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Improved techniques for preparing eigenstates of fermionic
Hamiltonians
Dominic W. Berry1, Mária Kieferová1,2, Artur Scherer1, Yuval R. Sanders 1, Guang Hao Low3, Nathan Wiebe3, Craig Gidney4 and
Ryan Babbush5

Modeling low energy eigenstates of fermionic systems can provide insight into chemical reactions and material properties and is
one of the most anticipated applications of quantum computing. We present three techniques for reducing the cost of preparing
fermionic Hamiltonian eigenstates using phase estimation. First, we report a polylogarithmic-depth quantum algorithm for
antisymmetrizing the initial states required for simulation of fermions in first quantization. This is an exponential improvement over
the previous state-of-the-art. Next, we show how to reduce the overhead due to repeated state preparation in phase estimation
when the goal is to prepare the ground state to high precision and one has knowledge of an upper bound on the ground state
energy that is less than the excited state energy (often the case in quantum chemistry). Finally, we explain how one can perform the
time evolution necessary for the phase estimation based preparation of Hamiltonian eigenstates with exactly zero error by using
the recently introduced qubitization procedure.
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INTRODUCTION
One of the most important applications of quantum simulation
(and of quantum computing in general) is the Hamiltonian
simulation based solution of the electronic structure problem. The
ability to accurately model ground states of fermionic systems
would have significant implications for many areas of chemistry
and materials science and could enable the in silico design of new
solar cells, batteries, catalysts, pharmaceuticals, etc.1,2 The most
rigorous approaches to solving this problem involve using the
quantum phase estimation algorithm3 to project to molecular
ground states starting from a classically guessed state.4 Beyond
applications in chemistry, one might want to prepare fermionic
eigenstates in order to simulate quantum materials5 including
models of high-temperature superconductivity.6

In the procedure introduced by Abrams and Lloyd,7 one first
initializes the system in some efficient-to-prepare initial state φj i
which has appreciable support on the desired eigenstate kj i of
Hamiltonian H. One then uses quantum simulation to construct a
unitary operator that approximates time evolution under H. With
these ingredients, standard phase estimation techniques invoke
controlled application of powers of U(τ)= e−iHτ. With probability
αk ¼ φjkh ij j2, the output is then an estimate of the corresponding
eigenvalue Ek with standard deviation σEk = O ðτMÞ�1� �

, where M
is the total number of applications of U(τ). The synthesis of e−iHτ is
typically performed using digital quantum simulation algorithms,
such as by Lie-Trotter product formulas,8 truncated Taylor series,9

or quantum signal processing.10

Since the proposal by Abrams and Lloyd,7 algorithms for time-
evolving fermionic systems have improved substantially.11–18

Innovations that are particularly relevant to this paper include
the use of first quantization to reduce spatial overhead19–24 from

O(N) to O(η log N) where η is number of particles and N≫ η is
number of single-particle basis functions (e.g., molecular orbitals
or plane waves), and the use of post-Trotter methods to reduce
the scaling with time-evolution error from O(poly(1/ϵ)) to O
(polylog(1/ϵ)).24–26 The algorithm of ref. 24 makes use of both of
these techniques to enable the most efficient first quantized
quantum simulation of electronic structure in the literature.
Unlike second quantized simulations which necessarily scale

polynomially in N, first quantized simulation offers the possibility
of achieving total gate complexity O(poly(η)polylog(N, 1/ϵ)). This is
important because the convergence of basis set discretization
error is limited by resolution of the electron-electron cusp,27 which
cannot be resolved faster than O(1/N) using any single-particle
basis expansion. Thus, whereas the cost of refining second
quantized simulations to within δ of the continuum basis limit is
necessarily O(poly(1/δ)), first quantization offers the possibility of
suppressing basis set errors as O(polylog(1/δ)), providing essen-
tially arbitrarily precise representations.
In second quantized simulations of fermions the wavefunction

encodes an antisymmetric fermionic system, but the qubit
representation of that wavefunction is not necessarily antisym-
metric. Thus, in second quantization it is necessary that operators
act on the encoded wavefunction in a way that enforces the
proper exchange statistics. This is the purpose of second
quantized fermion mappings such as those explored in refs. 28–

