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Abstract. In this paper we study time/memory/data trade-off attacks
from two points of view. We show that Time-Memory trade-off (TMTO)
by Hellman may be extended to Time/Memory/Key trade-off. For ex-
ample, AES with 128-bit key has only 85-bit security if 243 encryptions
of an arbitrary fixed text under different keys are available to the at-
tacker. Such attacks are generic and are more practical than some recent
high complexity chosen related-key attacks on round-reduced versions
of AES. They constitute a practical threat for any cipher with 80-bit or
shorter keys and are marginally practical for 128-bit key ciphers. We show
that UNIX password scheme even with carefully generated passwords is
vulnerable to practical trade-off attacks. Our second contribution is to
present a unifying framework for the analysis of multiple data trade-
offs. Both Babbage-Golic (BG) and Biryukov-Shamir (BS) formulas can
be obtained as special cases of this framework. Moreover we identify a
new class of single table multiple data trade-offs which cannot be ob-
tained either as BG or BS trade-off. Finally we consider the analysis of
the rainbow method of Oechslin and show that for multiple data, the
TMTO curve of the rainbow method is inferior to the TMTO curve of
the Hellman method.
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1 Introduction

In 1980, Hellman [8] introduced the technique of time-memory trade-off (TMTO)
attack on block ciphers. In its more general form, it can be viewed as a general
one-way function inverter. The original work by Hellman considered inverting
a one-way function f at a single data point. Babbage [1] and Golic [7] (BG)
have shown that in the context of stream ciphers multiple data points can be
used by another trade-off attack relying on birthday paradox. Independently,
Biham [3, 2] has shown that birthday-paradox trade-off applies to block-ciphers
in a frequently changing key scenario. Both BG and Biham’s results show that
theoretical strength of a block or stream cipher without an IV (nonce) can not
exceed the square root of the size of the key space. However birthday trade-offs
suffer from a weakness: they lack flexibility due to strong binding of memory

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 110–127, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Improved Time-Memory Trade-Offs with Multiple Data 111

complexity with the data complexity which typically results in unrealistic data
or memory requirements. Later Biryukov and Shamir [5] (BS) have shown that
multiple data can be combined with Hellman’s tradeoff, resulting in a flexible
time/memory/data tradeoff formula.

In the context of block ciphers with reasonably long keys, the original Hellman
attack is typically not considered to be of a threat since its precomputation time
is the same as the exhaustive search of the key. Moreover, the attack works
for a single chosen plaintext encryption and cannot benefit if more plaintext-
ciphertext pairs are available to the attacker since the precomputed tables are
“wired” to a fixed plaintext. This is contrary to what happens in Babbage-Golic-
Biham or Biryukov-Shamir’s trade-off where precomputation time is way below
the exhaustive key search complexity.

At the rump session of ASIACRYPT 2004, Hong and Sarkar [9] have demon-
strated that streamcipherswith short IVs canbeattackedvia theBiryukov-Shamir
time/memory/data trade-off [5] in a frequent re-synchronization scenario. More
recently in [10] they also provide a careful study of time/memory/data trade-off
attack in the context of various modes of operation of block-ciphers noticing that
these essentially constitute a stream cipher. However, we believe that [10] does not
consider in sufficient details the important cases of ECB (a mode typically assumed
in theoretical cryptanalysis) or CBC with known IV’s or counter and OFB modes
in chosen IV scenarios, which directly lead to very powerful attacks. They also de-
scribe attacks which have preprocessing times higher than the complexity of ex-
haustive search and thus seem to be less relevant.

Our Contributions: Our contribution is two-fold. We present new applications
as well as a new analysis of time/memory/data trade-off attacks.

We describe three applications.

– The usual time/memory/data trade-off attack on stream ciphers can be con-
sidered to be a time/memory/key trade-off attack on block ciphers. This
attack applies to situations where the goal of the attacker is to obtain one
out of many possible keys. See Table 1 for a picture how various block and
stream cipher tradeoffs are related.

– We carefully consider the key size of block ciphers and conclude that in the
view of trade-off attacks one may no longer assume k-bit security even for
a good k-bit cipher. This is true for ECB mode but unfortunately also true
for CBC mode even with proper IV choice. Counter and OFB modes are
vulnerable to this attack in chosen IV scenarios.

– The last application is to Unix password scheme, where the short size of the
“salt” is insufficient to stop trade-off attacks. We describe practical attacks
on this scheme when a password file with reasonably many password hashes
is available to the attacker.

In the second part of the paper, we perform a new unified analysis of Hellman’s
attack in the presence of multiple data. The BG and the BS attacks are obtained
as special cases of the general attack. So far, it has been believed that any multi-
ple data TMTO is either BG or BS. Our work reveals that there are other possible
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Table 1. Relation between block and stream cipher trade-off attacks

Block ciphers (varying keys or IV’s) Stream ciphers (varying keys or IV’s)
Type of Biham’s collision [2] Babbage-Golic birthday [1, 7]
trade-off this paper and [10] Biryukov-Shamir TMD [5, 10]

desirable trade-offs for single table, multiple column attacks which are not obtain-
able from either the BG or the BS attack. The time required for table look-ups
can be reduced by using Rivest’s idea of distinguished point (DP) method. We
analyse this method in a general setting. Finally, we consider the rainbow method
and show that in the presence of multiple data, the TMTO curve of the rainbow
method is inferior to the TMTO curve of the Hellman+DP method.

2 Time/Memory/Data Trade-Off Methodology

In this section we give a quick introduction for the methodology behind Hell-
man’s [8] time/memory trade-off as well as for the closely related time/memory/
data trade-off attacks by Biryukov-Shamir [5].

