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Abstract. Water stress is a defining characteristic of

Mediterranean ecosystems, and is likely to become more se-

vere in the coming decades. Simulation models are key tools

for making predictions, but our current understanding of how

soil moisture controls ecosystem functioning is not sufficient

to adequately constrain parameterisations.

Canopy-scale flux data from four forest ecosystems with

Mediterranean-type climates were used in order to analyse

the physiological controls on carbon and water flues through

the year. Significant non-stomatal limitations on photo-

synthesis were detected, along with lesser changes in the

conductance-assimilation relationship. New model parame-

terisations were derived and implemented in two contrasting

modelling approaches.

The effectiveness of two models, one a dynamic global

vegetation model (“ORCHIDEE”), and the other a forest

growth model particularly developed for Mediterranean sim-

ulations (“GOTILWA+”), was assessed and modelled canopy

responses to seasonal changes in soil moisture were analysed

in comparison with in situ flux measurements.

In contrast to commonly held assumptions, we find that

changing the ratio of conductance to assimilation under nat-

ural, seasonally-developing, soil moisture stress is not suffi-

cient to reproduce forest canopy CO2 and water fluxes. How-

ever, accurate predictions of both CO2 and water fluxes under

all soil moisture levels encountered in the field are obtained

if photosynthetic capacity is assumed to vary with soil mois-

Correspondence to: T. Keenan

(t.keenan@creaf.uab.es)

ture. This new parameterisation has important consequences

for simulated responses of carbon and water fluxes to sea-

sonal soil moisture stress, and should greatly improve our

ability to anticipate future impacts of climate changes on the

functioning of ecosystems in Mediterranean-type climates.

1 Introduction

The Mediterranean region contains a distinctive endemic

flora and is characterised by warm wet winters and hot dry

summers, with ecosystem functioning dominated by the sea-

sonal cycle of water availability (Allen, 2001). Soil water

availability is believed to be the main factor limiting vegeta-

tion growth in the Mediterranean region, and secular regional

changes in temperatures and precipitation are believed to be

already inducing changes in these ecosystems (e.g. Jump et

al., 2006; Peuelas and Boada, 2003). Climate models predict

further increases in temperature in the future, with changes

in rainfall patterns (Giorgi et al., 2004; Giorgi, 2006), lead-

ing to a decrease in water resources and negative impacts on

ecosystem integrity (IPCC 2007, Summary for Policymak-

ers).

However, our ability to predict with confidence the im-

pacts of changing climate on these ecosystems is poor due

to low understanding concerning ecophysiological responses

to soil moisture stress, and consequent effects on primary

production and the cycling of carbon and water (Loreto and

Centritto, 2008). Correctly understanding current, and thus

anticipating future land-atmosphere exchanges of water and

carbon in the Mediterranean region is essential for predicting

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


1424 T. Keenan et al.: Drought controls on forest canopy carbon and water fluxes

water resource availability and the future functioning of these

key ecosystems, which provide services such as the produc-

tion of raw materials, sequestration of carbon, and numerous

recreational benefits (Schröter et al., 2005).

A thorough assessment of the vulnerability and likely fu-

ture status of Mediterranean ecosystems requires the appli-

cation of climate-driven, process-based models. Such mod-

els must incorporate the relevant ecosystem processes to suc-

cessfully simulate the sensitivity of ecosystem functioning to

soil moisture stress at all time scales of interest. However,

existing models tend to have systematic difficulties in sim-

ulating processes in Mediterranean ecosystems. This prob-

lem is exemplified by difficulties in reproducing the effects

of seasonal droughts on CO2 and water fluxes (Krinner et al.,

2005; Morales et al., 2005; Reichstein et al., 2007; Jung et

al., 2007), and it seems likely that these deficiencies are at

least in part due to the temperate bias in model development

activities. This paper directly addresses this situation.

Stomata are key organs in determining the ability of plants

to thrive in drought-prone regions. A very large number

of approaches to modelling stomatal responses to environ-

mental signals has emerged since the seminal work of Jarvis

(1976). Perhaps the most widely used approach in modern

times is to assume a linear relationship between (leaf- or bulk

canopy-level) stomatal conductance, photosynthesis, the leaf

surface concentration of CO2, and the relative humidity or

vapour pressure at the leaf surface. This empirical framework

is typified by the so-called Ball-Berry (BB) and Ball-Berry-

Leuning (BBL) parameterisations (Ball et al., 1987; Leuning

et al., 1995). It has been reported, however, that this empiri-

cal model relationship does not hold under conditions of soil

moisture stress (Reichstein et al., 2003; Misson et al., 2006).

