions in large scale systems is 
presented. Lastly, calculation of these solutions and use of the 
energy method to predict proximity to collapse is demonstrated in 
the IEEE 118 bus system and in a 415 bus system. 

pair of closely located power flow solutions is introduced. 

11. Energy Methods and the Role of Alternate Power 
Flow Solutions in Voltage Collapse Studies 

The system model and energy function expression to be used 
here are described in detail in [13] and [14]. As a review, the use 
of energy methods to determine system vulnerability to voltage 
collapse is briefly described below. For reference, the energy 
function expression from [ 141 is included in the Appendix. A 
scalar energy function dependent on system state (system bus 
voltage magnitudes and phase angles) is first defined, with the 
property that the operable solution defines a local minimum of this 
energy. Formally, the energy function is said to be positive 
definite about the operating point; intuitively, one may think of the 
operating point as occupying the bottom of an "energy well." A 
key step in such energy based stability studies is to identitj those 
unstable equilibrium points (UEPs) that form saddlepoints on the 
boundary of the energy well. In the framework to be discussed 
here, the UEPs of interest will correspond to alternate power flow 
solutions that display low voltage magnitudes at certain buses. 
Conceptually the energy function shows the height of the 
"potential barrier" (or equivalently the depth of the energy well) 
between the operable solution and a low voltage solution. 

To understand the use of such energy analysis in voltage -. 
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Jacobian and those of the dynamic linearization vary continuously 
with respect to the conductance terms. With a simple eigenvalue 
perturbation analysis, one can show that if the lossless system 
stability prediction has a reasonable margin (i.e.. the power flow 
Jacobian eigenvalues are all less than some negative threshold), 
then this stability prediction carries through to the more exact 
dynamic model with non-zero conductances. The reader should 
note that these results need to be qualified by the assumption that 
the exciter control loop is stable. As discussed in [ 191, if the flux 
decay dynamics and excitation control loop introduce instabilities. 
then the linearized dynamic models may be unstable even though 
the power flow Jacobian has all negative eigenvalues. The model 
employed here used a type of fast exciter representation with 
saturation (see [14] for details) that implicitly assumes the voltage 
control loop is stable. Hence, this type of exciter instability is not 
treated here. 

At the point of bifurcation between the SEP solution (denoted 
by x@) and a type-one UEP (denoted as XI), one has xo = x1 = 
x*. and the SEP loses asymptotic stability with its Jacobian having 
a zero eigenvalue, X1 = 0. A slight further perturbation would 
then result in divergence of the system state away from the 
operating point. In [18] and [21] it is shown that the initial 
direction of the voltage collapse is along the eigenvector v1 = v* 
corresponding to the zero eigenvalue of the Jacobian at XI. The 
magnitudes of the individual components of v1 indicate how 
rapidly the voltage or angle at each individual bus will initially 
diverge relative to the other system buses. Generally the 
magnitude of the initial voltage drop or angle slip is significant 
only at a subset of the system buses. Therefore while voltage 
collapse is characterized by loss of a steady state equilibrium for 
the entire system, its initial effects are normally apparent only at a 
subset of the system buses. Since these buses are usually 
electrically close to each other, the subset will be referred to as an 
area. This set of affected buses will be denoted as Area(x1). The 
extent to which a voltage collapse propagates depends upon the 
amount and location of the protective equipment on the system. 

Now assume that the system has not yet reached the point 
where bifurcation is predicted mathematically (i.e.. # and x1 are 
still separate). Given that the system varies quasi-statically, 
whether xo and x1 will eventually coalesce depends on the future 
variation in system parameters (e.g. loads and generation). Since 
x l  is a type-one equilibrium. the eigenvector v1 associated with 
the positive eigenvalue of its Jacobian can be calculated. 
Interestingly, numerical tests in a number of test systems indicate 
that the relative sizes of the components of v1 are fairly insensitive 
to the distance between xo and x1 (with the energy difference 
being used as a distance function). Even while the two solutions 
are quite far apart in state space, the components of v1 
approximate how the system would collapse if the variation of the 
system parameters was such that xo and x1 eventually coalesce. 
Thus by defining *(XI) to be the energy difference between the 
low voltage solution x1 and the operable solution xo, *(XI) can be 
interpreted as a proximity indicator for voltage collapse in 
Area(x1). When a system has more than a single type-one low 
voltage solution, a separate energy measure could be calculated for 
each Area(xi). 