34 By contrast, the distinguishing feature of first quantized
simulations is that the antisymmetry of the encoded system must
be enforced directly in the qubit representation of the wavefunc-
tion. This often simplifies the task of Hamiltonian simulation but
complicates the initial state preparation.
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In first quantization there are typically η different registers of
size log N (where η is the number of particles and N is number of
spin-orbitals) encoding integers indicating the indices of occupied
orbitals. As only η of the N orbitals are occupied, with η log N
qubits one can specify an arbitrary configuration. To perform
simulations in first quantization, one typically requires that the
initial state φj i is antisymmetric under the exchange of any two of
the η registers. Prior work presented a procedure for preparing
such antisymmetric states with gate complexity scaling as
~O η2ð Þ.35,36
In Section IA we provide a general approach for antisymmetriz-

ing states via sorting networks. The circuit size is O η logc η logNð Þ
and the depth is O logc η loglogNð Þ, where the value of c ≥ 1
depends on the choice of sorting network (it can be 1, albeit with
a large multiplying factor). In terms of the circuit depth, these
results improve exponentially over prior implementations.35,36

They also improve polynomially on the total number of gates
needed. We also discuss an alternative approach, a quantum
variant of the Fisher-Yates shuffle, which avoids sorting, and
achieves a size-complexity of O(η2 log N) with lower spatial
overhead than the sort-based methods.
Once the initial state φj i has been prepared, it typically will not

be exactly the ground state desired. In the usual approach, one
would perform phase estimation repeatedly until the ground state
is obtained, giving an overhead scaling inversely with the initial
state overlap. In Section IB we propose a strategy for reducing this
cost, by initially performing the estimation with only enough
precision to eliminate excited states.
In Section IC we explain how qubitization37 provides a unitary

sufficient for phase estimation purposes with exactly zero error
(provided a gate set consisting of an entangling gate and arbitrary
single-qubit rotations). This improves over proposals to perform
the time evolution unitary with post-Trotter methods at cost
scaling as O(polylog(1/ϵ)). We expect that a combination of these
strategies will enable quantum simulations of fermions similar to
the proposal of24 with substantially fewer T gates than any
method suggested in prior literature.

RESULTS
Exponentially faster antisymmetrization
Here we present our algorithm for imposing fermionic exchange
symmetry on a sorted, repetition-free quantum array target.
Specifically, the result of this procedure is to perform the
transformation

r1 � � � rη
�� �7!X

σ2Sη
�1ð Þπ σð Þ σ r1; � � � ; rη

� ��� �
(1)

where π(σ) is the parity of the permutation σ, and we require for
the initial state that rp < rp+1 (necessary for this procedure to be
unitary). Although we describe the procedure for a single input
r1 � � � rη
�� �

, our algorithm may be applied to any superposition of
such states.
Our approach is a modification of that proposed in refs. 35,36;

namely, to apply the reverse of a sort to a sorted quantum array.
Whereas refs. 35,36 provide a gate count of Oðη2ðlogNÞ2Þ, we can
report a gate count of Oðη logη logNÞ and a runtime of
Oðlogη loglogNÞ.
This section proceeds as follows. We begin with a summary of

our algorithm. We then explain the reasoning underlying the key
step (Step 4) of our algorithm, which is to reverse a sorting
operation on target. Next we discuss the choice of sorting
algorithm, which we require to be a sorting network. Then, we
assess the cost of our algorithm in terms of gate complexity and
runtime and we compare this to previous work in refs. 35,36. Finally,
we discuss the possibility of antisymmetrizing without sorting and
propose an alternative, though more costly, algorithm based on

the Fisher-Yates shuffle. Our algorithm consists of the following
four steps:

1. Prepare seed. Let f be a function chosen so that f(η) ≥ η2 for
all η. We prepare an ancillary register called seed in an even
superposition of all possible length-η strings of the numbers
0, 1, …, f(η)− 1. If f(η) is a power of two, preparing seed is
easy: simply apply a Hadamard gate to each qubit.

2. Sort seed. Apply a reversible sorting network to seed. Any
sorting network can be made reversible by storing the
outcome of each comparator in a second ancillary register
called record. There are several known sorting networks
with polylogarithmic runtime, as we discuss below.

3. Delete collisions from seed. As seed was prepared in a
superposition of all length-η strings, it includes strings with
repeated entries. As we are imposing fermionic exchange
symmetry, these repetitions must be deleted. We therefore
measure seed to determine whether a repetition is present,
and we accept the result if it is repetition-free. We prove in
Supplementary Materials that choosing f(η) ≥ η2 ensures
that the probability of success is greater than 1/2. We further
prove that the resulting state of seed is disentangled from
record, meaning seed can be discarded after this step.

