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We report new constraints on extra-dimensional models and other physics beyond the standard model based
on measurements of the Casimir force between two dissimilar metals for separations in the range 0.2–1.2mm.
The Casimir force between a Au-coated sphere and a Cu-coated plate of a microelectromechanical torsional
oscillator was measured statically with an absolute error of 0.3 pN. In addition, the Casimir pressure between
two parallel plates was determined dynamically with an absolute error of'0.6 mPa. Within the limits of
experimental and theoretical errors, the results are in agreement with a theory that takes into account the finite
conductivity and roughness of the two metals. The level of agreement between experiment and theory was then
used to set limits on the predictions of extra-dimensional physics and thermal quantum field theory. It is shown
that two theoretical approaches to the thermal Casimir force which predict effects linear in temperature are
ruled out by these experiments. Finally, constraints on Yukawa corrections to Newton’s law of gravity are
strengthened by more than an order of magnitude in the range 56–330 nm.
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I. INTRODUCTION

Many extensions of the standard model, including super-
gravity and string theory, exploit the Kaluza-Klein idea that
the true dimensionality of space-time isN541n, where the
additional n spatial dimensions are compactified at some
small length scale. For a long time it was generally believed
that the compactification scale was on the order of the Planck
length l Pl5AG;10233 cm, where G is the Newtonian
gravitational constant, and units are chosen so that\5c
51. The corresponding energy scale,M Pl51/AG
;1019 GeV, is so high that direct experimental observation
of the effects of extra dimensions would seem impossible at
any time in the foreseeable future.

The situation changed dramatically with the proposal of
models for which the compactification energy may be as low
as the extra-dimensional Planck energy scale,M Pl

(N)

51/GN
1/(21n) , which is assumed to be of the order of 1 TeV

@1,2#. ~HereGN is the fundamental gravitational constant in
the extendedN-dimensional space-time.! Note that this pro-
posal eliminates the hierarchy problem since the characteris-
tic energy scales of gravitational and gauge interactions co-
incide. In order to be consistent with observations, the usual
gauge fields of the standard model are presumed to exist on
4-dimensional branes whereas gravity alone propagates into
the N-dimensional bulk.

Constraints on these new lower energy scale compactifi-
cation models can be obtained by investigating their predic-
tions in accelerator experiments@3–5#, astrophysics@6–8#,
and cosmology@9–11#. More model-independent limits,
however, can be obtained from tests of Newtonian gravity. In
extra-dimensional models with large compact extra dimen-
sions @1#, the Newtonian gravitational potential acting be-
tween two point masses acquires a Yukawa correction for
separations much larger than the compactification scale
@12,13#, while for models with non-compact but warped ex-
tra dimensions, the corrections are power laws@2#. For two
interacting macroscopic bodies, either of these corrections
would give rise to a new~so called ‘‘fifth’’ ! force coexisting
with the usual Newtonian gravitational force and other con-
ventional standard model interactions, such as Casimir and
van der Waals forces. In addition, many extensions of the
standard model that do not involve extra dimensions also
predict the existence of new Yukawa or power-law forces.

While gravity experiments at ranges*1023 m have
found no convincing evidence of new forces or extra dimen-
sions, tests of Newtonian gravity over shorter separations
were lacking until recently. During the past few years a num-
ber of sub-millimeter gravity experiments were performed
and stronger constraints on Yukawa corrections to Newtonian
gravity for ranges;1024 m have been obtained@14–17#.
For significantly smaller separations, however, gravity loses
its role as the dominant force acting between non-magnetic,
electrically neutral interacting bodies. For these smaller sepa-
rations, limits on new forces and extra-dimensions from
force measurements must be extracted from the Casimir and
van der Waals forces@18# which increase rapidly as the sepa-
ration decreases.

Improvements in the precision of Casimir force measure-
ments coincided with the development of modern extra-
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dimensional theories. To date a number of Casimir force ex-
periments have been performed using different techniques
@19–27#, and a precision of 1.8%~at the 95% confidence
level! of the measured force at the shortest separation dis-
tances has been achieved~see Ref.@28#!. We note that the
1% precision quoted, e.g., in Refs.@20,21,23# corresponds to
a 60% confidence level. To obtain good agreement between
theory and experiment, it has been necessary to take into
account corrections to the Casimir force due to finite conduc-
tivity of the boundary metals, surface roughness, and non-
zero temperature@20,29–35#.

Although these new precision measurements of the Ca-
simir force were not especially designed or optimized to ob-
tain stronger constraints on the predictions of extra-
dimensional physics, some of them were used for this
purpose@35–39#. This resulted in a strengthening of previ-
ously known constraints by a factor as large as 4500 in some
regions within the range 1029 m–1024 m. This means that
Casimir force measurements have become a powerful com-
petitor to both accelerator and gravitational experiments in
constraining theoretical models of high energy physics. In
contrast to astrophysical and cosmological constraints, the
results of Casimir force measurements are less model depen-
dent, reproducible, and therefore more reliable.

In this paper we present detailed results of new, increased
precision, Casimir force measurements between a Cu-coated
plate and a Au-coated sphere~see Ref.@40# for preliminary
data!. The use of a microelectromechanical torsional oscilla-
tor ~MTO! and of interferometric measurements of the
sphere-plate separations permitted much higher sensitivity to
be achieved than in previous Casimir force experiments. A
careful error analysis has been performed, and the experi-
mental precision was determined at the 95% confidence
level. The complete theory of the Casimir force, taking into
account finite conductivity and surface roughness correc-
tions, has been applied to the experimental configuration.
The finite conductivity corrections were computed by the use
of the Lifshitz formula@41# and tabulated optical data for the
complex index of refraction. The surface roughness was
modelled using atomic force microscope~AFM! images of
the interacting surfaces. A comparison of the complete theory
with experimental data shows that they are in agreement over
the whole measurement range. A minor disagreement at the
shortest separations noted in Ref.@40# is explained by the
incomplete theory of roughness corrections used in the ear-
lier analysis.

Our results were sufficiently precise to shed light on the
temperature dependence of the Casimir force. Several theo-
ries predicting large thermal corrections to the Casimir force
at small separations@42–44# were evaluated for our experi-
ment. It is well known that these corrections disagree with
the results obtained for ideal metals in the framework of
quantum field theory at nonzero temperature in the Matsub-
ara formulation. Our experimental data support the results of
Refs. @32,33#, which are consistent with the conclusions of
thermal quantum field theory, while ruling out the existence
of large thermal corrections at small separations as proposed
in Refs.@42,43# and in Ref.@44#.

Finally, the experimental results presented here are used

to constrain the predictions of extra-dimensional physics in
the nanometer separation range. The contributions from a
Yukawa-type hypothetical force have been calculated for our
experimental configuration, taking into account the effects of
surface roughness. The agreement between theoretical and
measured values of the Casimir force leads to the strength-
ening of the known constraints on Yukawa forces by a factor
of up to 11 within the 56–330 nm interaction range. In con-
trast to some previous constraints derived from Casimir force
measurements, it is possible here to quantify the confidence
level of the obtained results.

This paper is organized as follows. In Sec. II the experi-
mental configurations used for both static and dynamic mea-
surements of the Casimir force are described. Section III
presents the experimental results with a discussion of their
precision. In Sec. IV we calculate the Casimir force taking
into account all relevant corrections. Section V is devoted to
the determination of the theoretical precision, the compari-
son of experimental results with theory, and to the evaluation
of alternative methods for taking into account thermal cor-
rections. In Sec. VI we use our results to obtain constraints
on hypothetical forces predicted by models of extra-
dimensional physics and extensions of the standard model.
We conclude with Sec. VII which summarizes all of our
results.

