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ABSTRACT
Motivation: Pseudogenes are the remnants of genomic
sequences of genes which are no longer functional. They
are frequent in most eukaryotic genomes, and an important
resource for comparative genomics. However, pseudogenes
are often mis-annotated as functional genes in sequence data-
bases. Current methods for identifying pseudogenes include
methods which rely on the presence of stop codons and
frameshifts, as well as methods based on the ratio of non-silent
to silent nucleotide substitution rates (dN/dS). A recent survey
concluded that 50% of human pseudogenes have no detect-
able truncation in their pseudo-coding regions, indicating that
the former methods lack sensitivity. The latter methods have
been used to find sets of genes enriched for pseudogenes, but
are not specific enough to accurately separate pseudogenes
from expressed genes.
Results: We introduce a program called pseudogene infer-
ence from loss of constraint (PSILC) which incorporates novel
methods for separating pseudogenes from functional genes.
The methods calculate the log-odds score that evolution along
the final branch of the gene tree to the query gene has been
according to the following constraints:

• A neutral nucleotide model compared to a Pfam domain
encoding model (PSILCnuc/dom);

• A protein coding model compared to a Pfam domain
encoding model (PSILCprot/dom).

Using the manual annotation of human chromosome 6, we
show that both these methods result in a more accurate clas-
sification of pseudogenes than dN/dS when a Pfam domain
alignment is available.
Availability: PSILC is available from http://www.sanger.
ac.uk/Software/PSILC
Contact: lc1@sanger.ac.uk

INTRODUCTION
Pseudogenes have been defined as sequences of genomic DNA
which are originally derived from functional genes but are no
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longer translated into functional protein products. Pseudo-
genes are thought to have arisen by two distinct processes.
Unprocessed pseudogenes are believed to have arose from
genome duplication, with a subsequent loss of function of
one copy due to the accumulation of disabling mutations in
the coding or regulatory sequence. Processed pseudogenes
lack introns, and are thought to have arisen by reverse tran-
scription of processed mRNA, followed by integration into
the genome. Pseudogenes are increasingly thought to play
an important biological role, particularly in eukaryotic gen-
omes (Balakirev and Ayala, 2003). Duplications are believed
to be a major source for the formation of new gene expres-
sion patterns and functions (Prince and Pickett, 2002). It had
been assumed that due to non-functionality a pseudogene will
rapidly degenerate and become indistinguishable from sur-
rounding genomic sequence. This process has been observed
in prokaryotic genomes (Andersson and Andersson, 2001).
However, eukaryotic genomes contain many pseudogenes
which have avoided full degeneration, and there appears to be
less pressure to delete pseudogenes in eukaryotes than proka-
ryotes (Mighell et al., 2000; Harrison and Gerstein, 2002). A
regulatory role for a human pseudogene has been observed
experimentally (Hirotsune et al., 2003).

Pseudogenes are often mis-annotated as functional genes
in sequence databases (Mounsey et al., 2002). Two recent
surveys (Torrents et al., 2003; Harrison et al., 2002) both
estimate ≈20 000 human pseudogenes. Sequence based meth-
ods for identifying pseudogenes include methods which rely
on the presence of truncations and methods which are based
on estimating the ratio of the rates of substitution at synonym-
ous sites to the rate of substitution at non-synonymous sites.
Torrents et al. (2003) concluded that half of human pseudo-
genes have no detectable frameshifts or internal stop codons.
There are many ways to estimate the rates of synonymous and
non-synonymous substitution (see Bierne and Eyre-Walker
2003 for a review). In this paper, we test the method in Gold-
man and Yang (1994), which is commonly used, and was used
in the survey from Torrents et al. (2003).

Here we take a novel approach to pseudogene detection,
looking at the pattern of substitution in conserved protein
domains. Protein domains are the structural, functional and
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evolutionary units of proteins. Profile hidden Markov Models
(profile HMMs) are currently the most sensitive tools for
identifying protein domains (Park et al., 1998). The sensit-
ivity of profile HMMs can be improved by considering the
context of surrounding domains on multi-domain proteins
(Coin et al., 2003); by improving smoothing techniques
for emission states; by considering the tree structure of the
seed alignment (Qian and Goldstein, 2003) and by iterating
model development. This paper uses protein domain profile
HMMs from Pfam (Bateman et al., 2004) to measure diver-
gence of pseudogene members of a consensus away from that
consensus, rather than testing only for membership.