4. Apply the reverse of the sort to target. Using the comparator
values stored in record, we apply each step of the sorting
network in reverse order to the sorted array target. The
resulting state of target is an evenly weighted super-
position of each possible permutation of the original values.
To ensure the correct phase, we apply a controlled-phase
gate after each swap.

Step 4 is the key step. Having prepared (in Step 1–Step 3) a
record of the in-place swaps needed to sort a symmetrized,
collision-free array, we undo each of these swaps in turn on the
sorted target. We employ a sorting network, a restricted type of
sorting algorithm, because sorting networks have comparisons
and swaps at a fixed sequence of locations. By contrast, many
common classical sorting algorithms (like heapsort) choose
locations depending on the values in the list. This results in
accessing registers in a superposition of locations in the
corresponding quantum algorithm, incurring a linear overhead.
As a result, a quantum heapsort requires eO η2ð Þ operations, noteOðηÞ. By contrast, no overhead is required for using a fixed
sequence of locations. The implementation of sorting networks in
quantum algorithms has previously been considered in refs. 38,39.
Sorting networks are logical circuits that consist of wires

carrying values and comparator modules applied to pairs of wires,
that compare values and swap them if they are not in the correct
order. Wires represent bit strings (integers are stored in binary) in
classical sorting networks and qubit strings in their quantum
analogs. A classical comparator is a sort on two numbers, which
gives the transformation (A, B)↦ minðA; BÞ;maxðA; BÞð Þ. A quan-
tum comparator is its reversible version where we record whether
the items were already sorted (ancilla state 0j i) or the comparator
needed to apply a swap (ancilla state 1j i); see Fig. 1.
The positions of comparators are set as a predetermined fixed

sequence in advance and therefore cannot depend on the inputs.
This makes sorting networks viable candidates for quantum

Fig. 1 The standard notation for a comparator is indicated on the
left. Its implementation as a quantum circuit is shown on the right.
In the first step, we compare two inputs with values A and B and
save the outcome (1 if A > B is true and 0 otherwise) in a single-qubit
ancilla. In the second step, conditioned on the value of the ancilla
qubit, the values A and B in the two wires are swapped
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computing. Many of the sorting networks are also highly
parallelizable, thus allowing low-depth, often polylogarithmic,
performance.
Our algorithm allows for any choice of sorting network. Several

common sort algorithms such as the insert and bubble sorts can
be represented as sorting networks. However, these algorithms
have poor time complexity even after parallelization. More
efficient runtime can be achieved, for example, using the bitonic
sort,40,41 which is illustrated for 8 inputs in Fig. 2. The bitonic sort
uses O(η log2 η) comparators and O(log2 η) depth, thus achieving
an exponential improvement in depth compared to common
sorting techniques.
Slightly better performance can be obtained using an odd-even

mergesort.40 The asymptotically best sorting networks have depth
O(log η) and complexity O(η log η), though there is a large
constant which means they are less efficient for realistic η.42,43

There is also a sorting network with O(η log η) complexity with a
better multiplicative constant,44 though its depth is O(η log η) (so
it is not logarithmic).
Assuming we use an asymptotically optimal sorting network,

the circuit depth for our algorithm is O(log η log log N) and the
gate complexity is O(η log η log N). The dominant cost of the
algorithm comes from Step 2 and Step 4, each of which have O(η
log η) comparators that can be parallelized to ensure the sorting
network executes only O(log η) comparator rounds. Each
comparator for Step 4 has a complexity of O(log N) and a depth
of O(log log N), as we show in Supplementary Materials. The
comparators for Step 2 have complexity O(log N) and depth O(log
log η), which is less because η < N. Thus Step 2 and Step 4 each
have gate complexity O(η log η log N) and runtime O(log η log log
N).
The other two steps in our algorithm have smaller cost. Step 1

has constant depth and O(η log η) complexity. Step 3 requires O(η)
comparisons because only nearest-neighbor comparisons need be
carried out on seed after sorting. These comparisons can be
parallelized over two rounds, with complexity O(η log η) and
circuit depth O(log log η). Then the result for any of the registers
being equal is computed in a single qubit, which has complexity O
(η) and depth O(log η). Thus the complexity of Step 3 is O(η log η)
and the total circuit depth is O(log η). We give further details in
Supplementary Materials. Thus, our algorithm has an exponential
runtime improvement over the proposal in refs. 35,36. We also have
a quadratic improvement in gate complexity, which is eOðηÞ for our
algorithm but eO η2ð Þ for refs. 35,36.
Our runtime is likely optimal for symmetrization, at least in