These disturbances are normally dissipated through system 
damping, so that at a secure operating point, where the energy 
well is relatively deep, their effect is negligible. However, as the 
system evolves towards an operating point vulnerable to voltage 
collapse, the depth of the energy well decreases. Eventually a 
point is reached where the disturbance energy is sufficient for the 
state to escape this well, with a resultant voltage collapse. Work 
reported in [ 131 and [ 141 argued that the depth of the energy well 
(as measured by the energy difference between the operable 
solution and a low voltage power flow solution) can provide an 
excellent indicator of the system's vulnerability to voltage 
collapse. 

It is interesting to note that the energy function defined here 
considers both voltage and angle deviations from equilibrium. 
However, the use of low voltage power flow solutions implies 
that the type of instabilities studied here will be c h a r a c t a i d  by 
motion of the state in a direction that causes significant drops in 
some bus voltage magnitudes, with relatively small changes in 
phase angles. If other types of UEps were examined (for 
example, those UEPs which yield large angular differences across 
cutsets of transmission lines), the energy might be interpreted as a 
security measure for certain types of angular instabilities. 
However, these types of angular instabilities and their associated 
UEPs will not be examined here. 

The energy difference is clearly dependent on the low voltage 
solution selected. For large systems the choice of which low 
voltage solution to use can be difficult. In a lightly loaded, n bus 
system there may exist up to 2*-1 solutions of the power flow 
equations [15],[16]. While experience at realistic loading levels 
has shown that the number is often substantially less, it is still 
imperative that a numerically efficient method be found for 
determining the appropriate set of low voltage solutions to use for 
assessing system voltage security. 

As the system parameters (typically loads and generation) 
move quasi-statically toward the point of voltage collapse, the 
number of low voltage solutions tends to decrease [17]. At the 
point immediately before collapse only the operable solution and a 
single low voltage solution exist. These two solutions eventually 
coalesce, with resultant loss of the steady state equilibrium point. 
In [18] it is shown that for typical power system models, the 
system always loses steady state stability by a saddle-node 
bifurcation between the operable solution and a type-one low 
voltage solution. A type-one solution has the property that the 
linearized system about that equilibrium point has a single positive 
eigenvalue. Therefore the set of low voltage solutions to be 
examined can be restricted to those which are type-one. 

111. Predicting Areas of Voltage Collapse through 
Properties of Low Voltage Power Flow Solutions 

Classifying solutions as type-one raises the computational 
issue of identifying the stability properties of a power flow 
solution with respect to the liiearized dynamic model. A number 
of authors have examined the issue of relating small disturbance 
stability of the linearized power system dynamics to the 
eigenvalues of the power flow Jacobian (see [ 191 and references 
therein). For a lossless version of the model employed here, the 
system energy function is positive definite about an equilibrium 
when the power flow Jacobian has all negative eigenvalues. With 
additional results established in [20], this in turn implies that the 
dynamic model is stable. Hence, small disturbance stability of the 
dynamic model can be guaranteed by examining the eigenvalues of 
the power flow Jacobian. While this result formally holds true 
only in the lossless case, eigenvalues of both the power flow 
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To illustrate the role of the unstable eigenvector in predicting 
the area of collapse. consider the simple system of Figure 3-1. 
This system consists of a strong generator bus (an infinite or slack 
bus), with two separate load buses connected through 
transmission lines. Mathematically, the system is equivalent to 
two independent two bus systems. Since each of these 
independent two bus systems can have at most two solutions [6],  
it is clear that for the three bus system there are at most four power 
flow solutions. For the loads shown in Figure 3-1, Table 3-1 
shows the four solutions, their associated energy, and where 
appropriate, the unstable eigenvector of the power flow Jacobian. 

Solution Number 
0 1 2 3 

Bus 1 Voltage 0.614 0.472 0.614 0.472 
Bus 1 Angle -20.0" -26.4" 40.00 -26.4" 
Bus 2 Voltage 0.784 0.784 0.255 0.255 
BUS 2 Angle- -8.8" -8.8" -28.1" -28.1" 

Energy measure 0.127 1.636 1.763 

Jacnhian 4.86 4.22 8.09 4.22 . -. - .- 
eigenvalues -2679 -23% -8.65 8.09 

-13.72+5.24j -13.72+5.24j -4.86 -8.65 
-13.72-5.24j -13.72-5.24j -26.79 -23.74 

Positive 
eigenvalue ' s 
eigenvector 

0.678 O.OO0 
0.737 O.Oo0 
O.OO0 0.846 
O.Oo0 0.735 

Note: The eigenvector shown is associated with the positive eigenvalue fot 
h e  type-one solutions [solutions 1 and 21. The fnst two rows of the fou 
component vector correspond to the voltage angle (in radians) and magniolde 
at bus one. while the last two rows correspond to the voltage angle and 
magnitude at bus two. 