Indeed, stomatal conductance is known to decrease with soil

moisture (e.g., Kramer, 1983), where the classical BB-type

model does not include this forcing. The effect of water

stress on plant photosynthesis and stomatal conductance has

been widely studied (e.g., Wilson et al., 2000; Chaves et al.,

2002), but there is little consensus as to those processes gov-

erning responses over seasonal time-scales (Warren, 2008).

The most widely accepted hypothesis for the control on pho-

tosynthesis during water-stressed periods is a reduction in

the supply of CO2 to the carboxylation sites through stom-

atal closure (e.g. Chaves et al., 2002), although studies also

indicate a direct water stress effect on photosynthesis (e.g.

Colello et al., 1998; Medrano et al., 2002; Reichstien et al.,

2002; Rambal et al., 2003; Xu and Baldocchi, 2003).

Studies suggest that stomatal conductance responses to

short-term water stress can be effectively included in the BB

and BBL (BB-type) models by reducing the ratio of conduc-

tance to photosynthesis (Tenhunen et al., 1990; Harley and

Tenhunen, 1991; Sala and Tenhunen, 1994). Both models

include a conductance level under conditions of zero net pho-

tosynthesis, and this level has also been reported to change

under water stress (Misson et al., 2004). However, there is

substantial evidence that photosynthetic capacity is directly

affected by soil moisture (e.g. Medrano et al., 1997; Parry et

al., 2002). Stomatal conductance and photosynthetic activ-

ity tend to be closely correlated (e.g., Cowan, 1977; Wong

et al., 1979; Hetherington and Woodward, 2003), leading

to the suggestion that it is in fact variations in photosyn-

thetic activity which determines stomatal aperture in order

to maintain biochemically optimal rates of CO2 supply (e.g.,

Cowan, 1977; Wong et al., 1979; Flexas and Medrano, 2002;

Medrano et al., 2002; Galmes et al., 2005). This has lead to

much discussion concerning the relative roles of stomatal and

non-stomatal limitations during drought periods (e.g. Jones,

1985; Ni and Pallardy, 1992; Kubiske and Adams, 1993;

Wilson et al., 2000), in particular concerning responses at

different time scales (e.g., Lawlor, 1995; Tezara et al., 1999;

Cornic, 2000; Lawlor and Cornic 2002; Flexas and Medrano

2002).

Changes in non-stomatal limitations to photosynthesis un-

der soil moisture stress have been detected (e.g. Wilson et al.,

2000; Grassi and Magnani, 2005), which have been hypoth-

esised to relate to either changes in photosynthetic capacity

(Medrano et al. 1997; Parry et al., 2002), or the conduc-

tivity of the mesophyll cell walls to CO2 (e.g., Evans and

von Caemmerer, 1996; Evans and Loreto, 2000; Evans et al.,

2004; Terashima et al., 2005, 2006; Warren, 2008). These

studies give weight to a number of studies which show that

non-stomatal limitations come into play during seasonal soil

water stress (e.g., Colello et al., 1998; Xu and Baldocchi,

2003), with many photosynthetic parameters shown to be

closely correlated with stomatal conductance (Medrano et

al., 2002). However, conflicting results, often depending on

the strength and duration of the water stress, have resulted

in great uncertainty as to which limitation dominates under

natural water-stressed conditions (e.g. Lawlor, 1995; Tezara

et al., 1999; Lawlor and Cornic, 2002; Flexas and Medrano,

2002; Grassi and Magnani, 2005; Breda et al., 2006; Galmes

et al., 2007; Keenan et al., 2009).

Such limitations in our knowledge of leaf-level responses

to seasonal drought, and how to model them, is potentially

a large source of error when modelling Mediterranean-type

forest ecosystems due to the strength of the seasonal droughts

encountered annually in such ecosystems. The canopy re-

sponse to drought is important in governing whole-plant abil-

ities to thrive under given conditions. Thus the model de-

scription of drought responses must be accurate in order to

get the inter-species competitive potential right, and hence

be able to better predict vegetation change, in particular in

dynamic global vegetation models like ORCHIDEE.