terms of the η scaling. Symmetrization takes a single computa-
tional basis state and generates a superposition of η! computa-
tional basis states. Each single-qubit operation can increase the
number of states in the superposition by at most a factor of two,
and two-qubit operations can increase the number of states in the
superposition by at most a factor of four. Thus, the number of one-
and two-qubit operations is at least log2 (nǃ)=O(η log η). In our
algorithm we need this number of operations between the

registers. If that is true in general, then η operations can be
parallelized, resulting in minimum depth O(log η). It is more easily
seen that the total number of registers used is optimal. There are
O(η log η) ancilla qubits due to the number of steps in the sort,
but the number of qubits for the system state we wish to
symmetrize is O(η log N), which is asymptotically larger.
Our quoted asymptotic runtime and gate complexity scalings

assume the use of sorting networks that are asymptotically
optimal. However, these algorithms have a large constant
overhead making it more practical to use an odd-even mergesort,
leading to depth O(log2 η log log N). Note that is possible to
obtain complexity O(η log η log N) and number of ancilla qubits O
(η log η) with a better scaling constant using the sorting network
of ref. 44.
Given that the cost of our algorithm is dictated by the cost of

sorting algorithms, it is natural to ask if it is possible to
antisymmetrize without sorting. Though the complexity and
runtime both turn out to be significantly worse than our sort-
based approach, we suggest an alternative antisymmetrization
algorithm based on the Fisher-Yates shuffle. The Fisher-Yates
shuffle is a method for applying to a length-η target array a
permutation chosen uniformly at random using a number of
operations scaling as O(η). Our algorithm indexes the positions to
be swapped, thereby increasing the complexity to ~O η2ð Þ. Briefly
put, our algorithm generates a superposition of states as in Step II
of ref. 36, then uses these as control registers to apply the Fisher-
Yates shuffle to the orbital numbers. The complexity is O(η2 log N),
with a factor of log N due to the size of the registers. We reset the
control registers, thereby disentangling them, using O(η log η)
ancillae. We provide more details of this approach in Supplemen-
tary Materials.
To conclude this section, we have presented an algorithm for

antisymmetrizing a sorted, repetition-free quantum register. The
dominant cost of our algorithm derives from the choice of sorting
network, whose asymptotically optimal gate count complexity and
runtime are, respectively, O(η log η log N) and O(log η log log N).
This constitutes a polynomial improvement in the first case and
exponential in the second case over previous work in refs. 35,36. As
in ref. 36, our antisymmetrization algorithm constitutes a key step
for preparing fermionic wavefunctions in first quantization.

Fewer phase estimation repetitions by partial eigenstate
projection rejection
Once the initial state φj i has been prepared, it typically will not be
exactly the ground state (or other eigenstate) desired. In the usual
approach, one would perform phase estimation repeatedly, in
order to obtain the desired eigenstate kj i. The number of
repetitions needed scales inversely in αk= φjkh ij j2, increasing
the complexity. We propose a practical strategy for reducing this
cost which is particularly relevant for quantum chemistry. Our
approach applies if one seeks to prepare the ground state with
knowledge of an upper bound on the ground state energy ~E0,
together with the promise that E0 � ~E0<E1. With such bounds
available, one can reduce costs by restarting the phase estimation
procedure as soon as the energy is estimated to be above ~E0 with
high probability. That is, one can perform a phase estimation
procedure that gradually provides estimates of the phase to
greater and greater accuracy, for example as in ref. 45 If at any
stage the phase is estimated to be above ~E0 with high probability,
then the initial state can be discarded and re-prepared.
Performing phase estimation within error ϵ typically requires

evolution time for the Hamiltonian of 1/ϵ, leading to complexity
scaling as 1/ϵ. This means that, if the state is the first excited state,
then an estimation error less than E1 � ~E0 will be sufficient to
show that the state is not the ground state. The complexity
needed would then scale as 1= E1 � ~E0