ALGORITHM
Pseudogene inference from loss of constraint (PSILC) takes
an alignment A, an unrooted tree T and a profile HMM D

representing a Pfam domain which is aligned to A. The output
is a score for each leaf-node n representing our belief that the
node is a pseudogene. This score is calculated by assuming
a null model of protein domain evolution on the tree, and
testing the hypothesis that evolution along the final branch to
the query node evolved by an alternative drift model. The score
is the log-odds ratio of the probabilities that evolution along
the final branch to the node has evolved under the constraint of

(1) Neutral (non-coding) DNA compared to the null Pfam
domain model,

(2) Protein coding compared to the null Pfam domain
model.

If a node is a pseudogene, then it is ‘released’ from the Pfam
domain constraint and so we expect both scores to be higher
on pseudogenes than on protein-coding genes.

We denote the row corresponding to leaf-node n by xn.; the
i-th column by x.i and the j -th match column of the profile
HMM by mj . We also denote by pn the parent node of n and
by bn the branch from pn to n. See Figure 1 for a diagramatic
representation of these elements. We can calculate the probab-
ility that the alignment has evolved along the tree according to
any combination of the following constraints on each branch
b in the tree:

(1) neutral DNA, Pnuc(b);

(2) protein coding, Pprot(b);

(3) domain encoding, Pdom(b).

We need to calculate probabilities under following combina-
tions of constraints,

(1) Cnuc = {Pnuc(bn), Pdom(T \bn)}: neutral DNA on bn

otherwise domain encoding;

(2) Cprot = {Pprot(bn), Pdom(T \bn)}: protein coding on bn

otherwise domain encoding;

(3) Cdom = Pdom(T ) = {Pdom(bn), Pdom(T \bn)}: domain
encoding on all T , including bn.

Fig. 1. Diagram of tree T and alignment A. The tree T consists of all
the branches and is unrooted (drawn here as rooted for diagramatic
purposes). The node under consideration in this diagram is node 2.
The final branch to this node bn and the parent of this node pn are
labelled. We denote by T \bn the tree consisting of all the black
branches (i.e. excluding bn). The alignment A corresponds to the tree
T and consists of all rows. The row of the alignment corresponding to
node n is labelled xn.. We denote by A\xn. the alignment consisting
of all the black rows, which corresponds to the tree T \bn. We denote
a column of the alignment by x.i . We will also denote by x.i\xni the
column excluding xni .

The PSILC scores are defined as

PSILCnuc/dom(n) = log

[
P(xn.|A\xn., T, Cnuc)

P(xn.|A\xn., T, Cdom)

]
. (1)

PSILCprot/dom(n) = log

[
P(xn.|A\xn., T, Cprot)

P(xn.|A\xn., T, Cdom)

]
. (2)

We proceed in a manner similar to Felsenstein (1981). We
assume that each xni in the row xn is conditionally independent
(given the other rows of the alignment A\xn, the tree T and
the constraint Ck) of the other entries xni ′ , i′ �= i, so that

P(xn.|A\xn., T , Ck) =
∏
i

P (xni |A\xn., T , Ck)

=
∏
i

P (xni |x.i\xni , T , Ck), (3)

=
∏
i

∑
xpni∈�

× P(xpni |x.i\xni , T \bn, Pdom(T \bn))

× P(xni |xpni , bn, Pk(bn)), (4)

where � denotes the alphabet of possible residues/bases at the
parent node pn. For Equation (3) we have also assumed that
each each xni is conditionally independent (given x.i\xni , the
tree T and the constraint Ck) of all the other columns in the
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alignment. For Equation (4) we have used the tree property
that a leaf-node is conditionally independent of all other nodes
in the tree given its parent. In the case k = dom we replace
each Pk with Pji

where ji is the profile HMM state aligned
to the column x.i , or Pprot if this column aligns to an insert
state. The constraint Pji

represents the constraint imposed by
the j th

i match state of the profile HMM.
We see from Equation (4) that our algorithm comprises two

steps.

(1) Calculate the frequency distribution (over residues/
bases) at the parent node given the evolutionary con-
straints on all branches excluding the branch to the
query node.

(2) For each possible residue/base at the parent node, calcu-
late the transition probability to the child node assuming
the appropriate evolutionary constraints on the branch
to the child node.