II. EXPERIMENTAL ARRANGEMENT FOR STATIC
AND DYNAMIC MEASUREMENTS

In our experiment, the Casimir force between two dis-
similar metals~gold and copper! was measured using a MTO
operating in both static and dynamic modes. In the static
regime the Casimir force between a Au-coated sphere and a
Cu-coated plate of the MTO was measured. In the dynamic
regime the vertical separation between the sphere and the
plate was changed harmonically with time. This leads to a
measurement of thez derivative of the Casimir force, which
is equivalent to measuring the Casimir force per unit area, or
the Casimir pressure, for a configuration of two parallel
plates~see below!. Note that the dynamic measurement tech-
nique is used here to measure the usual~static! Casimir ef-
fect. Hence, this measurement is unrelated to the so-called
dynamic Casimir effect which arises from the velocity de-
pendent Casimir forces or the creation of photons by the
rapidly oscillating plates@35#.

When using mechanical oscillators to measure forces, one
has to confront the coupling of the oscillator with environ-
mental vibrations. Compared with cantilever oscillators, tor-
sional oscillators are less sensitive to mechanical vibrations
that induce a motion of the center of mass. Furthermore, the
miniaturization of the oscillators yields an improvement in
its quality factor and sensitivity@25,45#. It is consequently
advantageous to use an electromechanical torsional oscillator
to measure the Casimir force between two metals.

The experimental arrangement is shown schematically in
Fig. 1. The MTO is made of a 3.5mm thick, 500
3500 mm2 heavily doped polysilicon plate suspended at two
opposite points by serpentine springs, as shown in the inset
of Fig. 2. The springs are anchored to a silicon nitride (SiNx)
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covered Si platform. When no torques are applied the plate is
separated from the platform by a gap;2 mm. Two indepen-
dently contacted polysilicon electrodes located under the
plate are used to measure the capacitance between the elec-
trodes and the plate. For the MTO employed in this experi-
ment, we calculated the torsion coefficientk
5(wt3ESi/6Lserp).9.5310210 Nm/rad @46#, where w
52 mm is the width of the serpentine,t52 mm is its thick-
ness, Lserp5500 mm its length, and ESi5180 GPa is
Young’s modulus for Si. This value is in good agreement
with the measured valuek58.6310210 N m/rad. The edges
of the plate are coated with 1 nm of Cr followed by 200 nm
of Cu. This layer of Cu constitutes one of the metals used in
the measurement of the Casimir force.

The remainder of the assembly, as shown in Fig. 1, con-
sists of a Au-coated Al2O3 sphere that can be brought in
close proximity to the Cu-coated plate. Al2O3 spheres with
nominal diameters ranging from 100mm to 600mm were
coated with a;1 nm layer of Cr followed by a'203 nm

layer of gold. The coated sphere used in the experiment was
subsequently glued with conductive epoxy to the side of a
Au-coated optical fiber, establishing an electrical connection
between them. The sphericity of the Al2O3 balls, as mea-
sured on a scanning electron microscope~SEM!, was found
to be within the specifications of the manufacturer. As an
example, a 600-mm-diameter ball was found to have an el-
lipsoidal shape with major and minor semi-axes of (298
62) mm and (294.060.5) mm, respectively. For the sake
of clarity we will refer to the ball as a sphere in the remain-
der of the paper. Deposition induced asymmetries were
found to be smaller than 10 nm, the resolution of the SEM.
The entire setup~MTO and fiber sphere! was rigidly
mounted into a can, where a pressure&1024 torr was main-
tained. The can has built-in magnetic damping vibration iso-
lation and was, in turn, mounted onto an air table. This com-
bination of vibration isolation systems yielded base
vibrations withDzrms,0.05 nm for frequencies above 100
Hz.

The fiber-sphere assembly was moved vertically by the
combination of a micrometer-driven and a piezo-driven
stage. The MTO was mounted on a piezoelectric drivenxyz
stage which, in turn, is mounted on a micrometer controlled
xy stage. This combination allows positioning the Au-coated
sphere over the Cu-coated plate. The separationzi between
the sphere and the Si platform was controlled by thez axis of
thexyz stage. A two color fiber interferometer-based closed-
loop system was used to keepzi constant. The error in the
interferometric measurements was found to beDzi

rms

50.32 nm, dominated by the overall stability of the closed-
loop feedback system. Since this error is much greater than
the actual mechanical vibrations of the system, the closed
loop was turned off while data acquisition was in progress.

The separationzmetal between the two metallic surfaces
~see Fig. 1! is given byzmetal5zi2z02zg2bu, whereb is
the lever arm between the sphere and the axis of the MTO,
and u is the angle between the platform and the plate (u
!1 has been used!. z0 is the distance the bottom of the
sphere protrudes from the end of the cleaved fiber, andzg
includes the gap between the platform and the plate, the
thickness of the plate, and the thickness of the Cu layer. An
initial characterization ofz0, by alternately gently touching
the platform with the sphere and the bare fiber yieldedz0
5(55.0760.07) mm. Also, zg5(5.7360.08) mm was de-
termined using an AFM. Since errors inzg andz0 propagate
to zmetal, it is necessary to provide a better characterization,
which is described below.

A force F(z) acting between the sphere and the plate
produces a torquet5bF(z)5ku on the plate.~In all cases
reported in this paperu<1025 rad, sou!1.! Under these
circumstancesu}DC5Cright2Cle f t , where Cright (Cle f t)
is the capacitance between the right~left! electrode and the
plate ~Fig. 1!. Consequently the force between the two me-
tallic surfaces separated by a distancez is F(z)5kDC,
wherek is the proportionality constant. The capacitance was
measured using the circuit schematically shown in Fig. 2
@47#. The 10 nV/Hz1/2 electronic noise of the amplifier stage
is equivalent to an angular deviationdu;1029 rad/Hz1/2.

FIG. 1. Schematic of the experimental setup showing its main
components, see text. Inset: Resonance curve for the MTO. Also
shown is a Lorentzian fit withQ;8000. See text for further details.

FIG. 2. Schematic of the bridge circuit used to measure the
capacitance. The dc voltagesV1 andV2 are used to correct for small
deviations when no interactions are present. They also linearize the
response of the circuit. Details of the charge amplifier and the part
of the circuit used to balance the bridge are omitted for clarity.
Inset: Scanning electron microscopy image of the MTO.
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This noise level is much smaller than the thermodynamic
noise at the measuring frequencyf 510 kHz @ f 0
5687.23 Hz@48#,

Su
1/25F2kBTQ

p f 0k S f 0

f D 2G1/2

.331027rad/Hz1/2, ~1!

wherekB is Boltzmann’s constant,T5300 K, and the qual-
ity factor Q.8000. ~See the inset of Fig. 1.! Using these
values a force sensitivitydF5kSu

1/2/b.1.4 pN/Hz1/2 is ob-
tained.

To provide a calibration of the proportionality constantk
betweenF andDC, we applied a known potential difference
between the Au-coated sphere and the Cu film. This was
done atzmetal.3 mm, in configurations where the contribu-
tion from the Casimir force is smaller than 0.1% of the total
force. Thus, the net force can be approximated by retaining
only the electrostatic forceFe between a sphere and an infi-
nite plane@49#,

Fe52pe0~VAu2V0!2(
n51

`
@coth~u!2n coth~nu!#

sinh~nu!
. ~2!

Heree0 is the permittivity of free space,VAu is the voltage
applied to the sphere,V0 is the residual potential difference
between the metallic layers when they are both grounded,
and coshu5@11z/R#, with z5zmetal12d0 (R is the radius of
the sphere!. 2d0 is the average separation between the metal
layers when the test bodies come in contact~so thatzmetal
50), and is primarily determined by the roughness of the
films. Although the profile of the roughness does not affect
the value of the electric force at large separations, its pres-
ence should be taken into account in the determination of the
separation between the smoothed out surfaces. In Eq.~2! it
was found that only the first two terms of thez/R expansion
gave a significant contribution. Figure 3 shows the depen-
dence ofu ~and hence the electrostatic force! on the applied
voltageVAu . The minimum in the force was found to occur
whenV05(632.560.3) mV, which reflects the difference in
the work functions of the Au and Cu layers. This value was

observed to be constant forz in the 0.2–5mm range and it
did not vary when measured over different locations in the
Cu layer.

