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ABSTRACT
A common paradigm to code high dynamic range (HDR) im-

age/video content is based on tone-mapping HDR pictures to

low dynamic range (LDR), in order to obtain backward com-

patibility and use existing coding tools, and then use inverse

tone mapping at the decoder to predict the original HDR sig-

nal. Clearly, the choice of a proper tone mapping is essential

in order to achieve good coding performance. The state-of-

the-art to design the optimal tone mapping operator (TMO)

minimizes the mean-square-error distortion between the orig-

inal and the predicted HDR image. In this paper, we argue

that this is suboptimal in rate-distortion sense, and we pro-

pose a more effective TMO design strategy that takes into ac-

count also the spatial complexity (which is a proxy for the

bitrate) of the coded LDR image. Our results show that the

proposed optimization approach enables to obtain substantial

coding gain with respect to the minimum-MSE TMO.

Index Terms— High dynamic range; coding; convex op-

timization; spatial complexity.

1. INTRODUCTION

High dynamic range (HDR) imaging enables to capture and

display the huge range of luminance values of a real-world

scene, and is therefore extremely important in making video

user experience more immersive and realistic. In order to

represent scene-referred luminance values, HDR pictures use

more than the 8 bits/pixel/channel employed for display-

referred low dynamic range (LDR) pictures [1]. As a result,

HDR content entails much more information to be stored and

transmitted, which has recently motivated research towards

new coding schemes for HDR pictures and video [2] [3] [4].

HDR content can be coded using a scalable approach.

First, an LDR base layer is obtained by applying a tone map-

ping operator (TMO) to the HDR picture. Then, an enhance-

ment layer is computed as the residual between the HDR im-

age and the prediction obtained by inverse tone mapping the

base layer [5] [6] [3]. This approach enables to ensure back-

ward compatibility with legacy LDR displays, and to provide

at the same time full HDR experience for users equipped with

HDR displays. Mai et al. [5] derived a closed-form expression

for the TMO that minimizes the energy of the inter-layer pre-

diction residuals, i.e., the mean square error (MSE) between

the original HDR image and the one obtained by inverse tone

mapping the base layer. This is shown to be beneficial in

terms of coding efficiency, since a lower residual energy en-

ables to have a better prediction quality and to reduce the bi-

trate of the enhancement layer. The results in [5] demonstrate

that the minimum-MSE TMO achieves higher rate-distortion

performance1 than other commonly used TMOs designed to

enhance LDR visual quality.

However, minimizing MSE distortion is not necessarily

optimal in terms of coding performance. For instance, LDR

images obtained with the method in [5] preserve more details

of the original HDR, but they could be harder to code due to

an increased spatial complexity [7]. A better approach would

be instead to find a TMO that is optimal in rate-distortion

(RD) sense. In this paper, we reformulate the problem of find-

ing an optimal TMO for HDR compression by taking explic-

itly into account the spatial complexity of the resulting LDR

base layer. To this end, we modify the cost function of [5] by

adding an extra term which describes the amount of spatial

information in the LDR image, in terms of the total variation

measure [8]. We show that the so-obtained problem is convex

and can be solved efficiently through a proximal optimization

method [9]. We plot rate-distortion curves for HDR images

and demonstrate that our approach brings higher RD gains

with respect to the minimum-MSE TMO of [5].

The rest of the paper is organized as follows. In Section 2

we review the optimal TMO derived in [5] for minimizing the

log MSE between inverse tone-mapped image and the origi-

nal HDR. In Section 3 we describe the proposed optimization

scheme which takes into consideration the spatial complex-

ity of the tone-mapped image in the base layer. Section 4

demonstrates experimentally the performance of the proposed

method, while Section 5 draws conclusions.

2. OPTIMUM TONE MAPPING TO MINIMIZE

RECONSTRUCTED HDR-MSE

Mai et al. [5] have proposed an efficient HDR compression

method optimizing the MSE between the logarithm values of

1Notice that in the results in [5], the distortion is measured between the

original and the reconstructed HDR image, while the bitrate is that of trans-

mitting the base-layer only. Coding of the enhancement layer is not directly

taken into account.



