Canadian Science Publishing

## Canadian Journal of Fisheries and Aquatic Sciences

| Journal: | Canadian Journal of Fisheries and Aquatic Sciences |
| ---: | :--- |
| Manuscript ID | cjfas-2019-0348.R2 |
| Manuscript Type: | Article |
| Author: |  | | Dubmitted by the | 11-May-2020 |
| ---: | :--- |
| Complete List of Authors: | Wagner, Tyler; US Geological Survey <br> Hansen, Gretchen J. A.; Univ Minnesota <br> Schliep, Erin; University of Missouri System, Statistics <br> Bethke, Bethany J.; Minnesota Dept Nat Resources, Fisheries Research <br> Honsey, Andrew; University of Minnesota, Ecology, Evolution, and <br> Behavior <br> Jacobson, Peter; Minnesota Department of Natural Resources, <br> Kline, Benjamen; Pennsylvania State University, Ecosystem Science and <br> Management <br> White, Shannon; Pennsylvania State University, |
| Keyword: | joint species distribution models, fish communities, species interactions |
| Is the invited manuscript for |  |
| consideration in a Special |  |
| Issue? : | Not applicable (regular submission) |

Improved understanding and prediction of freshwater fish communities through the use of joint species distribution models

Tyler Wagner ${ }^{1}$, Gretchen J.A. Hansen ${ }^{2}$, Erin M. Schliep ${ }^{3}$, Bethany J. Bethke ${ }^{4}$, Andrew E. Honsey ${ }^{2}$, Peter C. Jacobson ${ }^{4}$, Benjamen C. Kline ${ }^{5}$, Shannon L. White ${ }^{5}$
${ }^{1}$ U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania, USA
${ }^{2}$ Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN 55188, USA
${ }^{3}$ Department of Statistics, University of Missouri, 146 Middlebush Hall, Columbia, Missouri 65211, USA
${ }^{4}$ Minnesota Department of Natural Resources, Division of Fish and Wildlife, St. Paul, MN, 55155, USA
${ }^{5}$ Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania, USA


#### Abstract

Two primary goals in fisheries research are to (1) understand how habitat and environmental conditions influence the distribution of fishes across the landscape, and (2) make predictions about how fish communities will respond to environmental and anthropogenic change. In inland, freshwater ecosystems, quantitative approaches traditionally used to accomplish these goals largely ignore the effects of species interactions (competition, predation, mutualism) on shaping community structure, potentially leading to erroneous conclusions regarding habitat associations and unrealistic predictions about species distributions. Using two contrasting case studies, we highlight how joint species distribution models (JSDMs) can address the aforementioned deficiencies by simultaneously quantifying the effects of abiotic habitat variables and species dependencies. In particular, we show that conditional predictions of species occurrence from JSDMs can better predict species presence/absence compared to predictions that ignore species dependencies. JSDMs also allow for the estimation of site-specific probabilities of species cooccurrence, which can be informative for generating hypotheses about species interactions. JSDMs provide a flexible framework that can be used to address a variety of questions in fisheries science and management.


Keywords: joint species distribution models, fish communities, species interactions, multispecies, species distribution models, freshwater

## Introduction

A primary goal in fisheries science is to predict how species distributions and abundances respond to current and future habitat conditions, and to use those predictions to inform fisheries management (Chu et al. 2005; Xenopoulous et al. 2005; Bond et al. 2011; DeWeber and Wagner 2018). The field is replete with quantitative methods available for modeling the influence of abiotic environmental predictors on species distributions. For example, generalized linear models (GLMs) are frequently used to understand how habitat influences individual fish species occurrence or abundance, the number of species present, and/or indices of biotic integrity (Wang et al. 2001; Sutherland et al. 2002; Roy et al. 2007). Alternatively, multivariate ordination methods, such as canonical correspondence analysis, can be used to understand fish assemblage structure in different environments (Van Zuiden and Sharma 2016; Stewart et al. 2016).

However, neither GLMs nor multivariate methods explicitly account for potential dependencies among species in the community, which is a fundamental oversight at the core of community ecology. That is, environmental filtering selects a subset of species with specific phenotypes to occupy a habitat (Poff 1997), but the presence and abundance of a species also depends on species interactions including competition, predation, and mutualism (Pendleton et al. 2012; Peoples et al. 2015). A failure to account for biotic interactions can provide an overly simplistic view of community dynamics, which can hinder our understanding of assembly processes and bias predictions of community structure under environmental change (Latimer et al. 2009; Clark et al. 2014a; Harris 2015).

To date, attempts to incorporate species interactions into quantitative frameworks in freshwater fisheries have largely focused on isolating the effects of two or three species in the community. For example, two-species occupancy models have been used to elucidate how the
presence of one species modulates the response of another species to watershed stressors (Wagner et al. 2013), and the presence of one species has been used to predict the occurrence of another focal species (Van Zuiden and Sharma 2016; Taylor et al. 2018). In addition to these analyses being limited to a subset of species in the community, they can only account for asymmetric species interactions and some require a priori specification of dominant and subordinate species.

By simultaneously quantifying effects of the abiotic environment and biotic interactions, joint species distribution models (JSDMs) provide a framework for addressing the aforementioned shortcomings of conventional fish community models. JSDMs can be thought of as a special case of more general multivariate models, and have received increased attention over the past decade (Norberg et al. 2019) in various subdisciplines of ecology (e.g., marine fisheries, Hill et al. 2017, Thorson 2019; forest tree communities, Clark et al. 2014b; and bird communities, Stjernman et al. 2019), but remain underused in inland freshwater fisheries (but see Inoue et al. 2017 and Radinger et al. 2019 for examples). Because of their flexibility, JSDMs may prove useful for a variety of fisheries applications, including quantifying (i) heterogenous data types, including occurrence and/or abundance, (ii) environmental drivers of species occurrence/abundance, and (iii) correlations (dependencies) between species in the community across space and time (Clark et al. 2014b; Pollock et al. 2014; Ovaskainen et al. 2017; Clark et al. 2017).

JSDMs are described in detail in Pollock et al. (2014) and Clark et al. (2014b). Briefly, a JSDM relies on a species covariance matrix to account for possible dependencies among species (i.e., potential biotic interactions) at a given location that are not accounted for by other fixed effects (environmental predictors) in the model. Residual correlations can then be used to
generate hypotheses about the potential role of biotic interactions in structuring fish communities. Additional analyses using JSDM results can provide further clarity about the strength of co-occurrence patterns. For example, an odds ratio of occurrence among species pairs can be an intuitive metric to understand how co-occurrence varies spatially among habitat types (Gelfand and Shirota, in review).