Once the valueV0 was found, Eq.~2! was used to deter-
mine three different parameters:~i! the proportionality con-
stantk between the sphere-plate force and the measured dif-
ference in capacitances;~ii ! the radiusRof the coated sphere;
and ~iii ! the increase in the separation 2d0 between the two
metallic layers. Two of the curves obtained in the 3 –5mm
range are shown in Fig. 4. A simultaneous fit to more than
100 such curves yieldsk5(5028066) N/F, R5(294.3
60.1) mm, andd05(39.460.3) nm.

The above force sensitivity can be improved by perform-
ing a dynamic measurement which directly uses the high
quality factor of the MTO@25#. In this approach, the separa-
tion between the sphere and the oscillator was varied as
Dzmetal5Acos(vrt), where v r is the resonant angular fre-
quency of the MTO, andA was adjusted between 3 and 35
nm for values ofzmetal between 0.2 and 1.2mm, respec-
tively. The solution for the oscillatory motion yields@25#,

v r
25v0

2F12
b2

Iv0
2

]FC

]z G , ~3!

wherev0.Ak/I for Q@1, I .4.6310217 kg m2 is the mo-
ment of inertia of the oscillator, andFC is the Casimir force
between the sphere and the plate. SinceA!zmetal, terms of
higher order in]FC /]z introduce a;0.1% error at separa-
tionsz>250 nm. As before, Eq.~2! was used to calibrate all
constants. We foundv052p3687.23 Hz, and b2/I
51.29783109 kg21. With an integration time of 10 s using
a phase-lock-loop circuit@50#, changes in the resonant fre-
quency of 10 mHz were detectable.

The main source of error for the frequency measurement,
d f 510 mHz, is the error in the trigger of the frequency
meter. This errordt originated in the jitter of the signal due
to the relatively large thermodynamic noise-induceddu ob-
served at resonance@48#. This dominant noise is

FIG. 3. Dependence of the angular deviationu as a function of
the applied voltage to the sphere. Data obtained at two different
separationsz between the metallic layers are shown.

FIG. 4. Electrostatic forceFe as a function of separationz for
DV5VAu2V050.27 V andDV50.35 V. The fits of the data using
Eq. ~2! are also shown by the solid lines. See text for further dis-
cussion.
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d f 5
A16f 3/2dt

AY
, ~4!

whereY is the integration time.
Unlike the static regime where forces are measured, in the

dynamic regime the force gradient]FC /]z is measured us-
ing Eq. ~3! by observing the change in the resonant fre-
quency as the sphere-plate separation changes. According to
the proximity force theorem@51,52#,

FC~z!52pREC~z!, ~5!

where EC(z) is the Casimir energy per unit area for two
infinitely large parallel plates composed of the same materi-
als as the sphere and plate~see Sec. IV for details!. Differ-
entiating Eq.~5! with respect toz one obtains

2
]FC~z!

]z
52pRPC~z!, ~6!

wherePC(z) is the force per unit area between two infinite
plates. Thus, in the dynamic regime the Casimir force gradi-
ent between the sphere and plate can be directly related to
the Casimir pressure between two infinite parallel plates
composed of the same materials. Since the formula for the
Casimir pressure for the parallel plate configuration is
readily obtained, it proves more convenient to use Eq.~6! to
express the results for the dynamic measurements in terms of
the parallel plate pressurePC instead of the force derivative
]FC /]z. From Eq.~4!, the error in the measurement of the
frequency translates into an equivalent pressure sensitivity
given bydPC.431024 Pa/Hz1/2.

Finally, one additional test was performed, in this case to
analyze the influence of the finite extent of the Cu layer on
the measured forces. The analysis was done using, once
again, the electrostatic force given by Eq.~2!. Figure 5
shows the relevant data. When the sphere was moved parallel

to the axis of the oscillator over 20mm no change inu was
observed. When the motion was instead perpendicular to the
axis of the oscillator the dependence expected from Eq.~2!
was obtained within the experimental error. We thus con-
clude that there are no significant deviations from the as-
sumption that the Cu plane is of infinite extent.

III. EXPERIMENTAL RESULTS AND THEIR PRECISION

A. Surface roughness of samples

The electric force measurements used to calibrate the ap-
paratus were performed at large separations so that the Ca-
simir force could be neglected, and the plate-sphere separa-
tion was calibrated between the middle levels of the surface
roughness. By contrast, the Casimir force at small separa-
tions depends sensitively on the profile of the surface rough-
ness, and hence the surface roughness should be carefully
analyzed and characterized. The topography of the metallic
films was investigated using an AFM probe with a radius of
curvaturer c55 nm in tapping mode. Regions of the metal
plate and the sphere varying in size from 1mm31 mm to
10 mm310 mm were scanned. A typical surface scan of a
1 mm31 mm region is shown in Fig. 6, where the lighter
tone corresponds to higher regions. As seen in Fig. 6, the
major distortions are the large mounds situated irregularly on
the surface. Also noticeable in Fig. 6 are streaks which arise
from high frequency noise with amplitudehrms;1 nm. This
noise is caused by the oscillation of the free-standing MTO
while acquiring AFM images.

In order to include the effects of surface roughness in the
Casimir force calculations, the fraction of the surface areav i
with heighthi is needed. Data resulting from the most rep-
resentative scan of a 10mm310 mm region are shown in
Fig. 7. The heightshi are plotted along the vertical axis as a
function of the fractionwi of the total surface area having
height less thanhi 11. The width of each horizontal step is
equal to the fraction of the total areav i with heightshi<h
,hi 11. For example, regions with heightsh,h258.2 nm

FIG. 5. Angular displacement of the MTO as a function of linear
displacement when the sphere is moved parallel to the MTO’s axis
~top axis,n) and when it is moved perpendicular to the MTO’s axis
~bottom axis,,). The data were acquired atz53 mm with DV
50.27 V. For comparison, the expected values for an infinite Cu
layer using Eq.~2! are shown as solid lines.

FIG. 6. 131 mm2 atomic force microscopy image of the Cu
layer. The topography of the Au layer on the sphere is similar. The
gray scale to the right of the image gives the height of peaks above
the bottom of roughness, with lighter tones corresponding to larger
heights. The set of such images was used to analyze the effect of the
surface roughness on the Casimir force as described in the text.
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are referred to the first~bottom! distortion levelh150 with
v150.0095, and regions with heightsh2<h,h359.87 nm
are referred to the second distortion levelh2 with v2
50.0121. Regions with heightsh>h59598.5 nm are re-
ferred toh59, and occupy a fractionv5950.085 of the total
area. Evidentlywi5v11v21•••1v i , andw5951.

The data of Fig. 7 will be used in Sec. IV for the compu-
tation of the Casimir force taking into account roughness
corrections~in Ref. @40# a simplified model of roughness was
used!. These data are also required for the precise determi-
nation of the so-called zero roughness levelH0 relative to
which the mean value of the function, describing the total
roughness, is zero. For convenience, in comparison with
theory, all separation distances in the Casimir force measure-
ments presented below are measured between the zero
roughness levels.

The zero roughness levelH0 is found using the equality

(
i 51

59

~hi2H0!v i50. ~7!