Suppose that f : {0, 1}n → {0, 1}n is a one-way function, i.e. a function
which can be efficiently evaluated in forward direction, but which is hard to
invert. The goal of the attacker is to invert this function, i.e. given f(x) to find
x, while keeping complexity of the inversion algorithm (time T , data D, memory
M and preprocessing time P ) as low as possible. Throughout this paper we will
denote by N = 2n the size of the domain of the function.

In [8] Hellman has proposed a general algorithm for inversion of an arbitrary
one-way function which obeyed the formula: N2 = TM2, D = 1, P = N . In [5]
Hellman’s algorithm has been generalized for the case of multiple data, which
resulted in a formula N2 = TM2D2, 1 ≤ D2 < T, P = N/D. Here we will
directly describe this generalized trade-off.

The algorithm consists of two stages: a one-time offline stage followed by an
online stage. In the online stage, we will be given D points y1, . . . , yD in the
range of f and our goal is to find the pre-image of any one of these points. In the
offline stage, a set of tables are prepared covering N/D of the domain points.
Since N/D domain points are covered and the online stage involves D domain
points, by the birthday bound, we are assured of constant probability of success
in finding the pre-image of one of the y’s.

Let f1, . . . , fr be simple output modifications of f (fi = gi◦f , where gi can be
a simple bit permutation of the output bits), such that the fi’s can be assumed
to be pairwise independent. In the offline stage r tables (one per fi) are prepared.
The ith table is prepared in the following manner. A total of m random domain
points are chosen. For each domain point, the function fi is iteratively applied
t times to reach an end point. The pairs (start-point, end-point) are stored as
part of the ith table sorted by the end points. The total storage requirement is
rm pairs of points, while the total coverage is rmt points.

In the online stage, for each data point yj we look for a pre-image in the set
of points covered by the tables. For searching in the ith table, we first apply gi



Improved Time-Memory Trade-Offs with Multiple Data 113

to yj to obtain y′
j , then we iteratively apply fi a total of t times to y′

j . After
each application of fi, we look in the end points of the ith table for a match.
If a match is found, we go to the corresponding start point and iterate fi until
we reach y′

j . The preceding point is a possible pre-image of y, which is verified
by applying f to it and checking whether we obtain y. This requires a total
of t applications of f and t table look-ups per table per data item. In order
to minimize the waste of table coverage due to birthday collisions the proper
choice of parameters m and t would typically satisfy N = mt2 (in Sec. 8 it will
be shown how to obtain a new trade-off formula by using sub-optimal choices of
m and t). Since a single matrix covers only mt points in order to cover the full
space one will need r = N/mt = t tables corresponding to different functions
fi, i = 1, . . . , r. However in generalized case we need to cover only a fraction N/D
of space, and thus r = t/D tables would suffice. By eliminating parameters r, m, t
one gets a tradeoff formula N2 = TM2D2, 1 ≤ D2 < T, P = N/D. For more
details regarding the method see [8, 5].

We discuss some general issues about TMTO. In Hellman’s original scheme,
D = 1; the table preparation time is disregarded and only the online time and
memory requirements are considered. The assumption is that the tables would
be prepared once for all in an offline phase. Once the tables are prepared, they
will not change and can be used to find different pre-images. In this scenario,
the table preparation time can be huge and even larger than exhaustive search.
Thus, the security of a cryptographic algorithm with respect to this kind of
TMTO has a hidden cost of offline (and one time) exhaustive search.

If multiple data is available, the actual table preparation time will be less
than exhaustive search. Since this is an offline activity, it might be reasonable
to expect the table preparation time to be more than the online time but less
than exhaustive search time.

The precomputation time will be in general more than the memory require-
ment. In the table preparation stage, the entire table will have to be computed
and only a fraction of it stored. This shows that the offline time will be at least as
large as the memory requirement. Hellman in his original paper [8], considered
the condition where the online time is equal to the memory requirement. In the
presence of multiple data, it is perhaps more practical to require the data and
memory requirement to be less than the online and offline time requirements.
This has been considered in [5].

3 Time/Memory/Key Trade-Offs

It is easy to see that all the reasoning from the Time/Memory/Data trade-off in
the case of stream ciphers [5] can be applied to the block-cipher “Time-Memory-
Key” case. Namely we no longer need a full coverage of the space N , but rather
can cover a fraction N/Dk, where we denote by Dk the number of possible keys
at the online stage. Thus, we will use t/Dk tables instead of t, which means
that memory requirements go down to M = mt/Dk (here m is the number of
Hellman’s tables). Our time requirements are T = t/Dk · t · Dk = t2 (less tables
to check but for more data points), which is the same as in the original Hellman’s
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trade-off. Finally, the matrix stopping rule is again: N = mt2. Using the matrix
stopping rule and eliminating the parameters m and t we get a trade-off formula:

N2 = T (MDk)2.