To accomplish the first step we construct a new tree from
the initial tree by re-rooting the tree at the parent node pn and
removing the branch to the node n. This new tree is denoted
T \bn. Using the definition of conditional probability,

P(xpni |x.i\xni , T \bn, Pdom(T \bn))

= P(x.i\xni |xpni , T \bn, Pdom(T \bn))

× P(xpni |T \bn, Pdom(T \bn))

P (x.i\xni |T \bn, Pdom(T \bn))
(5)

∝ P(x.i\xni |xpni , T \bn, Pdom(T \bn))

× P(xpni |T \bn, Pdom(T \bn)), (6)

because the denominator in Equation (5) is a constant which
is independent of xpni . We can calculate the normaliza-
tion constant by summing Equation (6) over all possible
bases/residues. The first term in Equation (6) is just the like-
lihood of the reduced alignment conditional on each possible
residue/base at the root of T \bn, which can be calculated
using the Felsenstein (1981) algorithm. The second term in
Equation (6) is the prior probability at the root given the evolu-
tionary constraints (keeping in mind that pn is now the root of
the tree T \bn). We use the equilibrium distribution of the rate
matrix as the prior distribution at the root, which, based on the
formulation described below, corresponds to the observed dis-
tribution of bases/residues in the alignment for the DNA and
protein models, respectively and to the match-state emission
frequency distributions for the domain model.

For the second step as well as for the first we must
calculate the probability of transitioning between different
bases/residues given different evolutionary constraints. We
follow the standard phylogenetic formalization of evolution-
ary constraints (see Lio and Goldman 1998 for a review) where
the transition probability at time t is calculated as the expo-
nential of the instantaneous rate matrix Qij . We also follow

the formulation of Goldman and Whelan (2002) in order to
modify the rate matrix with respect to a steady-state distribu-
tion over residues/bases, π . With a slight abuse of notation,
we will write Pk(t) for the matrix of transition probabilities at
time t under the evolutionary constraint Pk , and Pk(x, x′, t) for
the probability of transitioning from x to x′ over time t . The
equations from the above papers which concern us here are

Pk(t) = exp(Qrt), (7)

Qij =
(

πj

π̂j

)1−f

× Q̂ij ×
(

π̂i

πi

)f

, (8)

where r is a rate parameter. For amino acid models, Q̂,
π̂ are database estimates [e.g. the WAG model (Whelan and
Goldman, 2001)] and π is the steady-state frequency speci-
fic to model in question. For nucleotide models, Q̂ is a
parameterized model [e.g. the HKY model (Hasegawa et al.,
1985)] and π̂ is the uniform distribution. For both the protein
Pprot and DNA Pnuc models, we used the observed frequen-
cies in the alignment for π . The free parameter f corresponds
to the trade-off between frequencies in the equilibrium distri-
bution resulting from pressure to mutate from (f = 1) and
pressure to mutate toward (f = 0) a particular residue/base.
The HKY model introduces another free parameter, γ , the
transition to transversion ratio. For both DNA and protein
models, we calculate the values of r , f , γ which maximize
the likelihood of A given the tree.

For each of the match state models we use the emission
frequency distribution of the corresponding match state as
the steady-state frequency π . We use HMMER to calculate
the profile HMM, and so we know that this distribution is
a smoothed version of the raw column in the seed alignment.
We note here the possibility of using techniques other than
Dirichlet priors to smooth the column frequencies. One poten-
tial method is a tree-based smoothing technique (Qian and
Goldstein, 2003; Mitchison, 1999) where the smoothed dis-
tribution is calculated as the posterior distribution at the root
given the residues/bases observed at the leaves of the tree. We
use the values of r , f calculated for the protein model, but
note that it may be possible—by training on the column of
the alignment which was used to build the profile HMM—to
modify r , f to more accurately reflect evolutionary pressures
at a given match state. We also note that in general it does not
suffice to use the maximum likelihood values of r , f obtained
from training on this column—this results in parameter over-
fitting. To rectify this, it will be necessary to introduce a prior
distribution on r , f centered on the values calculated with
the protein model. However, we have not pursued this option
further.

An important advantage of the PSILC algorithms over
dN/dS is the directionality of the calculations. For example,
the score on an alignment of two transcripts x1., x2. is not
symmetric: the PSILC score for x1. will not in general be
equal to the PSILC score for x2.. This is in contrast to the
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dN/dS calculation, which is symmetric. This directionality
property of the PSILC calculation is due to the directionality
of the underlying substitution models above:

Pk(x1i , x2i , t) = Pk(x2i , x1i , t) ∗ πx1i

πx2i

�= Pk(x2i , x1i , t) (9)

unless πx1i
= πx2i

,

using the condition of detailed balance. To see that this is
appropriate, consider the case in which the residue x1i is more
likely than x2i at a particular match state but equally likely
under the protein model. From Equations (1) and (9) the score
from this column for x2. being a pseudogene is higher than
for x1. under PSILCprot/dom. Thus we expect that PSILC will
be better able to discriminate which of two related genes is
a pseudogene, and which is the functional copy. In principal,
dN/dS can accomplish this task, but only by calculating a
dN/dS ratio with a third reference gene x3, whereas it is an
innate property of the PSILC score.