JSDMs are particularly useful for analyses of fish community data, as fisheries data are often collected across space and over time and thereby may exhibit spatial and/or temporal autocorrelation. When spatial and/or temporal autocorrelation is present and not accounted for, model inference may be biased and lead to increased type-I error rates. If strong dependence exists, the inclusion of random effects can also improve predictions at unsampled locations in time and space. For example, Godefroid et al. (2019) used Vector Autoregressive Spatiotemporal (VAST) models (Thorson et al. 2015) to understand the spatio-temporal dynamics of Pacific Herring off the west coast of Vancouver Island, Canada, and Thorson et al. (2016) developed a joint dynamic species distribution model that accounted for spatial dependence and temporal variation in species distributions to investigate community dynamics in a marine fish community.

The development and application of complex spatio-temporal JSDMs in fisheries has largely occurred in marine ecosystems, where long-term monitoring programs of economically important fish stocks have produced information-rich datasets (large amounts of data over space and time for many species). This data structure is often lacking in freshwater fisheries, where sampling effort may be limited, surveys may be infrequent and non-random over space and time, and assessments may include fishes for which we have limited information on behavior and life history. Here, we illustrate the utility of JSDMs for modeling inland freshwater fish community
data using two case studies. Our aim is not to focus on the details and potential implications of the results from each case study. Rather, we highlight broad themes associated with the use and interpretation of JSDMs that will be applicable for answering a wide range of questions across a diversity of fish communities. Specifically, we demonstrate how JSDMs can provide improved understanding of the abiotic and biotic processes structuring fish communities, and how accounting for species dependencies can improve model predictive performance. We provide two contrasting case-studies, and we further develop our second case study to illustrate how to better understand species co-occurrences and to investigate potential spatial autocorrelation.

Our case studies - Appalachian streams and north temperate lakes - represent two contrasting aquatic ecosystems and fish communities. However, the research goals in both case studies were the same: (1) improve our understanding of environmental filtering by quantifying the variation among species in their responses to abiotic drivers and their shared responses to the environment; (2) estimate residual correlations which can be used, along with information about species traits, phylogeny, trophic ecology, and other information, to generate hypotheses about the potential roles of biotic interactions in structuring these communities; (3) quantify spatial variability in co-occurrences between species pairs; and (4) compare predictions of occurrence when accounting for species dependencies to those that ignore species dependencies.

## Case studies

## Appalachian stream fish communities

Fish community data were collected from 60 wadeable streams in southwestern Virginia and southern West Virginia, USA by White and Orth (2013). At most streams, fish were sampled at six 50-m sites using single-pass backpack electrofishing. Species enumerations were converted to site-specific presence/absence data, and only species that were found at 10 or more sites were
included in this analysis, which resulted in 16 species. Due to difficulty in field identification and concerns about hybridization, sculpin were only identified to genus (i.e., Cottus sp.).

Site-level microhabitat data were collected at transects spaced every 10 m and included stream width, stream depth, and substrate size. The number of pools and size of every pool in each site was also measured. Stream-level macrohabitat was quantified in Geographic Information System (GIS), and included the proportion of the watershed with developed, agriculture, and forested land-use as defined by the 2011 National Land Cover Dataset (NLCD). Minority land-use classes including barren rock, open water, and wetland were not considered as they accounted for less than $5 \%$ of land-use across all sites. The proportion of forested land-use was homogenous across streams and developed and agricultural land-use were collinear.

Therefore, we only included the proportion of developed land in the watershed as a land-use covariate.

## North temperate lake fish communities

Fish community data were collected from lakes in Minnesota, USA from 1987 to 2016 via the Minnesota Department of Natural Resources (MNDNR) standard sampling program (MNDNR 2017). This program employs trapnets and gillnets to sample the nearshore and deeper littoral communities, respectively, at index stations throughout lakes. Sampling was repeated on lakes on a 1- to 10-year rotation, depending on individual lake management needs. These surveys were primarily designed to target sport fish. As such, many smaller-bodied fishes were not captured in these gears. Lakes were sampled from June through September, and sampling at each lake occurred at approximately the same day of the year across years. The number of nets set at each lake depended on lake size (see MNDNR 2017 for methodological details).

We only considered surveys in which at least three nets of each gear type (gillnets and trap nets) were deployed, and an individual lake was only included in the analysis if it was sampled at least twice from 1987 to 2016. Data across years were combined to derive a single presence/absence metric for each species for each lake, and non-fish species (e.g., turtles and crayfish) and fish not identified to species (including hybrids) were removed. Because standard fisheries surveys target littoral species, supplemental data from deeper, non-standard nets and angler surveys were added for coldwater fish (including lake trout Salvelinus namaycush, lake whitefish Coregonus clupeaformis, and cisco Coregonus artedi) that inhabit deeper portions of Minnesota lakes. Finally, we removed species that were not present in at least 5\% of lakes and lakes for which the full suite of environmental predictor variables were unavailable (see below), resulting in a total of 1,213 lakes and 29 species included in the final analysis.

Our treatment of the fish community data (i.e., removing rare species, requiring that both gear types be used in each survey) and the use of standardized sampling was done, in part, to reduce the potential effects of environmental conditions on detection probabilities, which can vary among species and gear types (Gwinn et al. 2016 and references therein). We recognize, however, that imperfect detection could affect inferences, especially for those species that are difficult to detect using the gear used in the case studies. The inability of biological monitoring programs to detect all species in a community (i.e., imperfect detection) - and its effect on parameter estimation and inference - has received considerable attention in the ecological and fisheries literature (e.g., MacKenzie et al 2002; Kéry 2011; Gibson-Reinemer 2016; White et al. 2020). Some statistical modeling frameworks for fitting JSDMs can accommodate detection probabilities/sampling error (e.g., the R package gjam; Clark et al. 2017; see Statistical analysis below), however, they rely on addition species-specific information (e.g., sampling effort as a
proxy for detection). Until the work by Tobler et al. (2019), there lacked a general analytical framework for linking JSDMs that quantify residual correlations and imperfect detection in an occupancy modeling framework. The application of such models in freshwater fish community research is challenging because these models require data sampled across generally hundreds of sites and some require repeat visits over a relatively short time period. The repeat visits are necessary to estimate detection probabilities and sampling over a relatively short timeframe is needed to meet the assumption of closure and that the true presence/absence of a species at a site does not change over time (Tobler et al. 2019). Depending on the system, sampling a large number of sites and/or performing repeat visits to a subset of sites may not be logistically feasible during fisheries research efforts. Thus, methods that account for imperfect detection under various data collection strategies of freshwater fish communities provides a fruitful area of future research.