By combining the data of Fig. 7 with Eq.~7!, one findsH0
'35.46 nm. It is seen that the zero roughness level is
slightly different from the quantityd0'39.4 nm, the correc-
tion to the separation on contact determined by the results of
the electric force measurements~see Sec. II!. The separation
distances between zero roughness levelsz5d22H0 used
below (d is the separation between the bottom roughness
levels! are larger by 2(d02H0)57.88 nm than the separa-
tions d22d0 defined by the electric force measurements.
~The difference betweenH0 and d0 can be explained by a
minor modification of the highest roughness peaks before the
beginning of the Casimir force measurements.!

B. Static measurements of the Casimir force

To measure the Casimir force in the static regime, the
bridge ~schematically shown in Fig. 2! was first balanced
using two identical capacitors replacing the MTO. Then the

MTO was put back in place and the voltagesV1 and V2
adjusted to give a null signal. This last adjustment is required
to take into account residual asymmetries in the MTO. It was
found that the difference betweenV1 andV2 corresponded to
a variation inz, dz<6 nm. Once the MTO was mounted and
the can was evacuated, the sphere was brought into proxim-
ity with the MTO and the electrostatic measurements were
performed. Without breaking the vacuum in the system the
Casimir force measurements were then carried out. Figure 8
shows one such data set out of 19 runs. Each data point was
obtained with an integration time of 10 s, a time interval
which represents a good compromise for the'300 data
points taken per run. It is worth mentioning, however, that
the force sensitivity can be improved by using longer inte-
gration times.

The following analysis of the experimental precision is
based on alln519 series of measurements. For this purpose
we calculate the mean values of the measured Casimir force

F̄C
exp~zm!5

1

n (
i 51

n

FC,i
exp~zm! ~8!

at different separationszm within the measurement separa-
tion range from 190 nm to'1.15mm. The mean square
error of F̄C

exp is equal to

sn~zm!5H 1

n~n21! (
i 51

n

@ F̄C
exp~zm!2FC,i

exp~zm!#2J 1/2

. ~9!

Our calculations show thatsn(zm) does not depend sensi-
tively on m. The largest valuesn50.143 pN can be taken as
the value of the mean square error ofF̄C

exp within the whole
measurement range. Taking into account that ata595%
confidence level the Student’s coefficient ista,n52.1, one
obtains for the random absolute error of the Casimir force
measurements in the static regime

Dst
randFC

exp5snta,n'0.3 pN. ~10!

In fact this effectively gives the total absolute errorDst
totFC

exp

since the systematic errors are far below 0.1 pN for an inte-
gration time of 10 s. As a result, at the shortest separation of

FIG. 7. Relief heightshi vs the fraction of the total area with
heightsh,hi 11.

FIG. 8. Absolute value of the measured Casimir force as a func-
tion of separation obtained using the static mode. The value of the
separation between the two metals is determined as discussed in the
text.
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about 188 nm the relative error of the Casimir force mea-
surement is 0.27%. We note that the true value of the Casimir
force at a separationz lies in the confidence interval

@ F̄C
exp~z!2Dst

totFC
exp,F̄C

exp~z!1Dst
totFC

exp#

with a probability of 95%.

C. Dynamic measurements of the Casimir pressure

The results for the parallel plate Casimir pressure in the
dynamic regime are shown in Fig. 9, which presents one
dataset of 5 runs. Although the measurement was extended
down to a separation of;180 nm, only data for separations
above 260 nm are plotted. Data points below 260 nm show
effects of nonlinear behavior of the oscillator@25#.

The error analysis is performed in the same way as for the
static regime. Forl 55 runs, with'300 points per run, the
largest mean square error is found to besl50.11 mPa. The
Student’s coefficient ata595% confidence level ista,l

52.8 leading to a random absolute errorDdyn
randPC

exp

50.31 mPa. In the case of dynamic measurements, however,
it is not possible to neglect systematic errors compared to
random errors. As noted in Sec. II, there is an errordv
'2p31022 Hz which from Eq.~3! leads to the absolute
error in ]FC /]z'4.231027 N/m. The latter, when com-
bined with the error associated with the sphere’s radius
~equal to 0.1mm), leads via Eq.~6! to a systematic error on
the pressureDdyn

systPC
exp, which varies from 0.31 mPa at the

shortest separationz5260 nm to 0.23 mPa at all separations
z>450 nm. As a result, the total absolute error of pressure
measurements in the dynamic regime is equal to

Ddyn
tot PC

exp5Ddyn
randPC

exp1Ddyn
systPC

exp. ~11!

This error is z-dependent and varies from 0.62 mPa atz
5260 nm to 0.54 mPa atz>450 nm. Hence, the relative
error of the Casimir pressure measurement at the shortest
separation of about 260 nm is 0.26%.

IV. THEORETICAL DETERMINATION OF THE CASIMIR
FORCE

A. Casimir force and pressure including finite conductivity

As described in Sec. II, the static and dynamic measure-
ments were carried out using a Au-coated sphere over a Cu-
coated plate. The thicknesses of both metal coatings were
much larger than the plasma wavelengthlp of both metals so
that we can calculate the Casimir force as if the sphere and
plate were composed of solid Au and Cu, respectively. As a
first approximation, we consider the plate to have an infinite
area.~Corrections due to the finite size of the plate will be
estimated below.! The Casimir force between an infinite
plate and a sphere~which was measured in the static regime,
see Sec. II! can then be found using the Lifshitz formula for
two plane parallel plates and the proximity force theorem
@41,53#,

FC~z!5
R

2pE0

`

k'dk'E
0

`

dj$ ln@12r i
(1)~j,k'!r i

(2)~j,k'!

3e22qz#1 ln@12r'
(1)~j,k'!r'

(2)~j,k'!e22qz#%.

~12!

Here q25k'
2 1j2, k' is the modulus of the wave vector in

the plane of the plates, andr i ,'
( l ) ( l 51,2 for Cu, Au, respec-

tively! are the reflection coefficients for two independent po-
larization states computed along the imaginary frequency
axis v5 i j. We note that the errors introduced by the prox-
imity force theorem used to derive Eq.~12! are smaller than
z/R @54,55#. This is a correction of less than 0.06% at the
shortest separation distance, where the force measurements
are most precise.~Recall that the experimental precision at
z5188 nm was found to be 0.27%.! Equation~12! takes into
account the finite conductivity corrections to the Casimir
force due to real metal boundaries, but does not consider the
effect of surface roughness and thermal corrections which
will be treated later.

The reflection coefficients used in Eq.~12! can be repre-
sented in terms of either the dielectric permittivity or the
surface impedance. In terms of the dielectric permittivity, as
in the original Lifshitz formula~denoted by the subscriptL),
the reflection coefficients are given by

r i ,L
( l ) ~j,k'!5

k( l )2« ( l )~ i j!q

k( l )1« ( l )~ i j!q
, r',L

( l ) ~j,k'!5
q2k( l )

q1k( l )
,

~13!

wherek( l )25k'
2 1« ( l )( i j)j2. In terms of the surface imped-

ance, the reflection coefficients are given by@34#

r i
( l )~j,k'!5

Z( l )~ i j!j2q

Z( l )~ i j!j1q
, r'

( l )~j,k'!5
Z( l )~ i j!q2j

Z( l )~ i j!q1j
,

~14!

where Z( l )( i j) is the impedance for Cu or Au computed
along the imaginary frequency axis.

FIG. 9. Absolute value of the parallel plate Casimir pressure as
a function of separation obtained from the dynamic measurement.
The value of the separation between the two metals is determined as
discussed in the text.
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It has been shown recently@34# that for real metals at
nonzero temperature and interacting at relatively large sepa-
rations, the representation described in Eq.~14! is preferable.
It is free of contradictions with thermodynamics, which arise
when reflection coefficients expressed by Eq.~13! are used in
combination with the Drude dielectric function containing a
nonzero relaxation parameter@56#. Within the experimental
separation ranges of Sec. II (0.2–1.2mm) the characteristic
angular frequency of the Casimir effectvc51/(2z) lies
within the region of infrared optics~usingc51), where the
dielectric permittivity of the plasma model and the surface
impedance along the imaginary frequency axis are given by

«~ i j!511
vp

2

j2
, Z~ i j!5

j

Avp
21j2

. ~15!