This is exactly the same formula as the one derived in [5] for the case of stream
ciphers. For example, for the case of AES with 128-bit key, assuming that one
is given 232 encryptions of a plaintext “all zeroes” (or any other fixed text, like
16 spaces, “Hello Joe, ” etc.) under different unknown keys, one can recover one
of these keys after a single preprocessing of 296 steps, and using 256 memory
for table storage and 280 time for the actual key-search1. It is important to
note that unlike in Hellman’s original trade-off, the preprocessing time is much
lower than the exhaustive search and thus technically this is a break of cipher.
Though even better theoretical attacks for block-ciphers exist in this setting [2]
they are in direct correspondence to Babbage-Golic “birthday” trade-off attacks
and thus suffer from the same lack of flexibility due to T = D. Such attack
will require impractical amount of 264 fixed text encryptions as well as high
storage complexity of 264. We believe that if one would try to implement these
attacks he would prefer to use less data and less memory at the expense of more
preprocessing and longer attack time. In Table 2, we summarize complexities
of TMD attacks for various schemes. For example we believe that the attack
on full Skipjack with 232 fixed plaintexts and 248 preprocessing complexity, 232

memory and time is tempting to implement and to try in practice. Another
important observation is that the attack is not exactly a chosen plaintext attack –
since the specific value of the fixed plaintext is irrelevant. Thus, in order to
obtain the attack faster than exhaustive search the attacker will first check which
plaintext is the most frequently used in the specific application, collect the data
for various keys and then perform the attack. The attack is technically faster
than the exhaustive search even if the attacker obtains a relatively small number
of arbitrary fixed text encryptions. For example if the attacker obtains only 28

128-bit key AES encryptions, then after preprocessing of 2120 steps and using 260

memory and 2120 analysis steps, one of the keys would be recovered. In practical
applications, it might be a rather non-trivial task to ensure that the attacker
never obtains encryptions of 28 fixed known plaintexts. This attack is much
better than the existing state of the art attacks on 128-bit AES, which barely
break 7-rounds of this cipher. Note that Biham’s attack for the same amount
of fixed text would formally have the same 2120 total complexity but would
require unrealistic amount of memory 2120 which is probably the reason why such
trade-off attacks have not been viewed as a threat by the crypto community. In
addition to all said above note that intentionally malicious protocol design may
ensure that some fixed plaintext is always included into the encrypted stream
(for example by fixing a header in communication, using communication to a
fixed address or using fixed file header as is common in many applications).

1 At the moment of this writing 285 computations is approximately the power of all
computers on the internet during 1 year.



Improved Time-Memory Trade-Offs with Multiple Data 115

Table 2. Comparison of TMD attacks on various ciphers

Cipher Key size Keys (Data) Time Memory Preprocessing
DES 56 214 228 228 242

Triple-DES 168 242 284 284 2126

Skipjack 80 232 232 232 248

AES 128 232 280 256 296

AES 192 248 296 296 2144

AES 256 285 2170 285 2170

Any cipher k 2k/4 2k/2 2k/2 23k/4

Any cipher k 2k/3 22k/3 2k/3 22k/3

Any cipher[2] k 2k/2 2k/2 2k/2 2k/2

Table 3. Trade-off attacks on Skipjack (and any other 80-bit cipher)

Attack Data Type Keys (Data) Time Memory Preprocessing
BS TMD FKP 28 260 242 272

BS TMD FKP 220 240 240 260

BS TMD FKP 232 232 232 248

Biham[2] FKP 240 240 240 240

BBS Imp.Diff∗[4] CP 234 278 264 264

∗ — the attack breaks 31 out of 32 rounds of Skipjack, the data is encrypted under a
single key. FKP – fixed known plaintext, CP – chosen plaintext.

Table 4. Trade-off attacks on 128-bit key AES (and any other 128-bit key cipher)

Attack Data Type Keys (Data) Time Memory Preprocessing
BS TMD FKP 28 2120 260 2120

BS TMD FKP 220 2100 258 2108

BS TMD FKP 232 280 256 296

BS TMD FKP 243 284 243 285

Biham[2] FKP 264 264 264 264

GM collision∗ CP 232 2128 280 ?
FSW partial sum∗ CP 2128–2119 2120 264 ?

∗ — only 7 out of 10 rounds. FKP – fixed known plaintext, CP – chosen plaintext.

Table 5. Trade-off attacks on 192-bit key AES (and any other 192-bit key cipher)

Attack Data Type Keys (Data) Time Memory Preprocessing
BS TMD FKP 248 296 296 2144

BS TMD FKP 264 2128 264 2128

Biham[2] FKP 296 296 296 296

FKP – fixed known plaintext.

Results shown in Table 2 compare favorably to the best attacks on such ciphers
as DES, Triple-DES, Skipjack and AES. Moreover, the scenario of TMD attacks
is much more practical than that of related key attacks as is discussed in more
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Table 6. Tradeoff attacks on 256-bit key AES (and any other 256-bit key cipher)

Attack Data Type Keys (Data) Time Memory Preprocessing
BS TMD FKP 264 2128 2128 2192

BS TMD FKP 285 2170 285 2170

Biham[2] FKP 2128 2128 2128 2128

FKP – fixed known plaintext.

detail in Section 4. We believe that complexities of future cryptanalytic attacks
should be benchmarked against the time-memory-key attacks.

Due to the importance of some trade-off points we provide Tables 3–6 for
several important ciphers (key lengths) and compare them with best attacks
known so far.

4 Types of Cryptanalytic Attacks and Key-Size
Considerations

Cryptanalytic attacks may be divided into three main classes by the type of
access to an encryption/device. In the first class of attacks, which we call fixed
key attacks, we assume that a black box with the encryption/decryption device
is given to the attacker. The attacker is then able to make arbitrary number of
queries (with unknown, known or chosen inputs) to the device. The goal of the
attacker is to find the secret key of the box, which remains unchanged during
the attack. Note that the queries could be performed adaptively (i.e. based on
the results of previous queries). For example: differential, linear, boomerang or
multiset attacks are of this type. Moreover linear cryptanalysis requires a fixed
key scenario, while differential, boomerang or multiset attacks may tolerate key
changes which are not too frequent during the attack.