Environmental variables for the lake analysis were compiled from multiple sources. Lake area and maximum depth were obtained from MNDNR. We used the 2011 NLCD to calculate watershed disturbance, defined as the proportion of the entire upstream watershed in agricultural or urban land use (Jacobson et al. 2016). Water clarity was indexed using Secchi depth collated from state agency databases (MNDNR and Minnesota Pollution control agency; https://www.pca.state.mn.us/water/water-quality-data), and we calculated lake-level median annual Secchi depth from data collected from June 1 through August 31 from 1987 to 2018. We also calculated the proportion of each lake in the littoral zone, as defined by the area of lake bottom in which sub-surface light levels were at least $1 \%$ of surface light levels. Daily Secchi depth estimates were converted to daily light extinction coefficients $\left(\mathrm{K}_{\mathrm{d}}\right)$ by dividing a constant coefficient of 1.7 by Secchi depth (Poole and Atkins 1929) and euphotic depth was calculated as
$-\log (0.01) / K_{d}$. Lake area at or above this depth was calculated using hypsographic curves generated from digitized bathymetric maps. Lake temperature was indexed by mean annual degree days (base temperature $5^{\circ} \mathrm{C}$; Chezik et al. 2014) calculated from simulated water temperatures for 1980-2015 (Winslow et al. 2017).

## Statistical analysis

Several statistical modeling frameworks exist for fitting JSDMs (see Norberg et al. 2019 for a summary of frameworks), of which we used the Generalized Joint Attribute Modelling (gjam) package in R version 3.6.1 (Clark et al. 2017; R Core Team 2019). Though both of our case studies focused on modeling fish occurrence, gjam can accommodate a variety of response data types (e.g., discrete and continuous abundance, ordinal counts), including combinations of response types. However, it is worth noting that gjam cannot explicitly address temporal and spatial autocorrelations at this time (but see below for methods to assess potential spatial autocorrelation).

Presence/absence of each species at each stream site or lake was modeled using a multivariate probit model and latent variable parameterization (Chib and Greenberg 1998). Following the notation of Wilkinson et al. (2019), we let $y_{i j}=1$ denote presence and $y_{i \mathrm{ij}}=0$ denote absence of species $j$ at site $i$, where $j=1 \ldots \mathrm{~J}$ and $i=1 \ldots$... The basic model is as follows:

$$
\begin{gather*}
\mathrm{y}_{\mathrm{ij}}=1\left(\mathrm{z}_{\mathrm{ij}}>0\right)  \tag{1}\\
\mathrm{z}_{\mathrm{ij}}=\mathrm{u}_{\mathrm{ij}}+\mathrm{e}_{\mathrm{ij}} \\
\mathrm{u}_{\mathrm{ij}}=\mathbf{X}_{\mathrm{i}, .} \mathbf{B}_{. \mathrm{j}} \\
\mathbf{e}_{\mathrm{i}} \sim \operatorname{MVN}(\mathbf{0}, \mathbf{R})
\end{gather*}
$$

Presence and absence of each species is specified through the latent variable $z_{i \mathrm{ij}}$, where $\mathrm{z}_{\mathrm{ij}}>0$ denotes presence and $\mathrm{z}_{\mathrm{ij}} \leq 0$ denotes absence. The latent variable is equal to the sum of the linear predictor $\mathrm{u}_{\mathrm{ij}}$ and correlated residual error $\mathrm{e}_{\mathrm{ij}}$.

Following the generalized linear model framework, the linear predictor is the product of $k$ $=1 \ldots \mathrm{~K}$ environmental covariates $\mathbf{X}_{\mathrm{i}, \text {, }}$ and regression coefficients $\mathbf{B}_{. \mathrm{j}, \mathrm{j}}$ Residual correlations are contained in the Jx J covariance matrix $\mathbf{R}$, which captures the dependencies in co-occurrence among species after accounting for covariates in the model. That is, $\mathbf{R}$ identifies those species that co-occur more or less frequently than predicted given the environmental covariates. Residual dependencies also allow for predicting the occurrence of each species conditionally on the occurrence of other species in the community. For the Appalachian stream fish case study, a normally distributed random stream effect (random intercept) was also included in the model to accommodate multiple observations collected in each stream.

For both analyses, all covariates were standardized to be mean zero with standard deviation one, and default priors specified in the gjam package were used for all parameters. For the Appalachian stream fish analysis, the posterior distribution was summarized using 120,000 MCMC samples, sampled using a Gibbs sampler, after discarding the first 90,000 samples as burn-in. For the north temperate lakes case study, 90,000 samples were used to summarize the posterior distribution, after discarding the first 70,000 samples as burn-in. We calculated the correlation among species pairs due to shared environmental responses following the methods of Pollock et al. (2014).

## Spatial autocorrelation

Potential residual spatial autocorrelation was examined by creating spline correlograms for each species using the ncf package in R (Bjørnstad 2020). Spline correlograms display the
spatial correlation as a function of distance that is smoothed using a spline function (Bjørnstad and Falck 2001). Five hundred bootstrap iterations were used to obtain $95 \%$ pointwise confidence intervals. Correlation estimates and confidence intervals that deviate from zero indicate the presence of spatial autocorrelation. (Bjørnstad and Falck 2001). Although we use Euclidean distance to assess the presence of spatial autocorrelation for the lakes case study, stream-network distance could be considered for accommodating spatial autocorrelation in lotic systems (ver Hoef 2006; Hocking et al. 2018).

## Odds ratios and species co-occurrences

While residual correlations among species pairs are often used to generate hypotheses about potential species interactions and co-occurrence patterns (sensu Pollock et al. 2014; Radinger et al. 2018; Tobler et al. 2019), they provide little interpretable information about whether species pairs are likely to co-occur (positive dependency) or not (negative dependency) at a given location. Therefore, we also employed the methods of Gelfand and Shirota (in review) to calculate odds ratios between species pairs to obtain interpretable measures of species dependencies across locations. Importantly, these values take into account the response of each species to environmental conditions at each location in addition to the residual dependence between species. We calculated the odds ratio $\left(\theta_{i}^{i, j}\right)$ for species $j$ and $j^{\prime}$ at site $i$ as:
$\theta_{i}^{j j^{\prime}}=\left(\mathrm{P}\left(\mathrm{Z}_{\mathrm{ij}}<0, \mathrm{Z}_{\mathrm{ij}}<0\right) \mathrm{P}\left(\mathrm{Z}_{\mathrm{ij}} \geq 0, \mathrm{Z}_{\mathrm{ij}} \geq 0\right)\right) /\left(\mathrm{P}\left(\mathrm{Z}_{\mathrm{ij}} \geq 0, \mathrm{Z}_{\mathrm{ij}}{ }^{\prime}<0\right) \mathrm{P}\left(\mathrm{Z}_{\mathrm{ij}}<0, \mathrm{Z}_{\mathrm{ij}} \geq 0\right)\right)(2)$
The joint probabilities in the numerator represent the probability that species $j$ and $j^{\prime}$ are absent at site $i$ and the probability that species $j$ and $j^{\prime}$ co-occur at site $i$, respectively. The joint probabilities in the denominator represent the probability that species $j$ is present and species $j^{\prime}$ is absent at site $i$ and the probability that species $j$ is absent and species $j^{\prime}$ is present at site $i$, respectively. Put another way, the numerator represents joint occurrence and joint absence
(sympatry), while the denominator measures the probability that each species occurs separately (allopatry). As such, if there is positive dependence between species the odds ratio will be $>1$, if there is negative dependence the odds ratio will be $<1$, and the odds ratio will equal 1 for the case of species independence. For site $i$, we report $\log _{10}\left(\theta_{i}^{j, j^{\prime}}\right)$, where a value of zero indicates that presence/absence of species $j$ and $j^{\prime}$ are pairwise independent, values $>0$ indicate positive pairwise dependence, and values $<0$ indicate negative pairwise dependence.