As demonstrated in@57# both formulations of the reflection
coefficients, Eqs.~13! and ~14!, lead to the same computa-
tional results for the Casimir force, Eq.~12!, when Eq.~15!
is taken into account.

In the dynamic regime of Sec. II, the Casimir force gra-
dient between the sphere and plate was measured. As shown
above, this force gradient can be reexpressed in terms of the
Casimir pressure acting between two parallel plates com-
posed of the same materials. This Casimir pressure between
parallel plates can also be represented in terms of the reflec-
tion coefficients

PC~z!52
1

2p2E0

`

k'dk'

3E
0

`

qdjH F e2qz

r i
(1)~j,k'!r i

(2)~j,k'!
21G21

1F e2qz

r'
(1)~j,k'!r'

(2)~j,k'!
21G21J . ~16!

For separationsz.lp the Casimir pressure can be computed
using either set of reflection coefficients, Eq.~13! or Eq.
~14!, with «( i j) or Z( i j) given by Eq.~15!. At the shortest
separationsz,lp the impedance at characteristic frequen-
cies is not small, and Eq.~13! should be used to calculate
both the Casimir pressure and force. The most accurate re-
sults at these separations are obtained by using tabulated data
for the imaginary part of the dielectric permittivity@58#.
These data are substituted into the dispersion relation

«~ i j!511
2

pE0

` vIm«~v!

v21j2
dv ~17!

to obtain the dielectric permittivity along the imaginary fre-
quency axis. The Casimir force, Eq.~12!, and pressure, Eq.
~16!, can then be calculated as in Refs.@29,30#. This proce-
dure was used here to calculateFC(z) andPC(z). The avail-
able tabulated data@58# were extended using the Drude
model with the following plasma frequencies and relaxation
parameters @29#: vp

(1)59.05 eV, vp
(2)59.0 eV, g (1)

530 meV, g (2)535 meV, for Cu and Au, respectively. At
large separationsz.lp our results almost coincide with
those obtained in the framework of the plasma model given
by Eq. ~15!. Note that at smaller separationsz,lp our re-
sults are practically independent of the chosen extrapolation
and are completely determined by the available tabulated
data.

It is useful to compare the calculated results for the real
metals used with the ideal case when both sphere and plate
were composed of a perfect metal with infinite conductivity.
For example, the ratios of the calculated Casimir force to the
force between an ideal sphere and plate are 0.467, 0.544, and
0.842 at separationsz570 nm, 100 nm, and 500 nm, respec-
tively. Similarly, the ratios of the calculated Casimir pressure
between real plates to the pressure between ideal plates are
0.393, 0.468, and 0.799 for the same separations. These re-
sults are very close to those computed for Au-Au and Cu-Cu
@29,30#, which can be explained by the similarities of the
optical data for Cu and Au.

B. Casimir pressure and force including surface roughness

As mentioned previously, the theoretical results obtained
from Eqs.~12! and ~16! take into account the finite conduc-
tivity of the boundary metals but neglect the effect of surface
roughness. This effect, however, may constitute a correction
of several tens of percent at the shortest separations depend-
ing on the character of the roughness. Hence, a precise com-
putation of the Casimir force requires a careful characteriza-
tion of the roughness as was performed in Sec. III A.

The roughness correction to the Casimir interaction is
computed using the AFM images of the surfaces, such as the
one shown in Fig. 6. As seen from Fig. 6, the characteristic
longitudinal scale of the surface roughness is larger than the
surface separation~especially in the region of the shortest
separations where the effect of roughness is most signifi-
cant!. In this case the additive method@35,59# can be used to
calculate the Casimir force taking account of roughness. As a
result, the Casimir pressure between two plates with rough-
ness corrections taken into account is given by

PC~z!5 (
i , j 51

n

v iv j PC~z12H02hi2hj !, ~18!

wherev i is defined in Sec. III A,PC(z) is given by Eq.~16!,
and the indexi relates to one plate andj to the other. A plot
of the relief heightshi ( i 51,2, . . . ,n559) on the plate ver-
sus the fraction of the plate areawi with height h,hi 11 is
shown in Fig. 7. It should be remembered thatH0
535.46 nm is the zero roughness level from which all sepa-
rations z are measured~see Sec. III A!. Note also that the
separation distancesz12H02hi2hj in Eq. ~18! may be
much smaller thanlp for large relief heightshi , hj . Hence,
one should use the optical tabulated data when calculating
the finite conductivity corrections.
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In a similar manner, the Casimir energy for two parallel
plates with roughness is given by Eq.~18! after substituting
EC for PC . It then follows that by the use of the proximity
force theorem, the Casimir force for a sphere above a plate,
accounting for both roughness and finite conductivity correc-
tions, is given by

FC~z!5 (
i , j 51

n

v iv jFC~z12H02hi2hj !, ~19!

whereFC(z) is given by Eq.~12!.
We note that Eqs.~18! and ~19! describe not only the

separate effects of finite conductivity and surface roughness
on the Casimir pressure and force, but also their combined
effect. This is especially important at the shortest separations
where the corrections are not small and cannot be repre-
sented as a product of two separate factors, one each for
roughness and finite conductivity.

V. COMPARISON OF THEORY
WITH EXPERIMENT AND TESTS

OF ALTERNATIVE THERMAL CORRECTIONS

The theoretical Casimir forceFC(z) acting between a
sphere and a plate was computed using Eq.~19! for all sepa-
rations where it was measured~19 sets of measurements con-
taining '300 experimental points each!. In Fig. 10 the dif-
ference between the theoretical and experimental force
values

DFC~zi !5FC
th~zi !2FC

exp~zi ! ~20!

as a function of surface separationzi is presented for one set
of measurements. As can be seen from the figure, the values
of DFC(zi) are clustered aroundDFC(zi)50, demonstrating
good agreement between theory and experiment.

To quantify the level of agreement between theory and
experiment we consider the root mean square deviationsN

F

defined as

sN
F5H 1

N (
i 51

N

@FC
th~zi !2FC

exp~zi !#
2J 1/2

, ~21!

whereN is the number of points under consideration.
For example, if the first 250 points from all 19 sets of

static measurements are considered~separations larger than
1 mm are not considered due to the large experimental rela-
tive error!, one obtainsN54750, ands4750

F '0.6 pN, which
is less than the theoretical error~see below! but two times
larger than the absolute error of the force measurements
given by Eq.~10!. The rms deviation depends slightly on the
separation region under consideration. Thus, if separations
z>400 nm are considered, the first 185 points of all sets of
measurements lead toN53515,s3515

F '0.45 pN. For one set
of measurements shown in Fig. 10,N5250 and s250

F

'0.66 pN ~close to the above value when all sets of mea-
surements are considered!. It can also be seen from Fig. 10
that there is a slight shift of the mean difference force value
below the zero level equal to20.045 pN, whose magnitude
is much smaller than the absolute error of the force measure-
ment.