(lk+1,vk+1)

(l1,v1)

0

sk

L
D

R
 v

a
lu

es

segmentLmin
Lmax

vmax

HDR values l (log10 of relative luminance)

(lk,vk)

bin

Fig. 1: Piecewise parameterization of the optimal tone map-

ping curve as in [5]

the luminance of original HDR content and the reconstructed

version. The distortion in the process of tone mapping, encod-

ing, decoding and inverse tone mapping have been estimated

by a statistical distortion model and they use a closed-form

solution to tone map the HDR image based on the luminance

histogram of the HDR image.

Given the notations l and v corresponding to the logarithm

of the luminance of HDR frame and the pixel values of tone

mapped LDR version respectively, the tone mapping curve is

first parameterized as a piece-wise linear function with the

nodes (lk, vk) as shown in figure 1. Each segment k between

two nodes (lk, vk) and (lk+1, vk+1) has a constant width in

HDR values equal to δ (selected as 0.1). The tone mapping

operation is then characterized by a set of slopes

sk =
vk+1 − vk

δ
, (1)

which forms a vector of tone-mapping parameters. Using

such a parameterization, the optimized tone mapping prob-

lem is given as

minimize
s∈]0,+∞[N

N
∑

k=1

pk s
−2
k s.t.

N
∑

k=1

sk =
vmax

δ
, (2)

where pk is the summation of the normalized histogram of lu-

minance values for the k-th bin, N is the total number of bins

in the histogram, and vmax is the maximum LDR value. By

computing the first order Karush-Kahn-Tucker (KKT) opti-

mality conditions of corresponding Lagrangian, their ultimate

closed form solution is derived as

sk =
vmax p

1/3
k

δ
∑N

k=1 p
1/3
k

. (3)

A tone mapping characterized by the slopes sk reads

v =











(l − l1) · s1 + v1, if l ∈ [l1, l2],

. . .

(l − lN ) · sN + vN , if l ∈ [lN , lN+1],

(4)

where lk and vk are represented on figure 1. The tone map-

ping operator represented by equation (4) used with the sk
defined in equation (3) minimizes the MSE between the orig-

inal and reconstructed HDR frames.

3. PROPOSED METHOD

The method presented in Section 2 allows one to minimize the

distortion by means of a tone-mapping compression. How-

ever, as we can see in Equation (3), this method neglects the

obvious spatial dependencies than any real-world image ex-

hibits. From a rate-distortion standpoint, it is certainly prefer-

able to take into account both the distortion and a suitable

spatial regularization. In this work, we modify problem (2)

by adding a regularity term C, leading to

minimize
s∈]0,+∞[N

N
∑

k=1

pk s
−2
k + λC(Ts) s.t.

N
∑

k=1

sk =
vmax

δ
,

(5)

where λ is a positive constant, T denotes the (linear) operator

that performs the tone-mapping in (4),2 and C denotes a real-

valued convex function that models the spatial regularization.

In [10] the authors also proposed to minimize the bit

rate of the LDR layer by modeling the smoothness of the

tone-mapped image. However, their model approximates

spatial regularity based on conditional pixel value probabil-

ities, while in our case we optimize explicitly the spatial

dependencies at the pixel level.

3.1. TV regularization

The quality of the results obtained through a variational ap-

proach strongly depends on the ability of the function C

to model the regularity present in images. Since natural

images usually exhibit a smooth spatial behaviour, except

around some locations (e.g. object edges) where disconti-

nuities arise, popular regularization models tend to penalize

the image gradient. In this context, Total Variation (TV) [8]

has emerged as a simple, yet successful, convex optimization

tool. This regularization term can be expressed as

C(v) = ‖∇v‖1,2 =
∑

i∈Ω

‖(∇v)i‖2, (6)

where Ω is the rectangular lattice over which the image v is

defined, and (∇v)i is the 2-element vector denoting the gra-

dient of v at site i.