## Model performance and predictive comparisons

When correlations between pairs of species are large, conditional predictions can vary substantially from unconditional (marginal) predictions (Tikhonov et al. 2017). Thus, for both case studies we compared predictive performance by calculating the marginal and conditional posterior mean area under the estimated receiver operating characteristic curve (AUC) values for each species. We considered models with AUC values $<0.7$ to be low accuracy and of limited use, models with AUC values $>0.7$ but $<0.9$ to be of moderate accuracy, and models with AUC values $>0.9$ to be highly accurate most useful for interpretation and prediction (Manel et al. 2001). Marginal probability of occurrence predictions were obtained for each species at each site/lake and were equivalent to predicting the occurrence of each species independently, thus ignoring potential species dependencies. Conditional probability of occurrence predictions were obtained for each species and each site/lake given the presence/absence of all other species at the given location. In each case we calculated the posterior mean AUC and associated $95 \%$ credible intervals.

To gain additional insight into model predictive performance, marginal and conditional sensitivity (the ability of the model to correctly predict species presence) and specificity (ability of the model to correctly predict species absence) were also calculated. Calculating sensitivity
and specificity requires a threshold probability separating predicted presences from predicted absences, and we used a threshold that minimized overall misclassification error implemented using the InformationValue package in R (Prabhakaran 2016). For illustrative purposes, we only report results of sensitivity and specificity for the north temperate lakes case study.

## Results and discussion

## Appalachian stream fish communities

## Effects of abiotic environment

Overall, environmental covariates were generally poor predictors of stream fish occurrence, and significant effects differed in direction and magnitude (Figure 1). For example, mean substrate size was an important predictor for three species; two were more likely to occur at sites with smaller substrate (white sucker Catostomus commersonii and rock bass Ambloplites rupestris), and redbreast sunfish Lepomis auritus was more likely to occur at sites with larger substrates. Two species (white sucker and bluegill Lepomis macrochirus) were more likely to occur at wider stream sites, and two species (white shiner Luxilus albeolus and fantail darter Etheostoma flabellare) were more likely to occur in developed watersheds.

## Residual and shared environmental correlations

Correlations between species can be due to a shared response to environmental conditions and/or pairwise residual correlations that capture potential biotic interaction. Shared environmental correlations suggest that species pairs covary (either negatively or positively) due to their response to the same abiotic conditions. Given that few habitat covariates were important for predicting stream fish occurrence, it was not surprising that we identified only one significant pairwise shared environmental correlation: rock bass and white sucker were positively correlated due to their shared environmental response (Figure 2).

After controlling for the effects of environmental covariates, the residual correlations for several species pairs were significant. Most of these correlations were positive, but two were negative (Figure 2). The two negative residual correlations were between Cottus spp. and creek chub Semotilus atromaculatus and Cottus spp. and Clinch dace Chrosomus sp. cf. saylori. Due to the fact that very few environmental covariates were significant for predicting species occurrence, it is likely that many of these residual correlations are due to missing habitat covariates in the model rather than representing potential biotic interactions. However, it is possible that the positive residual correlation between creek chub and Clinch dace is indicative of a mutualistic relationship in the form of a nest association (White and Orth 2014; but see below for cautions with this interpretation).

Predictive performance
As expected, given that abiotic habitat variables poorly predicted species occurrence, marginal predictive performance measured by AUC was poor, with most posterior mean AUC values near 0.5 (no better than random; Mantel et al. 2001) for all species (Figure 3). Predictive performance improved significantly for most species when conditioning predictions on the occurrence of other species at a site; for most species, conditional predictions resulted in models classified as moderate or high accuracy based on their AUC values (blue points in Figure 3). Overall, this case study highlights that predictive models of species occurrence that are informed by the presence or absence of other species in the community at a given site (i.e., accounting for their residual correlations among species) can be useful for predicting species occurrence, even when available abiotic habitat variables are relatively uninformative.

## North temperate lake fish communities

## Effects of abiotic environment

In contrast to the Appalachian stream fish community analysis, abiotic habitat covariates significantly predicted occurrence for many north temperate lake fishes (Figure 4). The probability of presence for nearly all species increased with both lake area and maximum depth. For other covariates, the direction and magnitude of effects varied among species. For example, mean degree days positively influenced the presence of warmwater species like white crappie Pomoxis annularis and common carp Cyprinus carpio, and negatively affected the presence of coldwater species such as burbot Lota lota and cisco Coregonus artedi. The effect of water clarity also varied substantially among species, with some species such as white crappie found more frequently in turbid sites with low Secchi depths, and other species including largemouth bass Micropterus salmoides more likely to occur in clear lakes with high Secchi depths. Residual and shared environmental correlations

In lake fish communities, significant shared environmental correlations existed between many species pairs (Supplemental Figure S1 and Figure 5). Given that many species were well predicted by habitat variables in this analysis, positive environmental correlations indicate that species prefer similar habitat conditions. For example, green sunfish Lepomis cyanellus were significantly positively correlated with a number of species such as largemouth bass, bluegill Lepomis macrochirus, and pumpkinseed Lepomis gibbosus, due to the species' similar preference for warm lakes with a proportionally large littoral zone. Conversely, green sunfish were negatively correlated with the presence of several species that prefer cooler lakes with proportionally smaller littoral zones, including walleye Sander vitreus, burbot, and smallmouth bass Micropterus dolomieu (Figures 4 and 5).

After controlling for the effects of environmental covariates, several significant pairwise species residual correlations were identified, most of which were positive (Figure 5). For
example, walleye and yellow perch Perca flavescens exhibited positive residual correlation, suggesting that these species co-occur more often than predicted given the abiotic habitat covariates. In contrast, negative residual correlations between species, such as between smallmouth bass and northern pike Esox lucius, suggest that these species co-occur less frequently than expected given abiotic conditions. Such negative species correlations indicate the possibility of antagonistic species interactions, where the presence of one species reduces the probability of presence of another.

For many species pairs, both shared environmental and residual correlations were significant, albeit not always in the same direction. For example, largemouth bass and bluegill were positively correlated for both metrics, suggesting that these species are highly likely to cooccur based on both their environmental preferences and other unmeasured factors, which may include biotic relationships. In contrast, largemouth bass and walleye were negatively correlated in environmental preferences, but exhibited a positive residual correlation, perhaps due to widespread walleye stocking into lakes where environmental conditions are not optimal for walleye.