SYSTEM AND METHODS
Test data
The manual annotation of human chromosome 6 (Mungall
et al., 2003) (NCBI34 human genome build), which can
be obtained from http://www.vega.sanger.ac.uk, was used as
the principal test set for the method, we shall call this the
Vega set. Vega annotates both functional genes and pseudo-
genes, and as such is an ideal test set. In general, Vega
pseuodgenes are categorized on the basis of homology to
known genes/proteins with a disrupted ORF due to frameshifts
and/or inframe stop codons. Vega contains 1887 coding tran-
scripts on chromosome 6 and 633 pseudogenes. Of these, we
extracted 875 coding transcripts and 158 pseudogenes which
could be aligned to at least one different ENSEMBL transcript
using the protocol described below. Of these, we then extrac-
ted 598 (68%) coding transcripts and 97 (61%) pseudogenes
which matched a Pfam domain. Pfam release 10.0 was used
in this study.

Method
For each (pseudo)gene transcript in the test set a blast search
against the ENSEMBL (Birney et al., 2004) NCBI34 tran-
scripts for human, rat and mouse was carried out. The query
transcript and ENSEMBL transcripts with blast match e-value
less than 10−7 and a cumulative match length greater than
80% of the query transcript were aligned. Transcripts with
greater than 99% match on more than 80% of the original
sequence were removed from the alignment, to avoid the
inclusion of sequences from ENSEMBL which are effectively
the same regions in Vega. The transcripts were aligned using
CLUSTALW version 1.83. Columns in the alignment with
stop codons or an incomplete codon (due to a frameshift in the

pseudogene) were removed. A neighbor joining tree was cal-
culated for the alignment with pairwise distances calculated
as the maximum likelihood distances [using the PAL package
(Drummond and Strimmer, 2001)] based on the DNA align-
ment and the HKY model of nucleotide evolution (Hasegawa
et al., 1985). Each Pfam family which was homologous to
all of the transcripts in the alignment (using the Pfam annota-
tion in ENSEMBL) was identified, and the profile HMM was
aligned to the transcript alignment.

The tree, alignment and aligned Pfam domain form the
inputs for the PSILC algorithm. For PSILCnuc/dom and
PSILCprot/dom, if multiple Pfam domains matched the align-
ment, or if a single Pfam domain matched multiple times then
the scores under each of the models was added together to
obtain a single score. This is justified by the fact that Pfam fam-
ilies do not overlap on these sequences, and the assumption
of conditional independence of each of the domain matching
regions in the query transcript given the rest of the alignment.

The dN/dS score was calculated on the full extent of the
alignment. PAML codeml was used to calculate dN/dS, in a
manner following the pseudogene survey in Torrents et al.
(2003). If the brother node of the query node in the tree was
also a leaf-node, then the sub-alignment of the query tran-
script and the transcript at the brother node was extracted, and
PAML analysis was performed on this sub-alignment. Other-
wise, the sequence at the brother node was reconstructed as
the consensus sequence of all leaf-nodes below the brother
node. Classifying genes on the basis of high dN/dS score is
potentially sub-optimal, as genes undergoing positive selec-
tion are expected to have a high dN/dS score, and so will
falsely be classified as pseudogenes. To avoid this, we also
investigate classifying on the basis of abs[log(dN/dS)] as well
as on the dN/dS score. This modified score will be close to 0
when dN/dS is close to 1 (which is the value expected for a
pseudogene).

RESULTS
Figure 2 shows the receiver operating curve for PSILC and
dN/dS on the Vega chromosome 6 test set. Table 1 shows
the areas under the curve for each method. We see that
PSILCprot/dom performs better than all the other methods
at most thresholds, and has the greatest area under the
curve. PSILCnuc/dom out-performs both dN/dS variants at
false acceptance rates below 4% and at false acceptance rates
33–90%, and also has greater area under the curve than both
dN/dS variants. Thresholding on dN/dS appears to be more
successful in general than on abs[log(dN/dS)], which in effect
implies that when using dN/dS for pseudogene classification
it is best not to correct for putatively positively selected genes.

We note that our method only applies when a Pfam domain
can be aligned to the transcript. In the Vega test set, this
was possible for 68%/61% of coding transcripts/pseudogenes
which could be aligned to a distinct ENSEMBL transcript.
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Fig. 2. Receiver operating curve for PSILC and dN/dS. Vertical
dashes: PSILCprot/dom; solid dots: PSILCnuc/dom; inverted triangles:
dN/dS; diamonds: abs[log(dN/dS)]. A larger area under the ROC rep-
resents a better discrimination between true and false pseudogenes.
A classifier which picks pseudogenes at random would (on average)
result in the line x = y.