The second type of attack which we call variable key attacks, assumes that
the attacker is given both the black box with the encryption/decryption device
as well as a black box of the key-schedule device. The attacker can then perform
both the fixed key attacks as well as re-keying the cipher to a new secret key
value at any given moment. The goal of the attacker is to find one of the keys
of the device. This scenario is strictly more powerful than the fixed key scenario
and can be efficiently exploited for example in the “weak key” attacks or in
time/memory/key trade-off attacks.

The third type of attacks is what is called related key scenario. In this case
the attacker is not only allowed to change the keys of the device. He is essen-
tially given access to two or more encryption/decryption devices and he knows
or even chooses the relations between the keys used in these devices. This sce-
nario is highly unrealistic in practice but may identify undesirable certificational
weaknesses in the key-schedule of a cipher.

Applicability of the attack scenarios described above in practice may be hin-
dered by the use of certain mode of operation (which for example may preclude
the use of chosen plaintext queries) or by the key-change provision, which may
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enforce a key-change every 1000 encryptions thus rendering statistical attacks
which assume fixed key scenario — impractical.

4.1 Key-Size Consideration

Modern symmetric ciphers typically have keys larger or equal to 128 bits and they
assume that exhaustive search is the best way one could recover a secret key2.

As this note shows however in a variable key scenario no k-bit cipher can offer
a k-bit security against some quite practical attacks. One may assume that this
problem can be cured by introducing the IV which has to be of the same size
as the key. However in such popular block-cipher modes of operation like CBC
due to a simple XOR of the known IV with the first plaintext block the attacker
capable of mounting chosen plaintext attack can easily obtain encryptions of
arbitrary fixed text under different keys. In the less likely but still not impossible
case of a chosen IV attack other modes of operation like CFB, OFB or counter
mode become vulnerable as well. A careful study of what should be the IV
size in order to avoid trade-off attacks is given in [10], however a simple rule
of a thumb is that the IV size should be at least equal to the key-size, since
the state of the cipher at any given moment has to be twice the key-size in
order to avoid birthday time-data attacks [2, 1, 7]. XORing of the IV into the
plaintext/ciphertext should be avoided.

Following these simple observations it is clear that 80-bit (or less) key ciphers
should not be used since they allow for practical attacks in real-life scenarios,
while 128-bit ciphers (which in practice provide security of about 80-bits) should
not be used when full 128-bit security is required. At least 192-bit keys should
be used for this security level.

One may argue that generic trade-off attacks do not exploit weaknesses of
specific designs and thus should be considered separately from other attacks.
There are two counter-arguments to this point: first of all we have at the moment
no proof that existing trade-off attacks (such as Hellman’s attack) are the best
possible and thus a popular maxim “The attacks only become better, they do
not get worse” may still apply. Moreover trade-off attacks may be sped up by
specific properties of the design, for example by what is called in a stream cipher
case — cipher’s sampling resistance [5]. In the case of stream cipher LILI-128 low
sampling resistance was used to obtain trade-off attack [13] with a complexity
much lower than a naive application of a trade-off technique would suggest.

It seems that we will have to give up the convenient world in which we assumed
a k-bit security for a good k-bit cipher.

5 Application to the Unix Password Scheme

The attacks described in this paper are not limited to block or stream ciphers, they
are applicable to other one-way constructions, for example to hash functions.
2 Depending on the mode of operation used, there are also distinguishing attacks which

may require about 264 fixed key data, and do not lead to key-recovery. Those attacks
are not considered to be of a threat by the community and are typically taken care
of by key-change provisions.
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Table 7. Trade-off attacks on UNIX password scheme

Passwords attacked State Size (bits) Data Time Memory Preprocessing
Alphanumeric 60 28 234 234 (128 Gb) 252

Alphanumeric 60 210 232 234 250

Full keyboard 63 210 236 235 (256 Gb) 253

Alphanumerica[11] 60 1 240 240 260

a The paper provides analysis for a single fixed salt value.

Time/memory/data trade-off [5] (N = TM2D2) could be used to analyze
Unix password scheme for example, if the attacker obtains access to a file storing
password hashes of a large organization (D = 1000 password hashes). Indeed
the trade-off space consists of 56-bits of the unknown key (i.e. password) and
12-bits of known salt. Since the salt size is much shorter than the key-size its
effect on making the trade-off harder is not very significant. Suppose that the
attacker knows that passwords are selected from a set of arbitrary 8-character
alphanumeric passwords, including capital letters and two additional symbols
like dot and comma which in total can be encoded in 48-bits. Thus together
with a 12-bit salt the state is N = 260 bits. For example the following attack
parameters seem quite practical: preprocessing time done once: P = N/D = 250

Unix hash computations, parallelizable. A memory of M = 234 8-byte entries
(12+48 bits) which takes one 128 Gbyte hard disk. This way we store 234 start-
end pointers. Attack time is then T = 232 Unix hash evaluations — about an
hour on a fast PC or about 8 seconds on a BEE2 FPGA [11]. The attack will
recover one password from about every 1000 new password hashes supplied. This
is two – three orders of magnitude faster than the results described in [11]. The
relatively lengthy preprocessing step may be performed in parallel on a network
of PC’s (hundred PC’s may take less than a month) or it may take about 1.5
months for a single BEE2 FPGA. The number of tables computed in parallel
may be as high as t/D = 217/1000 = 27. In order to reduce the number of
hard disk accesses the attack will need to use distinguished points with 16-bit
prefixes. This will allow to make only 216 disk accesses (which is less than 6
minutes).