## Spatial autocorrelation

Residual spatial autocorrelation varied by species. For most species, the magnitude of spatial autocorrelation was generally low, with the lower bound of the $95 \%$ confidence interval overlapping or near zero (Figure S2). However, the residual spatial autocorrelation for a few species (e.g., bowfin Amia calva, greater redhorse Moxostoma valenciennesi) was moderate in magnitude. Given that spatial autocorrelation was minimal in our data, we did not include a random effect in our model to account for the correlation structure. However, in situations where spatial autocorrelation is stronger, spatially varying random effects could be included to account
for this residual autocorrelation to help reduce bias and quantify uncertainty in the parameter estimates. These random effects may also aid in the prediction of species co-occurrence at unobserved locations.

## Lake-specific odds ratios

For illustrative purposes, we present the log odds ratios for three species pairs: bluegill and largemouth bass; burbot and golden shiner Notemigonus crysoleucas; and smallmouth bass and walleye. Bluegill and largemouth bass commonly co-occur in north temperate lakes (Trebitz et al. 1997), so we expected positive log odds ratios for most lakes for this species pair. In contrast, burbot are a coldwater fish that occupies deep, clear lakes, whereas golden shiner are primarily littoral and can tolerate warm, turbid waters (Figure 4). In this case, we predicted that most lakes would have negative log odds ratios because burbot and golden shiner would not often co-occur. Smallmouth bass and walleye can occupy similar habitats, but we had no a priori expectation as to co-occurrence patterns in our study lakes.

As expected, log odds ratios were generally positive for bluegill and largemouth bass, with most lakes showing strong positive dependencies (relatively large positive value of $\theta$; only 2\% (24 lakes) had a negative log odds ratio). In contrast, burbot and golden shiner demonstrated negative dependencies in most lakes, with only $7 \%$ ( 86 lakes) having a positive $\log$ odds ratio. The log odds ratios for smallmouth bass and walleye varied substantially, with many lakes displaying positive and negative dependencies (Figure 6). In addition, the $\log$ odds ratio for the majority of the lakes was near zero for these two species, indicating pairwise independence in occurrence (i.e., no relationship between the occurrence of one species and the other). In the future, research focused on elucidating potential lake and landscape drivers of the spatial
variability in dependencies between species may improve our understanding of important determinants of co-occurrence patterns.

## Predictive performance

The increased number of significant abiotic habitat covariates in the north temperate lakes analysis relative to the stream analysis led to improved marginal predictions (i.e., AUC was generally greater than 0.7 for marginal predications for several species; Figure 7). Including species dependencies increased predictive accuracy for most, but not all, species (Figure 7). Model sensitivity and specificity varied along a gradient of species prevalence (Figure 8). Specifically, sensitivity was generally high for common species and specificity was high for rare species, indicating that the model generally predicted common species to be present in, and rare species to be absent from, most lakes.

Importantly, conditional predictions still often significantly outperformed marginal predictions with respect to predicting where common species are absent and where rare species are present (Figure 8). This suggests that, even when environmental variables are useful for predicting fish species occurrence, leveraging information on the fish community can still improve predictive accuracy in identifying where species are most likely to occur. It should be mentioned, however, that the sensitivity and specificity values and relationship with species' prevalence that we report are a function of the probability cutoff that we used for separating predicted presences from absences (i.e., using probabilities that minimized overall misclassification error). When alternative criteria were used (in this case, minimizing sensitivity + specificity), the relationship between prevalence and model accuracy disappeared, although overall accuracy was lower on average (Figure S3). Probability thresholds can be selected based
on the relative importance of predicting true presences vs. true absences, and this decision should be made on a case-by-case basis to reflect management or research priorities.

## Summary and cautions

## Inferring species interactions from co-occurrence

JSDMs account for potential dependencies among species in a fish community. However, the estimated associations are correlational and are influenced by environmental predictors including both those used in the model and important environmental variables that are left out. Residual correlations may also be a function of not only biotic interactions, but also phylogenetic history, biogeography, stocking, and shared migration history (Dormann et al. 2018). Accordingly, and as with other methods used to infer species interactions (Dormann et al. 2018), species associations derived from JSDMs should be interpreted with caution. Specifically, because of their correlational nature and the fact that species associations are influenced by many factors, estimated species associations are best viewed as a tool for generating hypotheses, not for inferring direct species interactions that lead to changes in fitness, distribution or abundance. In fact, Barner et al. (2018) compared estimated species associations from a variety of cooccurrence models to experimentally determine net and direct species interactions and found that all methods performed poorly at recovering empirical species interactions. Zurell et al. (2018) also found through a simulation exercise that the residual correlations from JSDMs performed poorly at capturing known interaction effects. However, other approaches applied to spatiotemporal datasets have been used to help elucidate species interactions (Thorson et al. 2017).

The inability to identify species interactions from species associations could be due to (1) scale dependency - the strength and sign of inferred interactions can depend upon the scale of observation; (2) complex biotic interactions - there can be several types of interactions for a
given species pair and these can be context dependent; and/or (3) circularity - species interactions can drive co-occurrence, but co-occurrences are themselves necessary for interactions (Thurman et al. 2019). In addition, the ability to infer species interactions from associations may be dampened by the presence of multiple trophic levels in the community. Specifically, Thurman et al. (2019) demonstrated that including a predator into a community composed solely of competitors reduced the ability to infer competitive interactions. Dormann et al. (2018) provide a useful set of questions related to data and models that can be evaluated in an effort to determine the strength of inferences that might be made for a given study attempting to infer species interactions from co-occurrence data.

If understanding species interactions or generating hypotheses about potential interactions from co-occurrence data is a primary research goal, then methods that account for both indirect and direct species interactions may perform better than models that only estimate net effects, such as residual correlations from JSDMs. In fact, Thurman et al. (2019) found that a Markov network model (Harris 2016) that estimated direct effects between species while controlling for indirect effects among all species in the community outperformed several other methods, including residual correlations from a JSDM, at inferring known species interactions. There are several existing methods that allow for estimating direct interactions among species pairs while accounting for indirect interactions (such as two species that may respond to the presence of a common predator, but do not directly interact) that may be useful in further understanding potential fish species associations (e.g., Clark et al. 2018; Popovic et al. 2019).

Although inferring species interactions from species associations is fraught with many challenges, the combination of estimated species associations with empirical estimates of species interaction strengths has the potential to provide novel insight into community associations
(Thurman et al. 2019). In addition, as Barner et al. (2018) suggest, although estimated species associations may not capture true interactions, species associations may be useful in predicting higher-level community properties such as the total number of interacting species, number of interactions within/among trophic levels, and the proportion of positive and negative interactions. Lastly, unlike residual correlations, the odds ratio metric used here (Gelfand and Shirota, in review) generates interpretable measures of species co-occurrences that can be used to better understand dependencies among species and how they vary spatially. Overall, JSDMs, their derived metrics (i.e., odds ratios), and complementary models such as Markov network models provide the opportunity to gain a better understanding of the potential importance of biotic interactions, how they vary across space, and their roles in structuring fish communities.