� �
. In many cases, the final

error required, ϵf , will be considerably less than E1 � ~E0, so the

Fig. 2 Example of a bitonic sort on 8 inputs. The ancillae necessary to
record the results as part of implementing each of the comparators
are omitted for clarity. Comparators in each dashed box can be
applied in parallel for depth reduction
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majority of the contribution to the complexity comes from
measuring the phase with full precision, rather than just rejecting
the state as not the ground state.
Given the initial state φj i which has initial overlap of α0 with the

ground state, if we restart every time the energy is found to be
above ~E0, then the contribution to the complexity is
1= α0 E1 � ~E0

� �� �
. There will be an additional contribution to the

complexity of 1/ϵf to obtain the estimate of the ground state
energy with the desired accuracy, giving an overall scaling of the
complexity of

O
1

α0 E1 � ~E0
� �þ 1

ϵf

 !
: (2)

In contrast, if one were to perform the phase estimation with full
accuracy every time, then the scaling of the complexity would be
O(1/(α0ϵf )). Provided α0 E1 � ~E0

� �
>ϵf , the method we propose

would essentially eliminate the overhead from α0.
In cases where α0 is very small, it would be helpful to apply

amplitude amplification. A complication with amplitude amplifica-
tion is that we would need to choose a particular initial accuracy
to perform the estimation. If a lower bound on the excitation
energy, ~E1, is known, then we can choose the initial accuracy to be
~E1 � ~E0. The success case would then correspond to not finding
that the energy is above ~E0 after performing phase estimation
with that precision. Then amplitude amplification can be
performed in the usual way, and the overhead for the complexity
is 1=

ffiffiffiffiffi
α0

p
instead of 1/α0.

All of this discussion is predicated on the assumption that there
are cases where α0 is small enough to warrant using phase
estimation as part of the state preparation process and where a
bound meeting the promises of ~E0 is readily available. We now
discuss why these conditions are anticipated for many problems
in quantum chemistry. Most chemistry is understood in terms of
mean-field models (e.g., molecular orbital theory, ligand field
theory, the periodic table, etc.). Thus, the usual assumption
(empirically confirmed for many smaller systems) is that the
ground state has reasonable support on the Hartree-Fock state
(the typical choice for φj i).46–49 However, this overlap will
decrease as a function of both basis size and system size. As a
simple example, consider a large system composed of n copies of
non-interacting subsystems. If the Hartree-Fock solution for the
subsystem has overlap α0, then the Hartree-Fock solution for the
larger system has overlap of exactly αn0, which is exponentially
small in n.
It is literally plain-to-see that the electronic ground state of

molecules is often protected by a large gap. The color of many
molecules and materials is the signature of an electronic excitation
from the ground state to first excited state upon absorption of a
photon in the visible range (around 0.7 Hartree); many clear
organics have even larger gaps in the UV spectrum. Visible
spectrum E1−E0 gaps are roughly a hundred times larger than the
typical target accuracy of ϵf = 0.0016 Hartree (“chemical accu-
racy”) (The rates of chemical reactions are proportional to e−βΔA/β
where β is inverse temperature and ΔA is a difference in free
energy between reactants and the transition state separating
reactants and products. Chemical accuracy is defined as the
maximum error allowable in ΔA such that errors in the rate are
smaller than a factor of ten at room temperature4). Furthermore, in
many cases the first excited state is perfectly orthogonal to the
Hartree-Fock state for symmetry reasons (e.g., due to the ground
state being a spin singlet and the excited state being a spin
triplet). Thus, the gap of interest is really E*−E0 where E� ¼
mink>0 Ek subject to φjkh ij j2>0. Often the E*−E0 gap is much larger
than the E1−E0 gap.
For most problems in quantum chemistry a variety of scalable

classical methods are accurate enough to compute upper bounds
on the ground state energy ~E0 such that E0 � ~E0<E�, but not

accurate enough to obtain chemical accuracy (which would
require quantum computers). Classical methods usually produce
upper bounds when based on the variational principle. Examples
include mean-field and Configuration Interaction Singles and
Doubles (CISD) methods.50