Note that an alternative regularization approach consists

in replacing the gradient operator with a frame representa-

tion which yields a more suitable sparse representation of the

image [11]. The connections between these two different ap-

proaches have been studied in [12]. In this work, we focus

our attention on TV regularization, although our proposed al-

gorithm is quite general and it can also be adapted to frame-

based approaches.

2Note that v = Ts is a linear operation, as the HDR image l is regarded

as a constant in the minimization problem.



3.2. Convex optimization

In this paper, we propose to find the vector s that achieves the
optimal balance between the distortion and TV regularization.
Hence, we need to solve the following problem

minimize
s∈]0,+∞[N

N∑

k=1

pk s
−2
k + λ ‖∇Ts‖1,2 s.t.

N∑

k=1

sk =
vmax

δ
.

(7)

To gain some insight into the solution of Problem (7), let us

define the (non-smooth) convex functions

f(s) =
N
∑

k=1

fk(sk), with fk(sk) =

{

+∞ if sk ≤ 0,

pk s
−2
k if sk > 0,

(8)

g(y) = λ‖y‖1,2, (9)

and the closed convex set

C = {s ∈ R
N |

N
∑

k=1

sk =
vmax

δ
}. (10)

Therefore, Problem (7) can be more conveniently rewritten as

minimize
s∈C

f(s) + g(∇Ts), (11)

which consists in minimizing the sum of two convex func-

tions, one of which composed by a linear operator, over a

closed convex set.

The solution of Problem (11) requires an efficient algo-

rithm for dealing with non-smooth functions. Among the

many approaches proposed to solve convex optimization

problems, we resort here to proximal algorithms [9], since

they provide a unifying framework that allows one to address

both non-smooth functions and hard constraints. Within the

large panel of existing proximal algorithms [13–16], we con-

sider the primal-dual M+LFBF algorithm recently proposed

in [15], which is able to address general convex optimization

problems involving non-smooth functions and linear opera-

tors without requiring any matrix inversion.

4. EXPERIMENTAL RESULTS

We test our method on several images taken from the HDR

Photographic Survey dataset3. The images have a maximum

resolution of 4,288×2,848 and span a wide range of lumi-

nance conditions and contrast ratios. We cut a square portion

of 1024×1024 pixels in each image to apply our algorithm

and test coding performance. A subset of these images used

in our tests is shown in Figure 2. We encode images using

JPEG and JPEG2000 on image luminance tone mapped to 8

bits values using the piecewise linear tone mapping obtained

by solving (11). We compare this method with the tone map-

ping in [5], which corresponds to solving problem (2) or to

3Available at http://www.cis.rit.edu/fairchild/HDR.html

setting λ = 0 in our problem. In both cases, we consider lu-

minance only as in the original setup [5], based on the same

consideration that one could easily extend tone mapping to

red, green and blue color channel independently while pre-

serving color appearance [17]. The cost of transmitting sup-

plemental information to reconstruct the tone mapping curve

(i.e., the vector of sk), which is present both in our proposal

and in the baseline method [5], depends on the choice of the

histogram step δ (fixed here to 0.1) and is in general negligible

with respect to the total bitrate.

We use the standard JPEG implementation available in

Matlab through the imwrite command, while for JPEG2000

we employ the Kakadu implementation available at [18]. The

quality rate used for JPEG are 20 to 90 with a step of 10.