In fact it is clear that such trade-off can analyze all passwords typable on a
keyboard. The space is N = 848 · 212 = 263. Assuming again D = 210, we get
precomputation time P = 253, M = 235 8-byte entries or one 256 Gb hard disk,
T = 236 hash evaluations.

6 A New Analysis

In this section, our goal is different from that of the previous sections. Here we
present a new analysis of the general TMTO methodology described in Section 2.
We show that the BG and the BS methods are special cases of the general
analysis. In particular, we show that there are certain interesting trade-offs which
were not known earlier. Some of these are summarized in Table 8.
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Table 8. Some of the new trade-offs

N Precomputing time (P ) Memory (M) Data (D) Run time (T )
280 250 230 230 250

246.6 233.3 233.3 246.6

2100 262.5 237.5 237.5 262.5

258.3 241.6 241.6 258.3

∗ N N
1+d
3 N

2−d
3 N

2−d
3 N

1+d
3

∗ Here d is a constant such that 1
2 < d < 1.

Recall from Section 2 that the general description of the TMTO methodology
uses r tables each of size m × t. In the BG attack, r = t = 1 and hence is not
very flexible. The BS attack is more flexible but assumes mt2 = N and r = t/D
leading to the constraint D2 ≤ T . The last restriction can prove to be a drawback
of the BS method when the amount of available data is high. From the Hellman
attack we have the following relations.

Tf = r(t − 1)D (# f invocations in the online phase)
Tt = rtD (# table look-ups in the online phase)
P = rmt (# f invocations in the pre-computation phase)

= N
D (coverage)

M = rm (memory)
mt2 ≤ N (birthday bound)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(1)

If t � 1, we can assume t − 1 ≈ t and Tf ≈ rtD = Tt. We will usually make this
assumption, except for the analysis of the BG attack, where t = 1. Let γ be the
ratio of the time required for performing one table look-up to the time required
for one invocation of f , i.e.,

γ =
time for one table look-up

time for one invocation of f
. (2)

We assume that one unit of time corresponds to one invocation of f (i.e., one unit
of time = time required for completing one invocation of f) and also γ ≥ 1. The
time required for the table look-ups is then γrtD. Define T = max(Tf , γTt) =
γrtD. The parameter T is a measure of the time required during the online
phase. The actual online time is proportional to Tf + γTt. However, this is only
at most twice the value of T . Thus, we will perform the analysis with T instead
of Tf + γTt.

For the present, we will assume that γ = 1 (and T = Tt ≈ Tf ), i.e., the cost
of one invocation of f is equal to the cost of one table look-up. The value of γ
need not actually be one; even if it is a small constant (or a negligible fraction of
N), we can assume it to be one and that will not affect the asymptotic analysis.
On the other hand, [5] mentions that γ may be as large as one million (≈ 220).
If N is only moderately large (like 264 for A5/1), then γ can be a significant
proportion of N . In such a situation, we cannot assume γ = 1 and the cost of
table look-up will dominate the total online cost. This case will be considered
later.
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Using (1), we can solve for r, m and t as follows.

t = N
MD ≥ 1 (number of columns)

m = N
T (number of rows)

r = MT
N ≥ 1 (number of tables)

mt2 = N3

TM2D2 ≤ N (birthday bound)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

Note that all three of r, m and t must be at least 1. Since m = N/T and for
a valid attack we must have N > T , the condition on m is trivially satisfied.
The advantage of writing in the form of (3) is that given values for T , M and D
satisfying the proper constraints, we can immediately design a table structure
which achieves these values.

6.1 TMTO Curve

From Equations (3), we know MT ≥ N and mt2 ≤ N . Further, for a feasible
attack we must have 1 ≤ D < N and M, T < N . We capture these in the
following manner:

D = Na; MT = N b; M = N c; mt2 = Nd; (4)

with 0 ≤ a, c < 1, 0 ≤ d ≤ 1 and b ≥ 1. Consequently, we have P = N/D =
N1−a; T = N b/M = N b−c, with 0 ≤ b − c < 1. Further, t ≥ 1 implies MD ≤
N and hence a + c ≤ 1. Substituting in the last equation of (3), we obtain
2a + b + c + d = 3. Thus, any set of values for a, b, c and d which satisfy the
following constraints constitute a valid attack.

C1: 2a + b + c + d = 3
C2: 0 ≤ a < 1
C3: 0 ≤ c, b − c < 1 ≤ b
C4: a + c ≤ 1
C5: 0 ≤ d ≤ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5)

The so-called TMTO curve can be obtained as the following relations.

TM2D2 = N3−d

PD = N
MD ≤ N ≤ MT
M, D, T < N.

⎫
⎪⎪⎬

⎪⎪⎭

(6)

Also, we have the following values of r, m and t.

r = N b−1; m = N1−(b−c); t = N1−a−c. (7)

Since MT = N b ≥ N , we have r = 1 if and only if MT = N . With r = 1, we
have only one table and hence if there are more than one tables, then MT is
strictly greater than N .
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BG Attack [1, 7]: In this case, we have r = t = 1. This implies Tf = 0, i.e.,
the online phase does not require invocation of f . The cost in the online phase
is T = Tt and we have MD = N = MT and hence T = D; M = N/D. This
corresponds to the conditions a + c = 1; b = 1; d = 1 − a.

BS Attack [5]: In [5], r = t/D and d = 1 is used. Then T = t2, M = mt/D and
hence r = N−a+(b−c)/2. Since r ≥ 1, we have the restriction 0 ≤ 2a ≤ b − c (i.e.,
1 ≤ D2 ≤ T ) in addition to (5).