## Summary

Understanding the effects of natural environmental and habitat conditions, anthropogenic stressors, and management actions on the distribution of inland freshwater fishes is critically important, especially in the context of global change (Araújo and Luoto 2007). JSDMs represent a useful modeling framework that accounts for the multivariate nature of fish communities and can accommodate a variety of data types (e.g., presence/absence, abundance, ordinal counts) and hierarchical, temporally/spatially autocorrelated data structures that are common in fish community data (i.e., through the use of random effects). These models can also be modified to accommodate such issues as imperfect detection of fish within a community (Tobler et al. 2019). Fortunately, a large number of JSDM approaches have been developed, many of which are easily accessible and can be freely implemented in software such as the programming environment R (see Norberg et al. 2019 and Wilkinson et al. 2019 for review of modeling approaches and comparisons). The application of JSDMs in fisheries research represents an opportunity to
improve our understanding of the abiotic and biotic factors influencing the distribution of fish communities, for predicting multispecies responses to changing environmental conditions, and ultimately for improving management of multiple interacting fish species in the face of environmental change.

## Acknowledgements

Thanks to the many Minnesota DNR and PCA employees who have collected fish and environmental data over the past several decades that were used in this analysis. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

## References

Araújo, M.B., and Luoto, M. 2007. The importance of biotic interactions for modelling species distributions under climate change. Global Ecol. Biogeogr. 16(6): 743-753. doi:10.1111/j.1466-8238.2007.00359.x.

Barner, A.K., Coblentz, K.E., Hacker, S.D, and Menge, B.A. 2018. Fundamental contradictions among observational and experimental estimates of non-trophic species interactions. Ecology 99(3): 557-566. doi:10.1002/ecy.2133.

Bond, N., Thomson, J., Reich, P., and Stein, J. 2011. Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia. Mar. Freshwater Res. 62(9): 1043-1061. doi:10.1071/MF10286.

Bjørnstad, O.N. and Falck, W. 2001. Nonparametric spatial covariance functions: Estimating and testing. Env. Ecolog. Stat. 8:53-70.

Bjørnstad, O.N. 2020. ncf: Spatial covariance functions. R package version 1.2-9. https://CRAN.R-project.org/package=ncf

Chezik, K.A., Lester, N.P., and Venturelli, P.A. 2014. Fish growth and degree-days I: Selecting a base temperature for a within-population study. Can. J. Fish. Aquat. Sci. 71(1): 47-55. doi:10.1139/cjfas-2013-0295.

Chu, C., Mandrak, N.E., and Minns, C.K. 2005. Potential impacts of climate change on the distributions of several common and rare freshwater fishes in Canada. Divers. Distrib. 11(4): 299-310. doi:10.1111/j.1366-9516.2005.00153.x.

Clark, J.S., Bell, D.M., Kwit, M.C., and Zhu, K. 2014a. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Change Biol. 20(6): 1979-1991. doi:10.1111/gcb. 12425 .

Clark, J.S., Nemergut, D., Seyednasrollah, B., Turner, P.J., and Zhang, S. 2017. Generalized joint attribute modeling for biodiversity analysis: median-zero, multivariate, multifarious data. Ecol. Monogr. 87(1): 34-56. doi:10.1002/ecm. 1241.

Clark, N.J., Wells, K., and Lindberg, O. 2018. Unravelling changing interspecific interactions across environmental gradients using Markov random fields. Ecology 99(6): 1277-1283. doi:10.1002/ecy.2221.

Clark, J.S., Gelfand, A.E., Woodall, C.W., Zhu, K. 2014b. More than the sum of the parts: forest climate response from joint species distribution models. Ecol. Appl. 24(5): 990-999. doi:10.1890/13-1015.1.

DeWeber, J.T., and Wagner, T. 2018. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection. Glob. Change Biol. 24(6): 2735-2748. doi:10.1111/gcb.14101.

Dormann, C.F., Bobrowski, M., Dehling, D.M., Harris, D.J., Hartig, F., Lischke, H., Moretti, M.D., Pagel, J., Pinkert, S., Schleuning, M., Schmidt, S.I., Sheppard, C.S., Steinbauer, M.J., Zeuss, D., and Kraan, C. 2018. Biotic interactions in species distribution modeling: 10 questions to guide interpretation and avoid false conclusions. Global Ecol. Biogeogr 27(9): 1004-1016. doi:10.1111/geb. 12759 .

Gelfand, A.E., and Shirota, S. In review. Clarifying species dependence under joint species distribution modeling. doi: 10.1101/744359.

Gibson-Reinemer, D. K., Stewart, D. R., Fritts, M. W., DeBoer, J. A., and Casper, A. F. 2016. Estimating the effects of environmental variables and gear type on the detection and occupancy of large-river fishes in a standardized sampling program using multiseason bayesian mixture models. N. Am. J. Fish. Manag. 36:1445-1456.

Godefroid, M., Boldt, J.L., Thorson, J.T., Forrest, R., Gauthier, S., Flostrand, L., Perry, R.I., Ross, A.R.S., Galbraith, M. 2019. Spatio-temporal models provide new insights on. The biotic and abiotic drivers shaping Pacific Herring (Clupea pallasi) distribution. Prog. Oceanogr. 178:102198.

Gwinn, D. C., Beesley, L. S., Close, P., Gawne, B., \& Davies, P. M. 2016. Imperfect detection and the determination of environmental flows for fish: challenges, implications and solutions. Freshw. Biol. 61:172-180.

Harris, D.J. 2015. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6(4): 465-473. doi:10.1111/2041-210X.12332.

Hill, N.A., Foster, S.D., Duhamel, G., Welsford, D., Koubbi, P., and Johnson, C.R. 2017. Modelbased mapping of assemblages for ecology and conservation management: A case study of demersal fish on the Kerguelen Plateau. Divers. Distrib. 23:1216-1230.

Hocking, D. J., Thorson, J. T., O'Neil, K., and Letcher, B. H. 2018. A geostatistical state-space model of animal densities for stream networks. Ecol. Appl. 28:1782-1796.

Inoue, K., Stoeckl, K., and Geist, J. 2017. Joint species models reveal the effects of environment on community assemblage of freshwater mussels and fishes in European rivers. Divers. Distrib. 23(3): 284-296. doi:10.111/ddi. 12520.

Jacobson, P.C., Cross, T.K., Dustin, D.L., and Duval, M. 2016. A fish habitat conservation framework for Minnesota Lakes. Fisheries 41(6): 302-317. doi:10.1080/03632415.2016.1172482.

Kéry, M. 2011. Towards the modelling of true species distributions. J. Biogeogr. 38:617-618.

Latimer, A.M., Banerjee, S., Sang Jr, H., Mosher, E.S., and Silander Jr, J.A. 2009. Hierarchical models facilitate spatial analysis of large data sets: a case study on invasive plant species in the northeastern United States. Ecol. Lett. 12:144-154.