As for JPEG2000, we use 5-level, 9/7 Daubechies wavelet

decomposition, and we fix the rate from 0.1 to 1 bits per

pixel with a step of 0.1. In order to evaluate the distortion

between the original and the reconstructed HDR image after

coding, we use the HDR-MSE metric as also done in [5]. The

HDR-MSE is defined as the logarithm of the MSE between

the logarithm of the luminance chanel of the reconstructed

HDR image and the reference one. A popular perceptually-

based image difference predictor is the HDR-VDP2 [19]. We

compared the reconstructed HDR images using our TMO

with those produced using minimum-MSE, with a publicly

available implementation of HDR-VDP2 4, and found that

the results are inconsistent with the compression quality used

for the LDR layer, e.g., higher LDR rates could randomly

produce worse HDR-VDP2 results. Therefore, we do not in-

clude performance evaluation relative to HDR-VDP2 in this

paper.

Figure 3 shows rate-distortion results for minimum-MSE

TMO [5] and our proposal for three HDR pictures. The op-

timal λ in (11) has been found empirically. The experiments

show that a λ between 0.001 and 0.004 tends to yield im-

portant coding gains with respect to minimum-MSE TMO.

Higher values of λ may produce washed-out LDR images,

which are certainly smoother but poorer in details. On the

other hand, very low values of λ do not improve significantly

the performance of the minimum-MSE method. On the re-

sults we present, we choose a value of 0.004 for “Amikeus-

BeaverDamPM1” and “Flamingo” and a value of 0.002 for

“GoldenGate(2)”.

In order to gain a better insight of how the proposed

method improves RD performance, we show as an example

in Figure 4 two tone mapping curves obtained from the im-

age “AmikeusBeaverDamPM1”: the minimum-MSE TMO,

and our proposal based on TV regularization (λ = 0.004).

Minimum-MSE TMO allocates a larger interval of LDR

values to mid luminance range, and compresses instead the

extreme regions of the original HDR histogram. This enables

to produce well contrasted LDR pictures which preserve most

part of HDR high-frequency content and details. Conversely,

4Available at: http://sourceforge.net/apps/mediawiki/hdrvdp/



(a) AmikeusBeaver-

DamPM1

(b) Flamingo (c) GoldenGate(2)

Fig. 2: Some HDR images from the HDR Photographic Sur-

vey dataset.

TV regularization generates curves which are closer to linear

tone mapping. As a result, the LDR image has lower global

contrast with respect to [5]. However, local image structures

such as edges are well preserved thanks to the definition of

the TV measure (5). We give an example in Figure 5, which

shows the tone-mapped LDR image and the reconstructed

HDR content for a detail of the image “GoldenDate(2)”. The

two decoded HDR images details have similar HDR-MSE

values of -3.52 and -3.64 for [5] and the proposed method,

respectively. However, it is apparent that the LDR image

obtained with our TMO is smoother than the minimum-MSE

one, thus it has lower spatial complexity and is easier to code,

which explains the RD gain in Figure 3. For our matlab op-

timization implemention (wich is not optimized for speed),

we put a large number of iteration to assure the convergence.

however, the process stops hitself before the end of the iter-

ations when the difference between two following iteration

results is to small. The number of needed iteration depends

on the image and on λ. In general, 5000 iterations are enough

to assure the convergence and the process took on average 5

minutes to find the sk for an 1024× 1024 image.

5. CONCLUSION

In the context of backward compatible HDR image compres-

sion, the HDR content is mapped to LDR to be compressed

with available coding tools and be used as predictor at the

decoder. In this paper we have presented a tone mapping op-

erator that minimizes the prediction error and the spatial com-

plexity of the LDR image, modeled through the total variation

measure. The resulting problem is convex and can be solved

efficiently. While we do not claim that this is optimal from

the rate-distortion point of view, we show that it achieves sig-

nificant RD gains with respect to the state of the art technique

that minimizes mean-square-error distortion between original

and reconstructed HDR [5].

We are currently working to extend this model to video,

by modeling temporal complexity as well. In addition, the

simple quadratic MSE term is know to be poorly related to

perception [20], which motivates for using more advanced,
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Fig. 3: Rate-distortion performance of the proposed method

compared to the minimum-MSE TMO [5] with both JPEG

and JPEG2000, for the images in Figure 2.

yet feasible to optimize, fidelity measures for HDR content.
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