The conditions d = 1 and r = t/D are related (e.g., if r = 1, then t = D
and T = t2 = D2). In the following analysis, we will proceed without these
two conditions. Later, we show the situation under which making these two
assumptions is useful.

7 Distinguished Point Method

We now consider the case where γ � 1. In this case, a direct application of the
Hellman method leads to T = γrtD, i.e., the time required for the table look-ups
dominate the online time. It is useful to consider the distinguished point method
of Rivest to reduce the number of table look-ups. See [5] for a description of the
DP method.

Using the distinguished point method results in reducing the number of table
look-ups from rtD to rD, i.e., one table look-up per table per data. Then Tt =
rD = Na+b−1. (Note Tt = Na = D, i.e., only one table look-up is required per
data item if and only if b = 1 = r, i.e., MT = N .)

The total cost of the table look-ups is γrD whereas the cost of invoking the
one-way function is rtD. In this case, the ratio of the two costs is γ/t. If t ≥ γ,
then the ratio is at most one. Hence, we can again ignore the cost of table look-up
and perform the analysis by considering simply the cost of invoking the one-way
function. The actual runtime will be at most twice the runtime obtained by such
an analysis.

Suppose t < γ. Then the analysis performed above does not hold. We now
investigate the situation under which t < γ holds. This certainly holds for t = 1
(the BG attack), but in the BG attack the entire online computation consists
of table look-ups and hence the general analysis is not required. Recall that
t = N1−(a+c) = 2n(1−(a+c)), D = Na and M = N c. Suppose γ = 2e. Then t ≥ γ
if and only if a+ c ≤ 1− (e/n). The value of e is a constant whereas n increases.
Hence, (1 − e/n) → 1 as n grows. Thus, we can have a + c > 1 − e/n only for
small values of n. The smallest value of n for which we can expect to have a
secure cryptographic algorithm is 64. Further, as mentioned in [5], e can be at
most around 20 and so 1 − e/n ≥ 2/3 for n ≥ 64.

Consider a = c = 1/3, as in the solution (a, b, c, d) = (1/3, 1, 1/3, 1) corre-
sponding to P = T = N2/3; M = D = N1/3; r = 1 of [5]. If n ≥ 64, then
a + c = 2/3 ≤ 1 − e/n and the time analysis assuming T = rtD = tD holds.
On the other hand, for the solution (a, b, c, d) = (3/8, 1, 3/8, 7/8) corresponding
to P = T = N5/8; M = D = N3/8; r = 1 considered in Section 8, we have
a+ c = 3/4. For n = 64, a+ c > 1− e/n and we have to assume T = γrD = γD,
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whereas for n = 100, a + c ≤ 1 − e/n and we can assume T = rtD = tD. Thus,
for relatively small n, we should solve (5) with the constraint a + c ≤ 1 − e/n
instead of a + c ≤ 1. This disallows some of the otherwise possible trade-offs.

There is another issue that needs to be considered. We have to ensure that
t is large enough to ensure the occurrence of a DP in a chain. Let 2−p be the
probability of a point being a DP. Hence, we can expect one DP in a random
collection of 2p points. Thus, if t ≥ 2p, we can expect a DP in a chain of length
t. This implies p ≤ log2 t. Any attempt to design the tables with t < 2p, will
mean that several trials will be required to obtain a chain terminating in a DP.
This will increase the pre-computation time. In fact, [5] has shown that use of
the DP method in the BG attack divides into two different trade-offs leading to
unrealistic requirements on data and memory.

Using (7), we have p/n ≤ 1−(a+c). This leads to the condition a+c ≤ 1−p/n
(MD ≤ N1−p) instead of the condition a + c ≤ 1 (resp. MD ≤ N) in (5)
(resp. (6)). For small n, this condition has to be combined with a + c ≤ 1 − e/n
and we should solve (5) with the constraint a + c ≤ 1 − 1/n × max(p, e) instead
of the constraint a + c ≤ 1. This puts further restrictions on otherwise allowed
trade-offs.

BSW Sampling. There is an elegant application of TMTO in [6], which uses
a special type of sampling technique called the BSW sampling. This technique
uses only part of the available online data and also reduces the search space.
The trade-off curve does not change, but the number of table look-ups reduces
significantly. Use of this technique allowed particularly efficient attacks on A5/1.

Use of the BSW technique reduces the amount of available online data. This
makes it difficult to use a single table to carry out the TMTO. In such a situation,
our analysis does not lead to any new insight into the BSW technique. On the
other hand, if the available online data (even after sampling) is large enough to
allow the use of a single table, then our analysis applies and one can consider a
wider variety of trade-offs.

8 Single Table Trade-Offs

The case N = 2100 has been considered in [5]. It has been mentioned in [5]
that the Hellman attack with D = 1; T = M = N2/3 = 266 requires unrealistic
amount of disk space and the BG attack with T = D = N2/3 = 266; M = N1/3 =
233 requires unrealistic amount of data. (Note T = M = D = N1/2 = 250 also
gives a BG attack. However, as mentioned in [5] in a different context, data
and memory requirement of more than 240 is unrealistic.) Further, [5] mentions
P = T = 266 and D = M = 233 to be a (barely) feasible attack. This corresponds
to the parameters (a, b, c, d) = (1/3, 1, 1/3, 1) and (r, m, t) = (1, N1/3, N1/3).