Table 3-1: Three Bus System Solutions 

Solution zero ( x q  corresponds to the operable solution, while 
one (XI) and two (x2) are type-one low voltage solutions, and 
three (x3) is a type-two low voltage solution. The eigenvector 
associated with the positive eigenvalue for the type-one solutions 
indicates the area affected by collapse. The presence of non-zero 
elements in the first two rows of v1 and zero elements in the last 
two rows of v1 indicates that if the load variation was such that 
voltage collapse occurred by a bifurcation of xo and xl, the initial 
drop in voltage would only occur at bus one (the independence of 
the bus one and two voltages is due to the presence of the slack 
bus between them). Thus 13(x1) provides a measure of 
vulnerability to voltage collapse in the area about bus one. 
Likewise, e(x2) provides a measure of vulnerability to voltage 
collapse in the area of bus two. Since x3 is a type-two solution, 
9(x3) is not used. The low value of 6(x1) indicates that at the 
given operating point, the bus one area is more vulnerable to 
collapse than the bus two area. However which area first 
encounters voltage collapse depends in part upon the relative load 
participation factors between the two areas. For example, if all 
subsequent load increase occurs only in area two, tY(x2) would 
decrease more rapidly. 

The Stagg and El-Abiad five bus system [22] was chosen as 
the next test system. Because of system interconnections, the 
presence or absence of a particular type-one solution is no longer 
dependent upon the load at a single bus, but rather on system 
loading as a whole. However, the eigenvector associated with the 
positive eigenvalue still provides information on the area of 
collapse for a given type-one solution. 

Assume that all real and reactive loads are a linear function of 
the parameter k (k=l for basecase). As the value of k is vaned, 
the number of type-one solutions changes. For k very close to 

zero the system has four type-one solutions of interest. As k is 
increased, the number drops to three at k = 0.03, to two at k = 
0.55, to one at k = 1.02, and to zero at the point of voltage 
collapse (k = 3.36) when the operable solution coalesces with the 
remaining type-one solution. Figure 3-2 plots the variation in the 
energy measures for each type-one solution with respect to k. 
Given the smooth variation in the energy measures with respect to 
changes in system load, system security can be monitored by 
periodically calculating the type-one solutions and their associated 
energy measures. 

Solution 'C' energy trajectory 

Solution 'B' energy trajectory 

Solution 'A' energy trajectory I 
2- 

0 I .  I I .  

0 1 2 3 4 
Load Constant (k) 

Figure 3-2 

As with the three bus system, the eigenvector associated with 
the positive eigenvalue of the power flow Jacobian provides an 
interpretation of the multiple type-one solutions. A type-one 
solution provides a security measure for voltage collapse occurring 
initially at the buses with the largest eigenvector components. 
Table 3-2 shows the eigenvectors associated with the positive 
eigenvalue of the Jacobian for different values of k. The 
eigenvectors are divided into two columns, corresponding to 
phase and and voltage magnitude. The rows are ordered from bus 
two through bus five (bus one is the system slack). 

Type-one Low Voltage Solutions 

A B C D 
a I v I  a IvI a Iv I  a I v I  

.o -0.06 0.03 -0.05 0.02 -0.05 0.05 1.00 O.M 
-0.06 0.03 -0.24 0.05 0.92 0.31 0.00 0.M 
-0.07 0.03 0.96 0.12 -0.21 0.12 0.00 0.OC 
0.98 0.16 -0.08 0.03 -0.02 0.05 0.00 0.M 

.5 -0.07 0.05 -0.06 0.04 -0.07 0.06 * 
-0.06 0.05 -0.20 0.10 0.93 0.32 
-0.07 0.06 0.95 0.18 0.03 0.16 
0.95 0.28 -0.06 0.05 -0.02 0.06 