A similar analysis was performed for the parallel plate
Casimir pressure obtained from the dynamic measurement.
The difference between the theoretical and experimental
pressuresDPC(zi) is defined as in Eq.~20!, and the rms
deviationsN

P is defined as in Eq.~21! with the substitution of
FC for PC . Considering the first 235 points of all 5 sets of
dynamic measurements one obtainsN51175, ands1175

P

'0.5 mPa. Once again, the rms deviation depends slightly
on the separation interval. Thus, for 310 nm<z<420 nm
~35 points!, N5175 ands175

P '0.44 mPa if all five sets of
measurements are considered. Forz.310 nm (22035
51100 points!, s1100

P '0.34 mPa.
In Fig. 11, the quantityDPC(zi) is presented for one set

of measurements (N5235). Here the shift of the mean dif-
ference pressure value below zero is equal to20.26 mPa
~whose magnitude is less than the absolute error of pressure

FIG. 10. Difference of the theoretical and experimental Casimir
forces between the sphere and plate versus separation obtained from
the static measurement.

FIG. 11. Difference of the theoretical and experimental parallel
plate Casimir pressures versus separation obtained from the dy-
namic measurement.
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measurements!. The rms deviation between theory and ex-
periment in Fig. 11 iss235

P '0.43 mPa, i.e., even less than
for all five sets of dynamic measurements. Both Figs. 10 and
11 demonstrate good agreement between theory and experi-
ment.

To estimate the theoretical precision, we consider other
effects, in addition to finite conductivity and surface rough-
ness, which were not taken into account in Eqs.~18!, ~19! for
the Casimir pressure and force. Most prominent among these
are finite-temperature corrections, which will be dealt with in
detail later in this section. Another correction which should
be considered arises from the fact that the plate used in the
experiment is not infinite in extent. For the plate used, whose
dimensions are 5003500 mm2, this correction is evidently
negligible if the sphere’s center is located above the mid-
point of the plate. However, in the configuration shown in
Fig. 1, the sphere’s center is above a point displaced from the
right plate boundary by a distanceL550 mm. In this case,
the Casimir force should be multiplied by a correction factor
b that was found in Ref.@60#,

b~z!512
z3

R3 S 12
1

A11L2/R2D 23

, ~22!

whereR is the radius of the sphere. In our case, at the largest
separationz51 mm, this leads tob50.9865. However, tak-
ing into account the fact that only one of the four sides of the
plate is close to the sphere center projection reduces the cor-
rection factor tob50.997. Thus, the correction is in fact less
than 0.3%, and at a separationz5500 nm it is less than
0.04%. The same considerations apply to the pressure be-
tween two parallel plates. Consequently, the correction to the
theoretical force and pressure due to the finiteness of the
plate is much smaller than the uncertainty introduced by the
sample-to-sample variation of the optical data. These
sample-dependent variations in the index of refraction may
lead to an error of'1% @29,30#. An even smaller uncer-
tainty is introduced into the computation by the effect of
roughness when the topography of the surface is carefully
characterized. A recently discussed correction due to the sur-
face plasmon@61# is also not significant. The surface plas-
mon propagates when the frequency of the electromagnetic
wave is greater thanvp . Recall that in our case the shortest
separations are 190 nm and 260 nm in the static and dynamic
regimes, respectively. This leads to the highest characteristic
frequenciesvc50.831015 rad/s and 0.631015 rad/s, respec-
tively, which are 17 and 23 times, respectively, less than the
plasma frequency for Au and Cu. As a result, the correction
due to the surface plasmon in our case is much less than 1%
even at shortest separations used.

As mentioned earlier, an important correction which may
influence the magnitude of the Casimir interaction is due to
the effect of nonzero temperature. This has been the subject
of considerable controversy during the past few years~see,
e.g., @32–35,42–44,56,62#!. For an ideal metal the thermal
correction can be determined using the Matsubara formula-
tion of thermal quantum field theory~TQFT! @35,63–67#.
The question is whether the thermal correction for good~but

real! conductors is small at small separations, as is the case
for ideal metals, or does it differ qualitatively from that for
ideal metals. The approach of Refs.@32,33#, which we call
‘‘traditional’’ since it yields results consistent with earlier
studies of thermal effects, leads to a qualitatively identical
thermal correction for real and ideal metals, as given by
TQFT. For example, in the configuration of two parallel
plates made of Cu and Au, the Casimir pressures atz
5300 nm andz5500 nm at zero temperature are equal to
2136 mPa and217.0 mPa, respectively. The traditional
thermal corrections@32,33# at room temperatureT5300 K
for these cases are equal to20.00863 mPa and
20.00441 mPa, respectively.~For comparison, in the case of
ideal metals, the corresponding Casimir pressures atT
50 K are equal to2160.43 mPa and220.79 mPa, respec-
tively, and the thermal correction atT5300 K is
20.00204 mPa and is independent of separation.! It is
clearly seen that the traditional thermal corrections at room
temperature are very small, and even the improved sensitiv-
ity of our experiment is not sufficient to measure them. Their
contribution to the Casimir pressure is;0.006% at z
5300 nm and;0.03% atz5500 nm, and can therefore be
neglected.

The situation with the alternative thermal corrections, pro-
posed in Refs.@42–44#, is quite different. These corrections
at separationsz.lp are much greater than those predicted
by the traditional approach. According to Refs.@42,43#, in
the case of two parallel plates made of real metals there is an
additional thermal correction linear in temperature given by

DTPC
(1)~z!5

kBT

16pz3E0

`

y2dyF ey

r'
(1)~0,y!r'

(2)~0,y!
21G21

,

~23!

where

r'
( l )~0,y!5

y2Ay214z2vp
( l )2

y1Ay214z2vp
( l )2

. ~24!

The effect of this correction is not as small as for the tradi-
tional approach. For example, at separationsz5300 nm and
500 nm Eq.~23! leads toDTPC

(1)54.89 mPa andDTPC
(1)

51.23 mPa, respectively, atT5300 K, i.e., to 3.6% and
7.24%, respectively, of the total Casimir pressure. Since
these values far exceed the errors of the present experiment,
the new results can be used as a decisive experimental test
for the theoretical predictions made in Refs.@42,43#.

In Fig. 12 the difference between the theoretical and ex-
perimental Casimir pressuresPC

th,12PC
exp is presented as a

function of separation for the same set of measurements as
used in Fig. 11. Here, however, the theoretical pressurePC

th,1

is computed using the alternative thermal correction given by
Eq. ~23!. It is obvious that at separations&700 nm the quan-
tity PC

th,12PC
exp deviates significantly from zero. At the

shortest separationz5260 nm this deviation reaches 5.5
mPa. Thus, the linear thermal correction to the Casimir pres-
sure proposed in Refs.@42,43# is ruled out by the present
experimental results.~Note that in a recent preprint@68#
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qualitative arguments are presented on the role of the finite
size of the plate and finite thickness of the gold layer. Ac-
cording to@68# these effects could lead to a 25% discrepancy
between the experiment of Ref.@19#, and the proposed alter-
native thermal correction@42,43# at a separation 1mm.!

A second alternative thermal correction to the Casimir
pressure between real metals was proposed in Ref.@44#. For
our case of two metal plates it is expressed as

DTPC
(2)~z!52

kBT

8pz3
z~3!1DTPC

(1)~z!, ~25!

wherez(x) is the Riemann zeta-function, andDTPC
(1)(z) is

defined in Eq.~23!. This correction atT5300 K is also
much larger than the traditional one for the separations used
in our experiment. At the separationz5300 nm Eq.~25!
leads toDTPC

(2)522.44 mPa, i.e., to a 1.8% correction to
the total Casimir pressure~the experimental precision at this
separation is 0.43%!. Thus, the present experiment also pro-
vides a test for the theoretical predictions of Ref.@44#.

In Fig. 13 the difference between the theoretical and ex-
perimental Casimir pressuresPC

th,22PC
exp is presented as a

function of separation for the same set of measurements as in
Fig. 11. Unlike Fig. 11, the theoretical pressurePC

th,2 is com-
puted using the second alternative thermal correction given
by Eq. ~25!. As seen from Fig. 13, at separations less than
600 nm the quantityPC

th,22PC
exp deviates significantly from

zero, and reaches 5 mPa at a separationz5260 nm. It fol-
lows that the thermal correction of Ref.@44# is also in con-
tradiction with the results of the present experiment.