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., A. J. Royle and Langtimm, C. A. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83: 2248-2255.

Manel S., Williams H.C., and Ormerod S.J. 2001 Evaluating presence-absence models in ecology: the need to account for prevalence. J. Appl. Ecol. 38:921-931.

MNDNR. 2017. Manual of instructions for lake survey. Division of Fish and Wildlife, Section of Fisheries, Special Publication 180. St. Paul, MN.

Norberg, A., Abrego, N., Blanchet, F.G., Adler, F.R., Anderson, B.J., Anttila, J., et al. 2019. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol. Monogr. 89(3): e01370. doi:10.1002/ecm.1370.

Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F.G., Duan, L., Dunson, D., Roslin, T., and Abrego, N. 2017. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20(5): 561-576. doi:10.1111/ele. 12757.

Pendleton, R.M., Pritt, J.J., Peoples, B.K., and Frimpong, E.A. 2012. The strength of Nocomis nest association contributes to patterns of rarity and commonness among New River, Virginia cyprinids. Am. Midl. Nat. 168(1): 202-217. doi: 10.1674/0003-0031-168.1.202.

Peoples, B.K., Blanc, L.A., and Frimpong, E.A. 2015. Lotic cyprinid communities can be structures as nest webs and predicted by the stress-gradient hypothesis. J. Anim. Ecol. 84(6): 1666-1677. doi:10.1111/1365-2656.12428.

Poff, N.L. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. N. Am. Benthol. Soc. 16(2): 391-409. doi:10.2307/1468026.

Poole, H.H., and Atkins, W.R.G. 1929. Photo-electric measurements of submarine illumination throughout the year. J. Mar. Biol. Assoc. U.K. 16(1): 297-324. doi:10.1017/S0025315400029828.

Pollock, L.J., Tingley, R., Morris, W.K., Golding, N., O’Hara, R.B., Parris, K.M.,Vesk, P.A., and McCarthy, M.A. 2014. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods Ecol. Evol. 5(5): 397-406. doi:10.1111/2041-210X. 12180.

Popovic, G.C., Warton, D.I., Thomson, F.J., Hui, F.K.C. 2019. Untangling direct species associations from indirect mediator species effects with graphical models. Methods Ecol. Evol. 10(9): 1571-1583. doi: 10.1111/2041-210X.13247.

Prabhakaran, S. 2016. InformationValue: Performance Analysis and Companion Functions for Binary Classification Models. R package version 1.2.3. https://CRAN.Rproject.org/package=InformationValue

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

Radinger, J., Alcaraz-Hernández, J.D., and García-Berthou, E. 2019. Environmental filtering governs the spatial distribution of alien fishes in a large, human-impacted Mediterranean river. Divers. Distrib. 25(5): 701-714. doi:10.1111/ddi.12895.

Roy, A.H., Freeman, B.J., Freeman, M.C. 2007. Riparian influences on stream fish assemblage structure in urbanizing streams. Landsc. Ecol. 22(3):385-402. doi:10.1007/s10980-006-9034-x.

Stewart, D.R., Walters, A.W., Rahel, F.J. 2016. Landscape-scale determinants of native and nonnative Great Plains fish distributions. Divers. Distrib. 22(2): 225-238. doi: 10.1111/ddi. 12383.

Stjernman, M., Sahlin, U., Olsson, O., and Smith, H.G. 2019. Estimating effects of arable land use intensity on farmland birds using joint species modeling. Ecol. Appl. 29(4):e01875. doi: 10.1002/eap. 1875.

Sutherland, A.B., Meyer, J.L., and Gardiner, E.P. 2002. Effects of land cover on sediment regime and fish assemblage structure in four southern Appalachian streams. Freshw. Biol. 47(9): 1791-1805. doi:10.1046/j.1365-2427.2002.00927.x.

Taylor, A.T., Papes, M., and Long, J.M. 2018. Incorporating fragmentation and non-native species into distribution models to inform fluvial fish conservation. Conserv. Biol. 32(1): 171-182. doi: 10.1111/cobi. 13024 .

Thorson, J.T. Scheuerell, M.D., Shelton, A.O., See, K.E., Skaug, H.J. and Kristensen, K. 2015. Spatial factor analysis: a new tool for estimating joint species distributions and correlations in species range. Meth. Ecol. Evol. 6:627-637.

Thorson, J.T., Ianelli, J.N., Larsen, E.A., Ries, L., Scheuerell, M.D., Szuwalski, C., and Zipken, E.F. 2016. Joint dynamic species distribution models: a. tool for community ordination and spatio-temporal monitoring. Global Ecol. Biogeogr. 25:1144-1158.

Thorson, J.T., Munch, S.B., and Swain, D.P. 2017. Estimating partial regulation in spatiotemporal models of community dynamics. Ecology 98:1277-1289.

Thorson, J.T. 2019. Guidance for decisions using the Vector Autoregressive Spatio-temporal (VAST) package in stock, ecosystem, habitat, and climate assessments. Fish. Res. 210:143-161.

Thurman, L.L., Barner, A.K., Garcia, T.S., and Chestnut, T. 2019. Testing the link between species interactions and species co-occurrence in a trophic network. Ecography 42:1-13.

Tikhonov, G., Abrego, N., Dunson, D., and Ovaskainen, O. 2017. Using joint species distribution models for evaluating how species-to-species associations depend on the environmental context. Methods Ecol. Evol. 8:443-452.

Tobler, M W., M. Kéry, F.K.C. Hui, G. Guillera-Arroita, P. Knaus, and T. Sattler. 2019. Joint species distribution models with species correlations and imperfect detection. Ecology.

Trebitz, A., Carpenter, S., Cunningham, P., Johnson, B., Lillie, R., Marshall, D., Martin, T., Narf, R., Pellet, T., Stewart, S., Storlie, C., and Unmuth, J. 1997. A model of bluegilllargemouth bass interactions in relation to aquatic vegetation and its management. Ecol. Model. 94(2-3):139-156. doi:10.1016/S0304-3800(96)00009-9.

Van Zuiden, T., and Sharma., S. 2016. Examining the effects of climate change and species invasions on Ontario walleye populations: can walleye beat the heat? Divers. Distrib. 22(10): 1069-1079. doi:10.1111/ddi. 12468.

Ver Hoef, J. M., Peterson, E., and Theobald, D. 2006. Spatial statistical models that use flow and stream distance. Environ. Ecol. Stat. 13:449-464.

Wagner, T., Deweber, J.T., Detar, J., and Sweka, J.A. 2013. Landscape-scale evaluation of asymmetric interactions between brown trout and brook trout using two-species occupancy models. Trans. Am. Fish. Soc. 142(2): 353-361. doi:10.1080/00028487.2012.734892

Wang, L., Lyons, J., Kanehl, P., and Bannerman, R. 2001. Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environ. Manage. 28(2): 255-266. doi:10.1007/s0026702409.