.o 0.08 0.07 -0.08 0.07 * 
0.04 0.07 0.13 0.19 
0.06 0.09 0.94 0.21 
0.93 0.32 0.09 0.12 

* 

.o -0.01 0.20 * 
0.18 0.25 
0.23 0.27 
0.72 0.48 

No solution exists 
Table 3-2 Eigenvector for Positive Eigenvalue 
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discussed in the previous section. Additionally the solution found 
using a low initial guess at bus i has an "mea center" at bus i. For 
example, all of the " A  solutions from Table 3-2 and Figure 3-1 
were calculated with a low initial guess at bus 5, the "B" solutions 
with a low initial guess at bus 4. the "C" solutions at bus 3 and the 
" D  solutions at bus 2. This suggests the following algorithm: 

0 .  Obtain the stable operating solution (on-line this is 

1. For each bus i in the system: 
normally available from the state estimator). 

a. Calculate Vy and form the power flow initial voltage 
guess with V: for j # i and V: for j = i. 
b. Solve the wer flow for the "bus i" solution using the 
rectangular xwton-Raphson method. If a solution exists 
calculate the associated energy measure. 

Each energy measure then provides an indication of the voltage 
security in the area of bus i. If no solution exists for a low initial 
guess at bus i, then either the bus i area is relatively invulnerable to 
voltage collapse, or an energy measure exists for a nearby bus. 

The solutions with the lowest energy measures indicate the 
most vulnerable portions of the system. These solutions should 
be tracked as the system varies with time. If appropriate, system 
voltage security could be improved by moving controllers in such 
a way as to increase these energy measures [14]. However 
solutions with high energy measures would not need to be tracked 
since they represent secure portions of the system. Therefore 
voltage security of the entire system can be determined by 
calculating the relatively few solutions with low energy measures. 
Thus a drawback of the above algorithm is that in order to 
determine this small subset of low energy solutions, it is necessary 
to perform n-1 power flow solutions. This would be 
computationally prohibitive for a large system. The objective is 
then to rapidly determine the set of low energy solutions. 

An insight into the improvement of the algorithm is suggested 
by two characteristics of the low energy solutions. First, since by 
definition the energy measure is an integration from the operable 
solution to a low voltage solution, the lowest values of energy 
tend to be associated with the low voltage solutions which are 
"close" to the operable solution. This i s  not surprising since if 
voltage collapse were to occur, it would occur when these two 
solution ultimately coalesce. Second, the deviation in the bus i 
solution voltages frcin the operable solution voltages tends to be 
localized about bus i. Often the voltages, and hence the power 
flows in a large portion of a low energy solution do not deviate 
significantly from the operable solution. Recall that the energy 
measure is defiied as an integration of the power mismatch 
equations from the operable solution to the low voltage solution. 
The portion of the energy measure associated with the areas of the 
system where the two solutions are nearly identical is quite small 
(i.e. the result of the integration of the power mismatches in that 
area of the system is quite small). This implies that the bus i 
energy can be approximated by a partial system solution. The 
degree of localization is dependent upon the system, but since the 
low solutions are characterized by higher reactive flows, it is 
strongly influenced by the location of sources of reactive power. 

The proposed solution to the problem of rapidly determining 
the low energy solutions is to calculate and solve an equivalent 
system, rather than the full system, for each iteration of the 
Simplified Method. The equivalent system is created by explicitly 
retaining bus i, along with a set of neighboring buses, and the 
path set associated with those buses. Adaptive reduction 
techniques [24] can then be used so that for a large system the 
computational effort to create each equivalent is substantially less 
than a single power flow iteration. The accuracy of the energy 
estimate is dependent upon the number of buses retained. It is 

The largest component of all the solution A eigenvectors are in 
rowa correaponding to bus 5 quantities. Hence the energy 
measure for solution A provides an indication of the vulnerability 
to collapse of an area centered around bus 5 (because of the small 
size of this system, initially each area contains only a single bus). 
Likewise solution B energy is an indicator for vulnerability around 
bus 4. solution C around bus 3, and solution D around bus 2. A 
precise definition of the buses in a given area is not necessary; 
only a knowledge of the "area center" (defined as the bus 
associated with the largest components in the eigenvector). As the 
load is increased, the areas tend to merge, inferred by the loss of a 
type-one solution. At some loading level only a single type-one 
solution and the operable solution remain. To keep the system 
away from extreme voltage vulnerability, it may be prudent to 
"track a number of solutions simultaneously. Then any time an 
area is moving towards voltage instability appropriate control 
actions could be identified [14]. 