As a concrete example, consider a calculation on the water
molecule in its equilibrium geometry (bond angle of 104.5°, bond
length of 0.9584 Å) in the minimal (STO-3G) basis set performed
using OpenFermion51 and Psi4.52 For this system, E0=−75.0104
Hartree and E1=−74.6836 Hartree. However, φj1h i= 0 and E*=
−74.3688 Hartree. The classical mean-field energy provides an
upper bound on the ground state energy of ~E0 ¼ �74:9579
Hartree. Therefore E� � ~E0 � 0:6 Hartree, which is about 370 times
ϵf . Thus, using our strategy, for α0 > 0.003 there is very little
overhead due to the initial state φj i not being the exact ground
state. In the most extreme case for this example, that represents a
speedup by a factor of more than two orders of magnitude.
However, in some cases the ground state overlap might be high
enough that this technique provides only a modest advantage.
While the Hartree-Fock state overlap in this small basis example is
α0= 0.972, as the system size and basis size grow we expect this
overlap will decrease (as argued earlier).
Another way to cause the overlap to decrease is to deviate from

equilibrium geometries.46,47 For example, we consider this same
system (water in the minimal basis) when we stretch the bond
lengths to 2.25× their normal lengths. In this case, E0=−74.7505
Hartree, E*=−74.6394 Hartree, and α0= 0.107. The CISD solution
provides an upper bound ~E0 =−74.7248. In this case, E� � ~E0 �
0:085 Hartree, about 50 times ϵf . Since α0 > 0.02, here we speed
up state preparation by roughly a factor of α�1

0 (more than an
order of magnitude).

Phase estimation unitaries without approximation
Normally, the phase estimation would be performed by Hamilto-
nian simulation. That introduces two difficulties: first, there is error
introduced by the Hamiltonian simulation that needs to be taken
into account in bounding the overall error, and second, there can
be ambiguities in the phase that require simulation of the
Hamiltonian over very short times to eliminate.
These problems can be eliminated if one were to use

Hamiltonian simulation via a quantum walk, as in refs. 53,54. There,
steps of a quantum walk can be performed exactly, which have
eigenvalues related to the eigenvalues of the Hamiltonian.
Specifically, the eigenvalues are of the form ± e± iarcsin Ek=λð Þ . Instead
of using Hamiltonian simulation, it is possible to simply perform
phase estimation on the steps of that quantum walk, and invert
the function to find the eigenvalues of the Hamiltonian. That
eliminates any error due to Hamiltonian simulation. Moreover, the
possible range of eigenvalues of the Hamiltonian is automatically
limited, which eliminates the problem with ambiguities.
The quantum walk of ref. 54 does not appear to be appropriate

for quantum chemistry, because it requires an efficient method of
calculating matrix entries of the Hamiltonian. That would be
expensive for the Hamiltonians of quantum chemistry, but they
can be expressed as sums of unitaries, as for example discussed in
ref. 25. It turns out that the method called qubitization37 allows
one to take a Hamiltonian given by a sum of unitaries, and
construct a new operation with exactly the same functional
dependence on the eigenvalues of the Hamiltonian as for the
quantum walk in refs. 53,54.
Next, we summarize how qubitization works.37 One assumes

black-box access to a signal oracle V that encodes H in the form:

0j i 0h ja�1s
� �

V 0j i 0h ja�1s
� � ¼ 0j i 0h ja�H=λ (3)

where 0j ia is in general a multi-qubit ancilla state in the
computational basis, 1s is the identity gate on the system register
and λ � Hk k is a normalization constant. For Hamiltonians given
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by a sum of unitaries,

H ¼
Xd�1

j¼0

ajUj aj>0; (4)

one constructs

U ¼ ðAy � 1ÞSELECT� UðA� 1Þ; (5)

where A is an operator for state preparation acting as

A 0j i ¼
Xd�1

j¼0

ffiffiffiffiffiffiffiffiffi
aj=λ

q
jj i (6)

with λ=
Pd�1

j¼0 aj , and

SELECT� U ¼
Xd�1

j¼0

jj i jh j � Uj : (7)

For U that is Hermitian, we can simply take V= U. This is the
case for any local Hamiltonian that can be written as a weighted
sum of tensor products of Pauli operators, since tensor products of
Pauli operators are both unitary and Hermitian. More general
strategies for representing Hamiltonians as linear combinations of
unitaries, as in Eq. (4), are discussed in,55 related to the sparse
decompositions first described in.56 If U is not Hermitian, then we
may construct a Hermitian V as

V ¼ þj i �h j � U þ �j i þh j � Uy (8)

where ±j i= 1ffiffi
2

p 0j i± 1j ið Þ. The multiqubit ancilla labeled “a”

would then include this additional qubit, as well as the ancilla
used for the control for SELECT-U. In either case we can then
construct a unitary operator called the qubiterate as follows:

W ¼ i 2 0j i 0h ja�1s � 1
� �

V : (9)