In this paper, we address the problem of modelling canopy

responses to drought from the pragmatic perspective of de-

termining the most straightforward additional parameteri-

sation that can accurately reproduce observed seasonal cy-

cles of carbon and water fluxes across a range of differ-

ent forest ecosystem types. Using observations of CO2 and

water fluxes over four different forest ecosystems growing

in Mediterranean climates, we investigate the relationships
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Table 1. Characteristics of the FLUXNET sites chosen. Plant functional types (PFTs) considered are temperate broadleaved evergreen

(TeBE), needleleaved evergreen (TeNE) and broadleaved-summergreen (TeBS). Max LAI – Maximum Leaf Area Index (m2/m2); SD – Soil

Depth (m); SWHC – Soil Water Holding Capacity (kg/m2); MH – Measurement Height (m).

Site Period Longitude Latitude Altitude Max LAI SD SWHC MH Species/PFT Reference

Puéchabon, France 2002–2004 3◦35′ 43◦44′ 270 2.9–3.2 4.5 210 13 Quercus ilex (TeBE) Allard et al. (2008)

Roccarespampani, Italy 2003–2004 11◦55′ 42◦23′ 223 4.0–5.0 4.5 485 20 Quercus cerris (TeBS) Kowalski et al. (2004)

Collelongo, Italy 1998–1999 13◦35′ 41◦50′ 1560 4–5.5 4 287 32 Fagus sylvatica (TeBS) Valentini et al. (1996)

Blodgett, California 2001–2004 −120◦37′ 38◦53′ 1315 2.4–4.2 4 583 10.5 Pinus ponderosa (TeNE) Goldstein et al. (2000)

between the observed fluxes and estimated seasonal varia-

tions in soil moisture. These data are further analysed to de-

termine the relative roles of stomatal and non-stomatal limi-

tations to photosynthesis.

The understanding derived from this analysis is then used

to adjust two contrasting process-based ecosystem mod-

els: GOTILWA+ (Growth Of Trees Is Limited by WA-

ter), a detailed biogeochemical forest growth model (Gra-

cia et al., 1999; Keenan et al., 2008; http://www.creaf.

uab.es/GOTILWA+) developed in the Mediterranean region

and therefore expected to adequately account for regional-

specific system behaviour, and ORCHIDEE (ORganizing

Carbon and Hydrology In Dynamic EcosystEms), a dy-

namic global vegetation model (Krinner et al., 2005; http:

//ORCHIDEE.ipsl.jussieu.fr), which has been found to per-

form poorest in drought-stressed regions (e.g. Jung et al.,

2007). Simulations are performed with both models at each

of the four sites in order to test the understanding provided

by the data analysis.

2 Materials and methods

2.1 FLUXNET site data and data manipulation

Measurements of forest ecosystem carbon and water fluxes

were obtained from the FLUXNET database (http://www.

fluxnet.ornl.gov) for three sites in Mediterranean Europe

[Puechabon, in France (Allard et al., 2008); Roccarespam-

pani, in Italy (Kowalski et al., 2004); and Collelongo, also in

Italy (Valentini et al., 1996)]. The measurement systems in

place at these sites were maintained under the CarboEurope-

EUROFLUX project. A fourth site at a location with a

mediterranean-type climate in California (Blodgett; Gold-

stein et al., 2000) was also chosen. The instrumentation at

this site was maintained under the AMERIFLUX project.

Together, the data used from the four sites amount to a to-

tal of eleven measurement years (Table 1), and cover a broad

range of phenological types: temperate broadleaf deciduous,

temperate needleleaf evergreen, and temperate broadleaf ev-

ergreen types, with varying levels of summer drought stress

between the different sites. These monospecific forest stands

include the species Quercus ilex, Quercus cerris, Fagus syl-

vatica, and Pinus ponderosa. FLUXNET datasets include

measurements of CO2 and water fluxes integrated to half-

hourly time steps (Baldocchi et al., 2001; Friend et al., 2007).

We used the level-4 datasets, in which flux separation tech-

niques for splitting the observed net carbon fluxes into as-

similation and respiration have been employed (Reichstein

et al., 2005). The flux-partitioning algorithm used first es-

timates the temperature sensitivity from short-term periods,

and then applies this short-term temperature sensitivity to ex-

trapolate the ecosystem respiration from night- to daytime.