White, S.L., and Orth, D.J. 2013. Distribution and habitat correlates of Clinch Dace (Chrosomus sp. cf. saylori) in the upper Clinch River watershed. Am. Midl. Naturalist. 171(2): 311321. doi:10.1674/0003-0031-171.2.311.

White, S.L., and Orth, D.J. 2014. Reproductive biology of Clinch dace, Chrosomus sp. cf. saylori. Southeast. Nat. 13(4): 735-744. doi:10.1656/058.013.0404.

White, S., Faulk, E., Tzilkowski, C., Weber, A.S., Marshall, M., and Wagner, T. 2020. Predicting fish species richness and habitat relationships using Bayesian hierarchical multispecies occupancy models. Can. J. Fish. Aquat. Sci. 77: 602-610.

Wilkinson, D.P., Golding, N., Guillera-Arroita, G., Tingley, R., and McCarthy, M.A. 2019. A comparison of joint species distribution models for presence-absence data. Methods Ecol. Evol. 10(2):198-211. doi: 10.1111/2041-210X.13106.

Winslow, L.A., Hansen, G.J.A., Read, J.S., and Notaro, M. 2017. A large-scale database of modeled contemporary and future projected water temperature data for 10,774 Midwestern U.S. Lakes. Scientific Data 4: 170053.

Xenopoulos, M.A., Lodge, D.M., Alcamo, J., Märker, M., Schulze, K., and Van Vuuren, D.P. 2005. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Glob. Change Biol. 11(10): 1557-1564. doi:10.1111/j.1365-2486.2005.001008.x.

Zurell, D., Pollock, L.J., and Thuiller, W. 2018. Do joint species distribution models reliably detect interspecific interactions from co-occurrence data in homogenous environments?. Ecography 41(11):1812-1819. doi:10.1111/ecog. 03315.

Figure captions
Figure 1. Effects of environmental covariates on the occurrence of Appalachian stream fishes. Circles are posterior means and bars are $95 \%$ credible intervals (CI). Blue symbols represent those effects with $95 \%$ CIs that did not overlap zero.

Figure 2. Residual correlations and shared environmental correlations among species pairs for Appalachian stream fishes. Only those correlations where the $95 \%$ CI of either residual or shared environmental correlations did not overlap zero are shown. Colors signify the direction (positive or negative) and type (environmental or residual) of significant correlation. Shapes signify the type of significant correlations between species.

Figure 3. Posterior mean conditional (blue circles) and marginal (red circles) AUC values for predicting occurrence of Appalachian stream fishes. Horizontal bars are $95 \%$ credible intervals. Shading indicates AUC thresholds separating models of low accuracy (AUC $<0.7$, white), moderate accuracy ( $0.7<\mathrm{AUC}<0.9$; light grey), and high accuracy ( $\mathrm{AUC}>0.9$, dark grey).

Figure 4. Effects of environmental covariates on the occurrence of north temperate lake fishes. Circles are posterior means and bars are $95 \%$ credible intervals (CI). Blue symbols represent those effects with $95 \%$ CIs that did not overlap zero.

Figure 5. Residual correlations and shared environmental correlations among species pairs for a subset of north temperate lake fishes. Only those correlations where the $95 \% \mathrm{CI}$ of either residual or shared environmental correlations did not overlap zero are shown. Colors signify the direction (positive or negative) and type (environmental or residual) of significant correlation. Shapes signify the type of significant correlations between species. A subset of species is shown here for clarity, see Supplementary Figure S1 for all species.

Figure 6. Log odds ratios for three species pairs (bluegill and largemouth bass, burbot and golden shiner, and smallmouth bass and walleye) for each lake. Log odds ratios greater than zero indicates positive dependence; values less than zero indicate negative dependence in species occurrence. Vertical line at zero represents independence between species.

Figure 7. Posterior mean conditional (blue circles) and marginal (red circles) AUC values for predicting occurrence of north temperate lake fishes. Horizontal bars are $95 \%$ credible intervals. Shading indicates AUC thresholds separating models of low accuracy (AUC $<0.7$, white), moderate accuracy ( $0.7<\mathrm{AUC}<0.9$; light grey), and high accuracy (AUC $>0.9$, dark grey).

Figure 8. Specificity and sensitivity for predicting the occurrence of north temperate lake fishes according to prevalence in the dataset. Circles are posterior means and vertical bars are $95 \%$ credible intervals, for marginal (blue) and conditional (red) predictions.


Proportion developed land
$-0.8$

Effects of environmental covariates on the occurrence of Appalachian stream fishes. Circles are posterior means and bars are $95 \%$ credible intervals (CI). Blue symbols represent those effects with $95 \%$ CIs that did not overlap zero.

```
846x846mm (72 x 72 DPI)
```



Residual correlations and shared environmental correlations among species pairs for Appalachian stream fishes. Only those correlations where the $95 \%$ CI of either residual or shared environmental correlations did not overlap zero are shown. Colors signify the direction (positive or negative) and type (environmental or residual) of significant correlation. Shapes signify the type of significant correlations between species.


Posterior mean conditional (blue circles) and marginal (red circles) AUC values for predicting occurrence of Appalachian stream fishes. Horizontal bars are 95\% credible intervals. Shading indicates AUC thresholds separating models of low accuracy (AUC $<0.7$, white), moderate accuracy ( $0.7<A \cup C<0.9$; light grey), and high accuracy (AUC>0.9, dark grey).


Effects of environmental covariates on the occurrence of north temperate lake fishes. Circles are posterior means and bars are $95 \%$ credible intervals (CI). Blue symbols represent those effects with $95 \%$ CIs that did not overlap zero.


Residual correlations and shared environmental correlations among species pairs for a subset of north temperate lake fishes. Only those correlations where the $95 \%$ CI of either residual or shared environmental correlations did not overlap zero are shown. Colors signify the direction (positive or negative) and type (environmental or residual) of significant correlation. Shapes signify the type of significant correlations between species. A subset of species is shown here for clarity, see Supplementary Figure S1 for all species.


Log odds ratios for three species pairs (bluegill and largemouth bass, burbot and golden shiner, and smallmouth bass and walleye) for each lake. Log odds ratios greater than zero indicates positive dependence; values less than zero indicate negative dependence in species occurrence. Vertical line at zero represents independence between species.


Posterior mean conditional (blue circles) and marginal (red circles) AUC values for predicting occurrence of north temperate lake fishes. Horizontal bars are 95\% credible intervals. Shading indicates AUC thresholds separating models of low accuracy (AUC $<0.7$, white), moderate accuracy ( $0.7<A \cup C<0.9$; light grey), and high accuracy (AUC>0.9, dark grey).


Specificity and sensitivity for predicting the occurrence of north temperate lake fishes according to prevalence in the dataset. Circles are posterior means and vertical bars are $95 \%$ credible intervals, for marginal (blue) and conditional (red) predictions.