The qubiterate transforms each eigenstate kj i of H as

W 0j ia kj is¼ i
Ek
λ

0j ia kj isþi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ek

λ

���� ����2
s

0k?
�� �

as
(10)

W 0k?
�� �

as
¼ i

Ek
λ

0k?
�� �

as
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ek

λ

���� ����2
s

0j ia kj is (11)

where 0k?j ias has no support on 0j ia. Thus, W performs rotation
between two orthogonal states 0j ia kj is and 0k?j ias. Restricted to
this subspace, the qubiterate may be diagonalized as

W ± kj ias¼ ∓ e ∓ i arcsin Ek=λð Þ ± kj ias (12)

± kj ias¼
1ffiffiffi
2

p 0j ia kj is ± 0k?
�� �

as

	 

: (13)

This spectrum is exact, and identical to that for the quantum walk
in refs. 53,54. This procedure is also simple, requiring only two
queries to U and a number of gates to implement the controlled-Z
operator 2 0j i 0h ja�1s � 1

� �
scaling linearly in the number of

controls.
We may replace the time evolution operator with the qubiterate

W in phase estimation, and phase estimation will provide an
estimate of arcsin Ek=λð Þ or π � arcsin Ek=λð Þ. In either case taking
the sine gives an estimate of Ek/λ, so it is not necessary to
distinguish the cases. Any problems with phase ambiguity are
eliminated, because performing the sine of the estimated phase of
W yields an unambiguous estimate for Ek. Note also that λ � Hk k
implies that Ek=λj j � 1.
More generally, any unitary operation eif(H) that has eigenvalues

related to those of the Hamiltonian would work so long as the
function f(⋅) : R ! ð�π; πÞ is known in advance and invertible.
One may perform phase estimation to obtain a classical estimate
of f(Ek), then invert the function to estimate Ek. To first order, the

error of the estimate would then propagate like

σEk ¼
df
dx

����
x¼Ek

 !�����
�����
�1

σf Ekð Þ: (14)

In our example, with standard deviation σphase in the phase
estimate of W, the error in the estimate is

σEk ¼ σphase

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � E2k

q
� λσphase : (15)

Obtaining uncertainty ϵ for the phase of W requires applying W a
number of times scaling as 1/ϵ. Hence, obtaining uncertainty ϵ for
Ek requires applying W a number of times scaling as λ/ϵ. For
Hamiltonians given by sums of unitaries, as in chemistry, each
application of W uses O(1) applications of state preparations and
SELECT-U operations. In terms of these operations, the complex-
ities of Section IB have multiplying factors of λ.

DISCUSSION
We have described three techniques which we expect will be
practical and useful for the quantum simulation of fermionic
systems. Our first technique provides an exponentially faster
method for antisymmetrizing configuration states, a necessary
step for simulating fermions in first quantization. We expect that
in virtually all circumstances the gate complexity of this algorithm
will be nearly trivial compared to the cost of the subsequent phase
estimation. Then, we showed that when one has knowledge of an
upper bound on the ground state energy that is separated from
the first excited state energy, one can prepare ground states using
phase estimation with lower cost. We discussed why this situation
is anticipated for many problems in chemistry and provided
numerics for a situation in which this trick reduced the gate
complexity of preparing the ground state of molecular water by
more than an order of magnitude. Finally, we explained how
qubitization37 provides a unitary that can be used for phase
estimation without introducing the additional error inherent in
Hamiltonian simulation.
We expect that these techniques will be useful in a variety of

contexts within quantum simulation. In particular, we anticipate
that the combination of the three techniques will enable
exceptionally efficient quantum simulations of chemistry based
on methods similar to those proposed in ref. 24 While specific gate
counts will be the subject of a future work, we conjecture that
such techniques will enable simulations of systems with roughly a
hundred electrons on a million point grid with fewer than a billion
T gates. With such low T counts, simulations such as the
mechanism of Nitrogen fixation by ferredoxin, explored for
quantum simulation in ref. 57 should be practical to implement
within the surface code in a reasonable amount of time with fewer
than a few million physical qubits and error rates just beyond
threshold. This statement is based on the time and space
complexity of magic state distillation (usually the bottleneck for
the surface code) estimated for superconducting qubit architec-
tures in ref. 58 and in particular, the assumption that with a billion
T gates or fewer one can reasonably perform state distillation in
series using only a single T factory.

Data availability
The data sets generated during and analyzed during the current
study are available from the corresponding author on reasonable
request. All code is available in the open source library
OpenFermion.51
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