This should reduce seasonal bias in partitioning. Gap-filled

data were excluded from the analyses.

2.1.1 Interpreting FLUXNET data

In the following sections we describe how we derive soil wa-

ter content, bulk canopy conductance, and leaf internal car-

bon concentrations for the parameterisation of the models

and for use in the separation of non-stomatal limitations to

photosynthesis during periods of low soil water availability.

Soil moisture. Analysing responses of observed CO2 and wa-

ter fluxes to natural changes in soil moisture requires the sea-

sonal evolution of soil water content to be known. Surface

soil water measurements are often available, but measure-

ments of soil water content over the total soil column are

either limited, or not made at most sites, and can show a very

different inter-seasonal variation than that of the surface soil

water content. In the absence of direct continuous measure-

ments of total soil water content of the soil column, daily

soil moisture content (for the entire soil column up to a site

specific soil depth, Table 1) at each site was reconstructed

through inverting the evapotranspiration rate (taken to be

equivalent to the measured latent heat flux, LHF) and ap-

plying this flux to a simple water balance model. This model

calculates the balance of the input (precipitation) and out-

puts (evapotranspiration (LHF), run-off and below-ground

drainage) on a daily basis. The main components of the soil

water balance, precipitation and LHF were measured, whilst

run-off and sub-surface drainage were estimated as follows.

Daily run-off, r, was calculated as a function of the rate of

precipitation and soil properties as:

r = 0.0001 HG(1 − Por/100)P (1)

where HG is the site specific hydraulic gradient (m m−1), Por

(%)is the water porosity of the upper 25cm of soil (estimated
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based on a soil organic carbon basis as in Honeysett and

Ratkowsky, 1989), and P (mm) is daily precipitation. Daily

sub-surface drainage is set to be a constant proportion (1%)

of soil water content (calculated as in Gracia et al., 1999, and

Honeysett and Ratkowsky, 1989). Deep soil water content

profile measurements during the studied periods were avail-

able for Puechabon and Collelongo site. Soil water content

measurements at Puechabon correspond to the total 4.5m soil

depth, whilst measurements at Collelongo correspond to the

total soil water content of the first 1m of soil.

Canopy conductance. In order to assess responses of bulk

canopy conductance to water to changes in soil water con-

tent, we estimate canopy conductance directly from the mea-

sured latent heat flux when conditions are suitable. We as-

sume that the bulk canopy stomatal conductance to water

vapour (expressed on a ground-area basis) can be estimated

from the observed latent heat flux under conditions of a dry

canopy surface conditions and negligible evaporation from

the soil surface (such conditions are common in a Mediter-

ranean climate; Daikoku et al., 2008). Bulk canopy stom-

atal conductance to water vapour, Gc, was then estimated

from the measured moisture flux, using simplified form of

the Penman-Monteith equation assuming that stomatal and

atmospheric transfer occur in series, as:

1/Gc = 1/G − 1/Ga (2)

where Ga is the aerodynamic conductance from the canopy

to the measurement point. G, the total conductance was esti-

mated from the measured latent heat flux as:

1/G = (ρ × Cp/γ ) × ([e∗(Tc) − ezR]/(λ × ε × LH)) (3)

where e∗(TC) is the saturation vapour pressure at canopy

temperature (TC), ezR is the ambient vapour pressure at flux

measurement reference height z, γ is the psychometric con-

stant, λ is the latent heat of vaporization, ρ is the density of

moist air at ambient temperature, CP is the volumetric heat

capacity of moist air at constant pressure, ε is the coefficient

for the conversion of latent heat to its water equivalent (giv-

ing actual evapotranspiration, Ea). Canopy temperature, TC

was solved from the measured sensible heat flux using the

drag law parameterization and the Monin-Obukhov similar-

ity relations for the dependence of the heat flux on the bulk

Richardson number (Deardoff, 1967; Hansen et al., 1983).

See Friend and Kiang (2005) for more details of the calcula-

tions used.