The conclusion that the alternative approaches to thermal
corrections to the Casimir force do not agree with our ex-
perimental results is not surprising upon recognizing that the
approaches of Refs.@42–44# violate the Nernst heat theorem
@56#. To correctly describe the influence of thermal effects on
the Casimir force between real~i.e., non-ideal! metals re-
quires a proper understanding of the zero-frequency contri-
bution in the Lifshitz formulas given by Eqs.~12! and ~16!.

When the Drude dielectric function with a nonzero relax-
ation parameter is substituted into Eq.~13!, the approach of
Refs. @42,43# follows and the thermal correction given by
Eq. ~23! is found. If one then modifies the reflection coeffi-
cient r'(0,k') by setting it equal to unity~as for real pho-
tons!, the thermal correction~25! is obtained@44#. However,
to avoid contradictions with fundamental physical principles
and experiment, it is necessary to start from the physical
behavior of the surface impedance in the appropriate range
of characteristic frequencies~i.e., infrared optics in our case!,
and to extrapolate to zero frequency@34#. Under these con-
ditions, the traditional thermal correction between real met-
als is recovered, and this thermal correction is in agreement
with both thermodynamics and the present experiments. Fur-
thermore, it transforms smoothly into the limiting case of
ideal metals as described by the Matsubara formulation of
TQFT.

To conclude this section, the theoretical uncertainty,
which is'1% of the Casimir force or pressure, exceeds the
experimental uncertainty at the shortest separations used in
this experiment~0.27% for the force at 188 nm and 0.26%
for the pressure at 260 nm!. However, at separationsz
.370 nm the experimental uncertainties exceed the theoret-
ical uncertainties. Within the achieved levels of precision
there is good agreement between theory and experiment over
the entire measurement range.

VI. CONSTRAINTS ON NEW YUKAWA FORCES
AND EXTRA-DIMENSIONAL PHYSICS

As mentioned in the Introduction, in many extensions to
the standard model, including theories with large compact
extra dimensions@1#, the potential energy between two point
massesm1 andm2 separated by a distancer is given by the
usual Newtonian potential with a Yukawa correction
@1,12,13#,

V~r !52
Gm1m2

r
~11ae2r /l!, ~26!

FIG. 12. Difference of the theoretical parallel plate Casimir
pressure as predicted by Refs.@42,43# ~which incorporates an alter-
native thermal correction! and experiment vs separation.

FIG. 13. Difference of the theoretical parallel plate Casimir
pressures, as predicted by Ref.@44# ~which incorporates another
alternative thermal correction! and experiment vs separation.
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where a is a dimensionless constant characterizing the
strength of the Yukawa force, andl is its range. For theories
with n>1 extra dimensionsa;1 andl;Rn , whereRn is
the size of the compact dimensions, Eq.~26! holds under the
condition @1#

r @Rn;
1

M Pl
(N) S M Pl

M Pl
(N)D 2/n

;1032/n217 cm. ~27!

For n51 it follows from Eq.~27! thatR1;1015 cm which is
excluded by solar system tests of Newtonian gravity@69#. If,
however,n52 or n53, the sizes of extra dimensions are
R2;1 mm orR3;5 nm, respectively. While recent gravity
experiments have investigated millimeter distance scales
without finding evidence of new physics, gravity remains
poorly tested at scales&1024 m ~see Ref.@70# for a review!.

For models of non-compact~but warped! extra dimen-
sions@2# the potential energy takes the form of the Newton-
ian potential with a power-law correction

V~r !52
Gm1m2

r S 11
2

3k2r 2D , ~28!

wherer @1/k and 1/k is the warping scale. The correction in
Eq. ~28! can be generalized to arbitrary inverse powers,

Vl~r !52
Gm1m2

r F11a l S r 0

r D l 21G , ~29!

wherea l is a dimensionless constant,l is a positive integer,
and r 0510215 m.

We note that Yukawa and power-law corrections given in
Eqs. ~26! and ~29! also arise in ways unrelated to extra-
dimensional physics. For example, the Yukawa potential de-
scribes new forces generated by the exchange of light bosons
of massm51/l, such as scalar axions, graviphotons, hyper-
photons, dilatons, and moduli among others~see, e.g.,@69–
73#!. For such forces the interaction constanta could be
much larger than unity. Power-law corrections, as in Eq.
~29!, arise from the simultaneous exchange of two photons
or two massless scalars (l 52 @74#!, two massless pseudos-
calars (l 53 @75,76#!, and from the exchange of a massless
axion or a massless neutrino-antineutrino pair (l 55 @76,77#!.

The agreement between theory and experiment for our
Casimir force measurements can be used to set new con-
straints on the Yukawa strengtha as a function ofl from Eq.
~26!. The total force acting between a sphere and a plate due
to the potential described by Eq.~26! is obtained by integra-
tion over the volumes of the sphere and the plate, and sub-
sequent differentiation with respect toz. In fact, the contri-
bution of the Newtonian gravitational force is very small and
can be neglected. To prove this, let us consider a sphere
above the center of an enlarged plate modelled by a disk with
a radiusL0@R5294.3mm. ~In the present experiment the
projection of the sphere center is displaced by 450mm from
one edge of the plate, and by 50mm from the other.! In this
case the Newtonian gravitational force is given by@39#

FN'2
8

3
p2GrdiskrsphereDR3S 12

D

2L0
2

R

L0
D , ~30!

whereD53.5 mm is the thickness of the plate. To obtain an
upper limit, let us neglect the layered structure of both test
bodies and setL0→`, rdisk5rCu58.933103 kg/m3, and
rsphere5rAu519.283103 kg/m3. It then follows from Eq.
~30! that FN'23.2310217 N. This value is four orders of
magnitude smaller than the absolute error of the force mea-
surement in the static regime. Hence, the contribution of the
Newtonian gravitational force can be neglected at this stage.

For a Yukawa force between a sphere and a plate, the
constraints should be calculated considering the detailed
structure of the sphere and plate. The sphere of densityrs
54.13103 kg/m3 was coated with a layer of Cr of thickness
DCr51 nm withrCr57.193103 kg/m3, and a layer of Au of
thickness DAu5203 nm. The plate of densityrSi52.33
3103 kg/m3 was coated first with the same thickness of Cr
and then with a layer of Cu of thicknessDCu5200 nm. Con-
sidering that the conditionsz,l!R,D are satisfied, the hy-
pothetical force is given by@35,36#

Fhyp~z!524p2Gal3e2z/lR@rAu2~rAu2rCr!e
2DAu /l

2~rCr2rs!e
2(DAu1DCr)/l#@rCu2~rCu2rCr!

3e2DCu /l2~rCr2rSi!e
2(DCu1DCr)/l#. ~31!

In our experiment, the strongest constraints on the
Yukawa hypothetical interactions are obtained from the dy-
namic measurement of the parallel plate pressure~i.e., Ca-
simir force gradient! rather than the static measurement of
the Casimir force. For this case, the Yukawa pressure can be
found from Eq.~31! by using Eq.~6!, which follows from
the proximity force theorem, Eq.~5!,

Phyp~z!522pGal2e2z/l@rAu2~rAu2rCr!e
2DAu /l

2~rCr2rs!e
2(DAu1DCr)/l#@rCu2~rCu2rCr!

3e2DCu /l2~rCr2rSi!e
2(DCu1DCr)/l#. ~32!

Note that the Newtonian gravitational pressure is also below
the sensitivity of the present experiment and can be ne-
glected.