Thus the positive eigenvalue's eigenvector provides an 
interpretation of the energy measure associated with that type-one 
solution; i.e.. the energy measure provides an indicator of 
vulnerability to voltage collapse in the area of buses with the 
largest components in the eigenvector. Results in the next section 
suggest that it is not necessary to calculate the eigenvector; its 
largest components (i.e. the area center) can be inferred from the 
power flow initial voltage guess used to calculate the solution. 

IV. Efficient Calculation of Appropriate 
Low Voltage Power Flow Solutions 

As was mentioned earlier, for an n bus power system, there 
are believed to be up to 2n-1 separate power flow solutions. To 
use the energy method in an on-line environment, it is imperative 
that computationally efficient means of determining the 
appropriate low voltage solutions be employed. In this section 
such an algorithm is presented. 

For the case where just a pair of closely located solutions is 
desired (e.g. the operable solution and a nearby low voltage 
solution), the method presented in [12] provides a computationally 
efficient technique for locating the solutions. This method takes 
advantage of the convergence characteristic of the rectangular 
Newton-Raphson method, but requires that the two solutions be 
closely paired. For the more general situation required here, 
where a number of low voltage solutions may have to be 
calculated, an algorithm is presented in [6] that attempts to 
determine all the low voltage solutions. The algorithm can be 
summarized as follows. Assume that the operable solution Vs has 
been calculated. Then for each bus an initial low voltage guess 
V: is calculated using a closed form equation [6], with the 
assumption that the voltages at all other buses are fixed. Then 
select either Vis or Vy as the initial voltage guesses for the 
rectangular Newton-Raphson power flow solution. Form all  the 
2n-1 possible combinations of initial voltage guess vectors. 
Attempt to compute power flow solutions for each of the initial 
guess permutations. The optimal mulfiplier method [23] is used to 
prevent power flow divergence or oscillation. While many initial 
voltage guess vectors had no solutions, the computational effort to 
attempt power flow solutions for the 2n-1 guesses proved 
intractable for all but the smallest system. A "Simplified Method" 
was a!so presented in [6], where only the n-1 combinations of 
initial voltage guess vectors, using VF at each single bus, are 
calculated. 

Extensive numerical tests suggest that the solutions obtained 
by the Simplified Method coxrespond to the type-one solutions 
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particularly important that nearby buses with reactive reserve (PV 
buses) be explicitly retained. The engineering trade-off is between 
increased accuracy and increased size of the equivalent. For the 
studies performed herc. the algorithm used to determine the set of 
retained buses explicitly retained all buses up to the second 
neighbors of bus i, and all PV buses up to its fourth neighbors. 
More sophisticated algorithms could, of course, be used. If a bus 
i low voltage solution exists for the equivalent system, an 
equivalent energy measure is calculated. Full low voltage 
solutions are calculated only for those buses whose equivalent 
energy is sufficiently low. If the equivalent system contains no 
bus i solution, then it is assumed that the full system also does not 
possess a bus i solution. Desirable propernes of the equivalent are 
first that it have a bus i solution if and only if the full network has 
a bus i solution, second that if a solution exists, the equivalent's 
energy accurately estimate the energy of the full solution, and third 
that the size of the equivalent network be sufficiently small. The 
Ward Admittance equivalence method from [25] was chosen. As 
will be seen in the following examples, this method provides good 
correlation between the equivalent solution energy and the full 
solution energy. Additionally, errors tend to be in the 
conservative direction of underestimating the value of the true 
solution energy. The following "Improved Method" is proposed: 

0. Obtain the stable operating solution. 
1. The Ybus matrix is re-ordered and factored. 
2. For each bus i in the system (Screening stage) 

a. Determine the set of retained buses (including bus i) 
and their path set; then using adaptive reduction setup an 
equivalent system. 
b. Calculate V: and form the initial voltage guess for all 
buses in the equivalent with Vjs for j # i and Vj" for j = i. 
c. Solve the equivalent system using the rectangular 
Newton-Raphson method. 
d. If a solution exists calculate its energy measure. If 
energy measure is sufficiently small, store solution. 