Boundary conductance between the canopy and the point

of measurement was calculated as:

1/Ga = (4)

1/Ge + 1/Gb = k2
× u(z)/ ln2

[(z − d)/z0] + B−1/u∗

where Ge is the aerodynamic conductance between the mea-

surement height and the canopy surface. z is the height at

which the energy balance measurements were made (see Ta-

ble 1), z0 is the surface roughness length, assumed propor-

tional to the stand height, h, d is the zero plane displacement

(estimated as d = z − z0 ∗ exp(U × k/u∗)), and k is von

Karman’s constant. U(z) is the measured wind speed at mea-

surement height z. Gb is the excess leaf boundary layer con-

ductance, B−1 is the dimensionless Stanton number (Owen

and Thompson, 1963; but see Qualls and Hopson, 1998). u∗

is the friction velocity.

2.1.2 Deriving relationships between bulk canopy con-

ductance, canopy photosynthesis, and soil mois-

ture stress

Bulk canopy conductance models and soil moisture stress.

Ball et al. (1987) proposed an empirical stomatal model (BB

model) in which stomatal conductance was expressed as a

linear function of the leaf photosynthetic rate, relative hu-

midity at the leaf surface, and the leaf surface CO2 concen-

tration, under conditions of ample water supply (Ball et al.,

1987). This model was later modified by Ray Leuning (BBL

model) to use the photorespiratory compensation point and

vapour pressure deficit in place of relative humidity (Leun-

ing, 1995). This BB-type leaf level model has been applied

at the canopy scale through the use of bulk canopy level vari-

ables (Leuning et al., 1995):

Gc = Gs0 + (m × An)/((Ca − Ŵ∗) × (1 + (vpd/D0))) (5)

where Gs0 is the value of Gc at the light compensation

point (µmol m−2 s−1), An is the rate of net photosynthesis

(µmol m−2 s−1), Ca is the atmospheric concentration of CO2

at the canopy surface (µmol mol−1), Ŵ∗ is the photorespira-

tory compensation point (µmol mol−1), D0 (1.5, unitless) is

an empirical coefficient that describes the sensitivity of con-

ductance to vpd, and m is an empirical parameter (unitless).

Soil moisture stress has been added to BB-type conduc-

tance models through changes in m, and Gs0. We looked for

possible changes in these parameters using diurnal cycles of

net photosynthesis, Ca , vpd, and canopy temperature which

were derived from the data under wet and dry conditions.

Given Gc, (from Eq. 2) for each cycle, An/((Ca −Ŵ∗)×(1+

(vpd/D0))) was calculated and regressed against estimated

Gc using Eq. (5). The resulting linear regression allowed for

the estimation of the m and Gs0 parameters for each diurnal

cycle. This was performed for each site using data selected

as outlined in Sect. 2.1.3. These values were calculated at

different soil water levels to assess possible responses to soil

water availability.

Non-stomatal conductance-related limitations of photosyn-

thesis due to soil water stress. Non-stomatal limitations can

be identified by simply comparing rates of photosynthesis

under similar leaf Ci concentrations, over a soil water gra-

dient. Data relating to a restricted range of leaf Ci con-

centrations (220<Ci<300), radiation (>250 W m−2), and
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temperature (<25◦C) was used. Any differences in rates of

assimilation under these otherwise non-limiting conditions

could then be attributed to non-stomatal soil water effects,

rather than changes in the rate of supply of CO2 to the in-

tercellular spaces, light limitation, or any high temperature

effects.

We further analysed the canopy physiological response to

soil moisture deficit by estimating the relationship between

mesophyll CO2 concentrations and net photosynthsis. Ci

was calculated assuming equilibrium flux of CO2. Ci, cal-

culated in this way, allows a first-order canopy-level assess-

ment of the contribution of stomatal vs. non-stomatal lim-

itatins to photosynthesis under soil moisture stress. Radi-

ation and temperature are available from FLUXNET mea-

surements. Canopy bulk leaf intercellular CO2 concentration

(Ci) can be calculated using the estimated bulk canopy con-

ductance to carbon, GcCO2
(=Gc/1.6), rates of net photosyn-

thesis derived from the eddy-covariance measurements, and

atmospheric CO2 concentrations using a simple supply and

demand function:

Ci = Ca − (An/GcCO2
) (6)

2.1.3 Data selection

All analysed FLUXNET data were first screened to remove

night-time values. Only daytime values were considered by

selecting data corresponding to half-hours with mean short-

wave radiation of 200 W m−2 or greater, and assimilation

rates of 2 µmol CO2 mground−2 s−1. Screening was also per-

formed to remove data points measured during, or within 2

days following, precipitation events, and extreme tempera-

tures (below 5 ◦ or above 35 ◦). Gap filled data was not con-

sidered. This reduced the variability in the calculated vari-

ables and allowed for a clearer identification of responses due

to soil water stress.