As shown in Ref.@36#, surface roughness can significantly
influence the magnitude of a hypothetical force in the na-
nometer range. To compute the hypothetical pressure taking
account of roughness, one can use exactly the same method
that was applied in Sec. IV in the case of the Casimir pres-
sure. The result is

PR
hyp~z!5 (

i , j 51

n

v iv j P
hyp~z12H02hi2hj !, ~33!

where our notation is that of Sec. IV, andPhyp is given by
Eq. ~32!.

With these results, we can now obtain constraints on the
hypothetical Yukawa pressure from the agreement of our
measurements of the Casimir pressure with theory. Accord-
ing to the results of Sec. V, the optimal separation region for
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obtaining constraints isz.310 nm. Here the rms deviation
between theory and experiment,s1100

P 50.34 mPa, is some-
what smaller than would be the case if the complete mea-
surement range were used, which includes the shortest sepa-
rations 260 nm<z<310 nm.~At the shortest separations the
experimental relative error is less than the theoretical error,
but it increases with separation so it eventually exceeds the
theoretical relative error.! Within the intervalz.310 nm the
strongest constraints are obtained from the shortest separa-
tions. We choosez05320 nm and obtain constraints from the
inequality

uPR
hyp~z0!u<s1100

P 50.34 mPa. ~34!

In Fig. 14 constraints ona following from Eq. ~34! are
plotted for different values of the interaction rangel ~curve
1!. In the same figure constraints from previous experiments
are also shown. They were obtained from old measurements
of the Casimir force between dielectrics@35# ~curve 2!, from
Casimir force measurements by means of a torsion pendulum
@19,36# ~curve 3!, and by the use of an AFM@23,36,39#
~curve 4!. In all cases the region in the (a, l) plane above
the curve is excluded, and below the curve is allowed by the
experimental results. As can be seen from Fig. 14, the
present experiment leads to the strongest constraints in a
wide interaction range, 56 nm<l<330 nm. The largest im-
provement, by a factor of 11, is achieved atl'150 nm. We
note that the constraints obtained here almost completely fill
in the gap between the modern constraints obtained by AFM
measurements, and those obtained using a torsion pendulum.
Within this gap the best previous constraints were obtained
from old measurements of the Casimir force between dielec-

trics which are not as precise or reliable as those obtained
here from the Casimir pressure measurements between met-
als using a MTO.

Turning to the power-law-type hypothetical interactions
given by Eq.~29!, the present experiment does not lead to
improved constraints. This is explained by the fact that the
metallic coatings used were too thin~and hence, too light! to
give a significant contribution to hypothetical interactions
with a longer interaction range. In fact, the thicker~bulk!
matter contributes more significantly in this case, even
though its density is much lower than for the metal coatings.
To obtain stronger constraints on the constants characterizing
new power-law interactions, thicker metal coatings and
larger interacting bodies are preferable. We anticipate that
future measurements of the Casimir force will employ such
samples.

VII. CONCLUSIONS AND DISCUSSION

Our primary objective in the present paper has been to set
new limits on extra-dimensional models and other physics
beyond the standard model using Casimir force measure-
ments between a sphere and a plate separated by
;0.2–1.2mm. These experimental results along with a de-
tailed theoretical analysis lead to new constraints on Yukawa
modifications of Newtonian gravity at short distances, and
these are presented in Fig. 14.

Although the constraints on the Yukawa parametera we
obtain are;1013, this does not imply that our experiment
has to be improved by 13 orders of magnitude to detect
Newtonian gravity. Rather, the exponential factore2r /l in
Eq. ~26! strongly suppresses contributions from those parts
of the sphere and plate separated by*l. This ‘‘finite size
effect’’ @69#, which is not relevant for gravity, has a conse-
quence that a Yukawa force between the sphere and plate
with a51 is much weaker than gravity. The actual gravita-
tional force in our experiment is only;5 orders of magni-
tude from being detected~using the actual materials em-
ployed!, a gap that may be closed within the forseeable
future based on the rapid progress various groups have made
in the past few years.

To carry out our objective, a MTO was used to obtain the
first precise measurements of the Casimir force between dis-
similar metals Cu and Au. In the static regime, the Casimir
force between a sphere and a plate was measured with an
absolute error 0.3 pN at a 95% confidence level. This trans-
lates into an experimental relative error of the Casimir force
measurements at the separation 188 nm of'0.27%, i.e.,
several times smaller than the most precise previous experi-
ments carried out by means of an AFM@20–23#. To take
advantage of the high quality factor of the MTO, the Casimir
force derivative between the sphere and plate was then mea-
sured dynamically. This derivative was shown to be effec-
tively equivalent to the pressure between two parallel plates
composed of the same materials. This pressure was deter-
mined with a mean absolute error of 0.6 mPa at the same
confidence level, which leads to an experimental relative er-
ror of '0.26% at the separation 260 nm.~This compares
with a relative error of 15% quoted by the authors of Ref.

FIG. 14. Constraints on the Yukawa interaction constanta vs
interaction rangel. Curve 1 is obtained in this paper, curve 2
follows from old measurements of the Casimir force between di-
electrics@35#. Curves 3 and 4 are obtained from the Casimir force
measurements between metals by use of the torsion pendulum
@19,36# and by means of an atomic force microscope,@23,39# re-
spectively. The region in the (a,l) plane above each curve is ex-
cluded, and below each curve is allowed.
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@26# who directly measured the Casimir pressure between
parallel plates.!

As noted above, the precise calculation of the Casimir
force and pressure between real metals that is needed to ex-
tract the effects of new physics calls for the careful account-
ing of different corrections~e.g., due to surface roughness,
finite conductivity of the boundary metals, nonzero tempera-
ture, and finite extent of the plate!. The corrections due to
roughness were computed on the basis of the AFM images of
the surfaces of the test bodies. Finite conductivity corrections
were calculated using tabulated data for the complex index
of refraction. Other corrections were also estimated~includ-
ing traditional thermal corrections! and found to be negli-
gible. The estimated theoretical uncertainty is at the level of
1% of the calculated force, i.e., greater than the experimental
uncertainty at the shortest separations used. Within the limits
of all errors, theory is in good agreement with experiment.

The level of agreement between theory and experiment
was used to draw important conclusions concerning the in-
fluence of thermal effects on the Casimir force predicted by
quantum field theory at nonzero temperature. Our experi-
mental results lead to a resolution of the controversy over
whether the thermal effects on the Casimir force between
real metals are close to those predicted by the Matsubara
formulation of quantum field theory for ideal metals, or are
significantly different as claimed in Refs.@42–44#. We have
shown that the experimental results contradict the large, lin-
ear in temperature, thermal corrections predicted in Refs.
@42–44#. Although the sensitivity of the current experiment
is not yet sufficient to detect the small thermal corrections to
the Casimir force and pressure predicted for real metals in
Refs.@32,33#, these corrections are compatible with our ex-
periment.

The good agreement between theory and experiment was
then used to set stronger constraints on hypothetical Yukawa
interactions predicted by extra-dimensional physics and ex-
tensions to the standard model. Existing limits were strength-
ened by a factor of up to 11 within a wide interaction range,
from 56 nm to 330 nm. This interaction range covers the gap
between the modern results obtained from Casimir force
measurements using a torsion pendulum and an AFM. The
previously known constraints within this gap were based on
old, and less reliable, Casimir force measurements between
dielectrics.

Our experimental arrangement suggests the need for ad-
ditional work to further improve the agreement between
theory and experiment. We plan to use smoother and thicker
metal coatings on the surfaces of the test bodies, yielding a
better characterization of the roughness. This will permit us
to carry out measurements at shorter separations, and to sig-
nificantly strengthen the constraints on the predictions of
extra-dimensional physics in a wider interaction range. The
ultimate goal of this program is to use the iso-electronic
effect @18,39,78–80# to suppress the Casimir force so as to
improve our sensitivity to new forces beyond the standard
model.
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