3 .  For each bus with a sufficiently small energy measure for 
the equivalent system (Solution stage) 
a. Form the power flow initial voltage guess using V{ for 
j not in the equivalent and V,(eqv) for j in equivalent. 
b. Solve the full system using the rectangular Newton- 
Raphson method. 
c. If a solution exists calculate its energy measure. 

In the first step, the matrix was re-ordered in order to minimize 
the length of the factorization paths used in the adaptive reduction. 
This reordering was done because numerical testing between 
Tinney Scheme 2 and the Minimum Degree Minimum Length 
(MDML) algorithm from [26] indicated that smaller equivalent 
networks tended to result when the MDML method was used. 
The number of buses explicitly retained in each equivalent is 
independent of the original system size; the number of buses in the 
path set depends on the structure of the factorization path graph. 

The algorithm was tested on the IEEE 118 bus case. For the 
studies performed here, loads were assumed to be a linear function 
of a parameter k (k=l for basecase). Reasonable generator 
participation factors were used. The upper curve in Figure 4-1 
shows the variation in number of low voltage solutions (calculated 
using the Simplified Method) with respect to k. As the system 
load increases, the number of solutions tends to decrease. The 
lower curve in the figure shows the number of solutions with 
energy values below 3.0. For low load levels, when the system is 
quite secure, there are only a few solutions with energy values less 
than 3.0 (the lowest energy value for k=l  is 2.75). As the system 
loading increases, the number of low energy solutions also tends 
to increase, indicating that the system is becoming more vulnerable 

to voltage instability in a number of areas. However, the number 
of low energy solutions remains quite moderate. Immediately 
before voltage collapse there is only a single low voltage solution. 
Convergence properties of the Newton-Raphson method 
unfortunately make it possible that a low initial guess at bus j 
converges to the bus k solution (with j # k). However, in the 
thousands of powerflows performed to produce Figure 4-1, this 
occurred only a few times. 

All Simplified Method 
- 

Solutions with energy 
less than 3. - 

. I .  - . -  
1.5 2.0 2.5 3.0 I ' : O  Load Constant (k) 

I 
Figure 4-1 

mpmved Method 
0.88 
52.79 Construct 117 Equivalents - 

Solution of 117 equiv. systems - 189.27 
and screening energy 

Full Solutions and 570.84 51.74 
enagy calculations 

Total 570.84 294.68 
Table 4-1 - Comparison of Computational Efficiency 

Order/Factor Ybus Snplf ldMethod 1 

for screening 

The computational efficiency of the Improved Method is 
demonstrated by comparing it to the Simplified Method in Table 4- 
1. Simulations shown are for k=l, and times given are in 
seconds. For reference, the time necessary to calculate the 
operable power flow solution from a flat start was 3.18 seconds 
on the machine used. 

To determine the set of low energy solutions at each time step 
using the Simplified method required 117 power flow solutions of 
the full IEEE 118 bus system (the system has 186 lines). For the 
Improved Method the ordering and factoring of the Ybus only had 
to be performed once. Most of the time was spend solving the 
equivalent systems. The average size of the equivalent systems 
was 31 buses with 60 lines. Full solutions were then only 
performed for the ten buses with lowest screened energy values. 

The accuracy of the Improved Method is demonstrated by 
comparing the equivalent system energies to the energy obtained 
by the Simplified method. At k=l, 54 low voltage solutions were 
found using the Simplified method, while 45 were found for the 
equivalent systems. Of these 45, only one did not have a 
corresponding full system solution (a "false alarm"). All of the 10 
solutions missed by screening had energies greater than 5.0 and 
therefore none were considered low energy. Table 4-2 compares 
the energy of the equivalent systems to the full solution energies 
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occur. The rate of change information could either be determined 
by monitoring the time variation of the energy values; or when 
accurate future load/generation participation estimates are 
available, computed analytically using techniques from [14]. 

Lastly the Improved Method was tested on a 415 bus/609 line 
system. The average size of the equivalents used in the screening 
was 37 buses and 94 lines. Thus, comparing to the 118 bus case, 
a 300% increase in system size has resulted in only about a 50% 
increase in equivalent system size. The average time to build and 
solve each equivalent system was about 20% of a power flow 
solution of the full system. Full solutions were performed for the 
ten buses with the lowest screening energy values. Comparison 
with results of the Simplified Method indicated that screening 
correctly located the nine buses with the lowest energies, with 
energy errors again in the conservative direction. 

for the ten lowest values. Note that the ranking of the equivalent 
energies correlates quite closely to the ranking of the full solution 
energies, and that the error is in the conservative direction of 
underestimating the hue value. 