From Proposition 2, if we choose d = 7/8, then we obtain M = D = N3/8 =
237.5 and P = T = N5/8 = 262.5. The corresponding parameters are (a, b, c, d) =
(3/8, 1, 3/8, 7/8) and (r, m, t) = (1, N3/8, N1/4). This brings down the attack
time while keeping the data and memory within feasible limits. Since t > 1, this
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cannot be obtained from the BG attack. Further, choosing d = 7/8 and D2 > T
ensures that this attack cannot also be obtained from the BS attack. We would
like to point out that [5] mentions that choosing d < 1 is “wasteful”. The above
example shows that this is not necessarily the case and choosing d < 1 can lead
to more flexible trade-offs. We show below the condition under which choosing
d < 1 is indeed “wasteful”.

As mentioned earlier, we have one table (i.e., r = 1) if and only if MT = N .
The reason for moving to more than one tables is when mt2 > N and we begin
to have more and more repetitions within a table.

Proposition 1. There is a solution to (6) with r = 1 = b (and hence MT =
N = PD) if and only if 2a + c ≥ 1.

Proof : Suppose r = 1. Then b = 1 and 2a + c + d = 2. Hence d = 2 − (2a + c).
Since d ≤ 1, this shows 2a + c ≥ 1.

On the other hand assume that 2a + c ≥ 1. Choose b = 1 and set d =
2 − (2a + c) ≤ 1. This choice satisfies the conditions of (6). Further, since b = 1,
we have r = 1. ��
Suppose 2a+c < 1. Then b+d > 2 and b > 2−d. Since MT = N b, we would like
to minimize b and hence we choose d = 1. We can now modify the suggestion
of [5] and say that it is “wasteful” to choose mt2 < N if there are more than
one tables. Since b > 1, we have 2a+ c < 1 < b and hence 2a < b− c which gives
D2 < T and we are back to the situation described in [5].

Thus, the analysis of [5] actually applies to the situation where the data
is small enough to require more than one tables. On the other hand, for the
case of one table, the restrictions of [5] are not required and removing these
restrictions provide more flexible trade-offs. We would like to point out that
there are interesting situations where a single table can be used. Apart from the
examples D = M = N1/3 and D = M = N3/8 already considered, other possible
examples are (D = N0.3, M = N0.4); (D = N0.25, M = N0.5), etcetera.

8.1 Small N

Consider N = 264, as in A5/1. It is mentioned in [6] that D ≈ 222 is a reasonable
choice. Further, M ≈ 240 is also feasible. We consider possible values of P and
T satisfying these values of M and D.

Trade-Off 1: (P, D, M, T ) = (248, 216, 240, 224): The table parameters are
(r, m, t) = (1, 240, 28) and d = 7/8.
Trade-Off 2: (P, D, M, T ) = (242, 222, 240, 224): The table parameters are
(r, m, t) = (1, 240, 24) and d = 11/16.

None of the above two trade-offs are obtainable as BG attacks, since in both
cases t > 1. Further, neither can any of them be obtained as BS trade-offs since
in both cases d < 1 and hence D2 > T . For both trade-offs, the data and memory
are within reasonable limits and the online times are the same. The offline time
is lower for the second trade-off and is within doable limits (especially as an
offline one-time activity), while for the first attack it is probably just outside the
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doable limit. Hence, both the attacks are feasible for any 64-bit function and
hence also for A5/1. However, as mentioned before, using special properties of
A5/1, it is possible to obtain faster attacks as in [6].

9 Certain Special Cases

Here we consider in detail two special cases. These should be considered to
be mainly of theoretical interest. The first condition of T = M was originally
considered by Hellman in the situation where D = 1, while the second condition
was briefly considered in [5] for the case N = 2100.

9.1 Condition T = M

The condition T = M was considered by Hellman [8]. We perform an analysis
of (6) with T = M . Then c = b − c, whence c = b/2. Condition C1 becomes
2a+ 3c+ d = 3 and so b

2 = c = 1 − 2a+d
3 . Using a+ c ≤ 1, we obtain a ≤ d. Also

since b ≥ 1, we have c = b/2 ≥ 1/2. This gives d ≤ 3/2 − 2a. Since, we already
know d ≤ 1, we obtain a ≤ d ≤ min(1, 3

2 − 2a). Thus, any non-negative solution
in a and d to this gives a valid attack with T = M = N c.

We are interested in minimizing the value of c. We see that the value of c is
minimized by maximizing the value of d. In fact, we can choose d = 1 as long
as 1 ≤ 3

2 − 2a, i.e., 2 − (1/2a) ≤ 0 or a ≤ 1/4. Thus, for a ≤ 1/4, we obtain
T = M = N b/2 = N (2−2a)/3.

In the case 3/2 − 2a ≤ 1, we have a ≤ d ≤ 3/2 − 2a. For the gap to be non-
empty we must have a ≤ 1/2. For minimizing c, we use the upper bound, i.e.,
d = 3/2−2a ≤ 1. Thus, for 1/4 ≤ a ≤ 1/2, we have c = 1/2 and T = M = N1/2.
Finally, we obtain the following result.

Theorem 1. If T = M , then D ≤ N1/2 and the following conditions hold.

1. N1/2 ≤ T = M = N (2−2a)/3 ≤ N2/3, for 1/4 ≥ a ≥ 0.
2. T = M = N1/2, for 1/4 ≤ a ≤ 1/2.

For the first case we have, (a, b, c, d) = (a, 2(2 − 2a)/3, (2− 2a)/3, 1) and for the
second case we have (a, b, c, d) = (a, 1, 1/2, 3/2−2a). The corresponding values of
(r, m, t) are (N (1−4a)/3, N (1+2a)/3, N (1−a)/3) and (1, N1/2, N1/2−a) respectively.