Table 1. Area under the ROC for the different methods

PSILC-prot/dom 91%
PSILC-nuc/dom 83%
dN/dS 80%
abs[log(dN/dS)] 72%

A higher number represents a better overall classification.

This proportion is lower for pseudogenes as expected due
further divergence away from the Pfam consensus.

It is remarkable that PSILCprot/dom out-performs all the
other methods, as we are discarding all the information regard-
ing synonymous to non-synonymous substitutions when per-
forming this calculation. This demonstrates that divergence
from a Pfam domain is a useful predictor of loss of function-
ality for a gene. We would expect that PSILCnuc/dom, which
combines information about divergence away from a Pfam
domain with divergence away from protein coding sequence
would out-perform PSILCprot/dom. That this is not the case
suggests that we are somehow penalizing DNA evolution rel-
ative to protein evolution in our protocol. It may be that the
protein models are fitting the alignment data better (due to a
higher degree of parameterization) and so despite choosing
maximum likelihood parameters for the DNA model we are
intrinsically penalizing DNA evolution.

Figure 3 shows the fraction of (pseudo)genes scoring above
threshold versus threshold for both the PSILCprot/dom score

Fig. 3. Comparison of discrimination between pseudogenes and
functional genes between the PSILCprot/dom method (top graph)
and dN/dS (lower graph). In both graphs we plot the fraction of
(pseudo)genes scoring above a particular threshold, with the pseudo-
genes represented by the line marked with dots, and functional genes
represented by the line without dots. We see that the PSILCprot/dom

method provides a cleaner separation threshold, at a threshold of zero
(which reflects the log-odds nature of this scoring methodology—
a score of greater than zero reflects more evidence in favor of
pseudogene status than against).

and dN/dS ratio. The dN/dS graph is plotted on a log x-
axis for clarity—the PSILC scores are effectively already log
based scores. The dN/dS pseudogene distribution is centered
on dN/dS ≈ 1 as expected, and at dN/dS ≈ 0.1 for functional
genes. However, both distributions are spread over a large
range of dN/dS values, which makes a clean separation on this
score difficult. On the other hand, the functional genes have a
much shaper distribution under the PSILCprot/dom score, with
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most of the weight located at PSILCdom/prot ≈ 0, and the
pseudogene distribution has most of its weight greater than 0,
making a clean separation more effective.

DISCUSSION
We have demonstrated—with PSILCprot/dom—the viability of
a method which identifies pseudogenes without any know-
ledge of the rates of synonymous and non-synonymous sub-
stitution of the gene. Moreover, where a Pfam domain can be
aligned with a gene, this method has been shown to be more
accurate than dN/dS. Despite the limitation imposed by the
requirement of detectable homology to a Pfam domain, this
method is still of wide applicability (60–70% of sequences to
which we can apply dN/dS).

There are several large-scale analyses for which the
approach outlined in this paper would be useful. The first
is a quality check on the gene annotation databases, such as
ENSEMBL, to identify potential pseudogenes in these data-
bases which are annotated as functional genes, and to identify
genes annotated as pseudogenes which are more likely to
be functional genes. The second is a scan of various gen-
omes for pseudogenes, following Torrents et al. (2003) and
Harrison et al. (2003). Using PSILCprot/dom, it is also pos-
sible to perform an analysis of the functional DNA constraints
on pseudogenes [as observed in Balakirev and Ayala (2003)
for specific Drosophila genes] without the ascertainment bias
of using the lack of functional DNA constraints to identify
pseudogenes.

The approach outlined in this paper could be extended
in several ways. It would be possible to infer loss of con-
straint along an entire clade of a tree, not just a final branch.
Hence it is possible to test an entire clade for pseudogene
status, and to identify the internal node of a tree at which
the pseudogene arose. The method can also be used to score
mutations (resulting from, e.g. SNPs) to predict the poten-
tial loss of functionality from a SNP. One potential problem
with using PSILCprot/dom and/or PSILCnuc/dom for classify-
ing pseudogenes is that genes under positive selection will be
misclassified as pseudogenes. One way to resolve this issue is
to develop a third score, PSILCnuc/prot, which considers evol-
ution away from protein coding in favor of neutral nucleotide
evolution. The set of genes which have a strongly positive
PSILCprot/dom score and a strongly negative PSILCnuc/prot

score (hence are still evolving as proteins) may be an inter-
esting candidate set for positive selection. If this were the
case, then the method could also identify which domains in a
multi-domain protein were undergoing selection.
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