Bus# Eq uivalent System Energy Full System Energy 

10 
21 
44 

2.21 
2.40 
261 I 3.61 

3.03 
2.15 

no solution 
3.52 

4.01 
3.85 

The tests were repeated at  a higher value of load (k=2.5). 
Thirteen of the seventeen solutions found using the Simplified 
method were identified during screening. These thirteen included 
all of the nine solutions with energy less than 3.0. 

Bus 43 solution 
Bus 44 sohtion 
Bus 54 solution 
Bus 95 solution 

1 .o 1.5 2.0 2.5 3.0 
Load Constant (k) 

Figure 4-2 

Figure 4-2 plots the variation in the energy with respect to k 
for the six solutions having lowest energy. The various energy 
measures provide an indication of the most vulnerable areas of the 
system. For low load levels the high energy levels indicate that 
the system is relatively secure. with the weakest areas in the 
vicinity of buses 44, 43, and 21. Again, each energy quantity 
provides a measure of voltage vulnerability in a particular area, 8s 

can be verified by calculating the eigenvector for the positive 
eigenvalue of the Jacobian. For example, in the bus 44 solution, 
the largest eigenvector components were associated with bus 44. 
with other significant component values (5% of bus 44 values) 
found only at its first and second neighbor buses. 

As the load is increased, the energy measures tend to decrease. 
The rate of decrease is dependent upon the rate of change of the 
system parameters. For example while the area in the vicinity of 
bus 95 is quite secure initially, the high subsequent load increase 
(due to its large basecase load) causes a rapid drop in its voltage 
security and hence its energy measure. This underscores the 
necessity of monitoring more than just the lowest energy solution. 
For any given system state, the energy measures provide relative 
ranking of the voltage security of the areas of the system. When 
combined with their rate of change, the energy values provide the 
system operator with a very good indication of how close the 
system is to voltage collapse and where collapse would initially 

V. Conclusions 

This paper has introduced an algorithm for rapidly determinin g 
the low voltage power flow solutions with the smallest associated 
energy measures. The algorithm was then illustrated in 
conjunction with energy methods to assess power system security 
with respect to voltage instability. Energy methods offer the 
advantages of smooth variation with respect to system changes, 
and properties of the low voltage solutions identify particular areas 
of the system most vulnerable to voltage collapse. Previous 
research had identified efficient calculation of low voltage 
solutions as the main impediment in the application of energy 
methods to the voltage collapse problem. The Improved Method 
presented here offers a viable solution to this difficulty. In 
conclusion, energy methods, coupled with the Improved Method 
for low voltage power flow solutions, provide a good method of 
assessing power system security with respect to voltage problems. 
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Appendix 

The energy function used in this paper for the determination of 
voltage security is defined as: 

(au.Vu) T 
*(X',XU) = [f (S,v), gT(S.v)lT[d5.dv IT (All 

L V 7  
where xs := (aS,Vs) is the Stable Equilibrium Point (SEP), xu := 
(au.Vu) an Unstable Equilibrium Point (UEP), V and a are the 
system voltage magnitudes and angles. and 

n 

i=l 
fi(a.v) = Pi - C ~ i j  I Vi I I Vj I sin(ai-aj) 

n 
- c Gij I v; I I q I cos(+;) 
j=l 

n 
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The constant terms on the second lines of (A2) and (A3) are 
included so that f and g are identically zero at the SEP solution 
even for networks with non-zero transfer conductance terms. 
Evaluating the integral (Al) from xs to xu, the energy function is 
nven as: 

n n  

Fl j=1 
+ ix I: Bij I Vf I I I cos(af-ay) 

Since in the voltage security context one is only concemed 
with the energy differences between equilibrium points, (Al) and 
(A4) are only potential energy components of a total system 
energy function. In order for (Al) to formally define a Lyapunov 
function, the kinetic energy term would have to be included and a 
number of restrictions placed on allowable system dynamic 
models. These would include 1) not allowing voltage dependence 
in the real power load, 2) restricting the method to networks with 
no transfer conductance terms. In the realistic systems considered 
here, these restrictions are relaxed. and hence we use the term 
"energy function" rather than Lyapunov function. 
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