In the second case of Theorem 1, exactly one table is required. However, it is
not the BG attack, since the number of columns can be more than one. Also,
we have T ≤ P ≤ N . The situation with T < P < N is interesting, since the
pre-computation time is less than exhaustive search. Even though P is more
than T , since it is an offline activity, we might wish to spend more time in the
pre-computation part than in the online attack.

In the second case of Theorem 1, we have r = 1 and M = T = N1/2. The
allowed range of a for this case is 1/4 ≤ a ≤ 1/2. The case a = 1/4 can be
obtained from the BS analysis and the case a = 1/2 can be obtained from the
BG analysis. However, the range 1/4 < a < 1/2 for which T = M = N1/2 can be
attained, cannot be obtained from either the BG or the BS analysis and provide
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previously unknown trade-offs. The advantage is that the data can be increased
(thus lowering offline time) without increasing either time or memory.

9.2 Condition P = T

Since both P and T represent time, the case P = T puts equal emphasis on
both the offline and the online times. The condition P = T implies P = N1−a =
T = N b−c and so m = N1−(b−c) = Na = D. (On the other hand, P = M is
possible only if t = 1.) Since PD = N , we have T = N/D and so the curve
becomes M2D = N2−d. If P = T , then r = M/D. If further M = D, then
M = D = N (2−d)/3 and P = T = N (1+d)/3.

Proposition 2. If P = T and M = D in (6), then M = D = N (2−d)/3 and
P = T = N (1+d)/3. Further, r = 1, i.e., exactly one table is required.

Proposition 2 gives us a nice way to control the trade-off between time and
data/memory requirement by varying d. Choosing d = 1, corresponds to choos-
ing (P, D, M, T ) = (N2/3, N1/3, N1/3, N2/3) and has been observed in [5]; choos-
ing d = 1/2 corresponds to (P, D, M, T ) = (N1/2, N1/2, N1/2, N1/2) which is the
square root birthday (BG) attack.

From Proposition 2, we have r = 1, i.e., all trade-offs attaining this condition
use a single table. In the plausible situation, M = D ≤ P = T , we have 1/2 ≤
d ≤ 1. The case d = 1 can be obtained from the BS analysis. In the BG analysis,
we have d = 1 − a. Since a − (2 − d)/3, this condition leads to d = 1/2. Thus,
the range 1/2 < d < 1 for which the condition P = T = N (1+d)/3; M = D =
N (2−d)/3 can be attained was not known earlier.

10 The Rainbow Attack

The rainbow attack was introduced in [12]. The number of table look-ups of the
rainbow method is comparable to that of the Hellman+DP method. See [12] for
a discussion of the relative advantages of the rainbow method with respect to
the DP method.

In the rainbow attack, we use a table of size m × t and suppose there are D
online data points. Then the total number of invocations of the one-way function
is t2D/2 while the cost of the table look-ups is tD. Again, we will ignore the
factor of two in the runtime since it does not significantly affect the analysis.
Then, the total number of invocations of f is t2D and the total number of table
look-ups is tD. Also, we have mt = N/D.

If we assume γ ≈ 1, then the cost of invoking f dominates the online cost and
we have M = m and T = t2D. Assume D = Na and M = N c as in the case
of Hellman analysis. Then since mt = N/D = N1−a, we have t = N1−a−c and
T = t2D = N2−a−2c. Also, since t ≥ 1, we must have a + c ≤ 1. The TMTO
curve for rainbow in the presence of multiple data is TM2D = N2 which is
inferior to the Hellman TMTO curve when D > 1.

The rainbow parameters are (P, D, M, T ) = (N1−a, Na, N c, N2−a−2c). We
now compare the rainbow parameters with the Hellman parameters for same data
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and memory. For multiple table Hellman, we choose d = 1 and hence the corre-
sponding Hellman parameters are (P, D, M, T ) = (N1−a, Na, N c, N2−2a−2c). If
a > 0, i.e., if multiple data is available, then clearly Hellman time is less than
rainbow time.

If γ is a significant fraction of N , then the cost of table look-ups is γtD
while the cost of invoking f is still t2D. In the case γ > t, which happens
for relatively small N (around 264 or so), the cost of table look-up dominates
the online cost. To compare to the Hellman method we have to consider the
Hellman+DP algorithm. For the case γ > t, the online cost of the Hellman
method is also γtD. Hence, for this case, the costs of online time for the rainbow
and the Hellman+DP methods are equal. In this situation, one might prefer to
use the rainbow method for the possibly lower rate of false alarms compared to
the DP method [12].

Thus, we conclude that in the presence of multiple data, in general the Hell-
man attack is better than the rainbow attack. For the case of small N , the
online times of both attacks can be comparable and one might prefer rainbow
for obtaining other possible advantages.

11 Conclusion

In this paper, we have considered two aspects of time/memory/data trade-offs:3
new application and new analysis.

We show several applications to block-ciphers. By applying Biham-Biryukov
[5] multiple data trade-off to block ciphers we show that 80-bit ciphers allow
practical attacks in real world scenarios (232 data, memory and time, with 248

steps for preprocessing), while 128-bit ciphers provide only about 80-bits of se-
curity against attacks with practical amounts of data and memory. We further
show realistic attacks on Unix password hashing scheme even if strong random
passwords are chosen.

In the second part of the paper we provide general analysis which shows that
Hellman’s attack, Babbage-Golic attack and the Biryukov-Shamir all fit into a
single unifying general framework. Our new contribution is the identification of
a new class of single table trade-offs which are not obtainable as either the BG
or the BS attacks. Finally, we consider the rainbow attack of Oechslin and show
that with the utilization of multiple data, the TMTO curve of the rainbow attack
is inferior to the TMTO curve of the Hellman attack.
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