Golden days. For model-data comparisons, we focus on

days with “good” and stable climatic conditions during the

growing period at each site, contrasting both wet and dry

periods. Theoretically, for Golden days, the variability in

model performance should not be confounded by daily vari-

ability in environmental conditions, and the statistical analy-

sis of model performance made easier. Such “Golden days”

are defined as days with no precipitation, midday radiation

greater than 400 W m−2, frictional velocity of greater than

0.15 m s−1, and fully developed canopy leaf area index. Days

with gaps in any data were excluded.

2.2 Ecosystem models

2.2.1 GOTILWA+

GOTILWA+ (Growth Of Trees Is Limited by WAter), (Gra-

cia et al., 1999; Keenan et al., 2008; www.creaf.uab.es/

GOTILWA+) is a process-based forest growth model that

has been developed in the Mediterranean region to simu-

late tree growth and to explore how it is influenced by wa-

ter stress, climate, tree stand structure, management tech-

niques, soil properties, and climate (including CO2) change.

GOTILWA+ simulates carbon and water fluxes within forests

in different environments, for different tree species, and un-

der changing environmental conditions, either due to climate

or to management regimes.

The model treats monospecific stands which can be even-

or uneven-aged. Individual trees are aggregated into 50 DBH

(Diameter at Breast Height) classes and calculations are per-

formed for each class. Hourly ecosystem carbon and water

fluxes are estimated using meteorological forcing.

GOTILWA+ includes a two-layer canopy photosynthetic

model (Wang and Leuning, 1998), coupled to a carbon allo-

cation and growth model and a soil respiration and hydrol-

ogy model. Each canopy layer is divided into fractions of

sunlit (when direct radiation is present) and shaded leaves,

with intercepted radiation depending on the time of the day,

and the area of leaf exposed to the sun based on leaf an-

gle and the canopy’s ellipsoidal leaf distribution. Assimi-

lation rates for sunlight and shaded leaves are calculated us-

ing the approach of von Caemmerer and Farquhar (1981),

with dependencies on intercepted direct and diffuse radia-

tion, species-specific photosynthetic capacities, leaf temper-

ature, and the concentration of CO2 within the leaf air spaces.

Stomatal conductance is calculated using the BBL model, on

a leaf temperature basis. Rates of photosynthesis are de-

pendent on the rate of carboxylation and the proportional

rate of electron transport. The canopy average (over space

and time) maximum RuBP (ribulose-1,5-bisphosphate) sat-

urated rate of carboxylation, V cmax, and the maximum rate

of electron transport, Jmax, were calculated following Far-

quhar et al. (1980) and de Pury and Farquhar (1997). Due

to model specific differences in light and temperature distri-

bution within the canopy, V cmax and Jmax need to be cali-

brated for site specific applications. Here we they were cal-

ibrated using the diurnal cycles of observed canopy carbon

fluxes for the wet Golden day periods (see below for a de-

scription of Golden days) at each site (V cmax: 35, 50, 55,

and 40 µmol, m−2, s−1, Jmax = V cmax/2 for Puchabon, Blod-

gett, Collelongo and Roccarespampani respectively). Other

photosynthetic parameters were taken from Bernacchi et

al. (2001). Other model parameters were set to either site

specific (when available) or species specific parameters, as

in Gracia et al. (1999).

Each tree cohort is represented by three carbon com-

partments, leaf, sapwood, and fine roots. Available mo-

bile carbon is allocated to each, and maintenance respira-

tion of each compartment is calculated as a function of tem-

perature. Fine litter fall (i.e. leaves), gross litter fall (i.e.

bark, branches) and the mortality of fine roots add to the

soil organic carbon content. The soil in GOTILWA+ is di-

vided vertically into two layers, an upper organic layer, and

a lower mineral layer, with a fixed rate of transfer of soil
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organic carbon between them. Soil water processes are de-

scribed in Sect. 2.1.1.

2.2.2 ORCHIDEE

ORCHIDEE is a process-based terrestrial biosphere model

that simulates terrestrial vegetation and soil energy, water,

and carbon fluxes (Krinner et al., 2005). Changes in vegeta-

tion structure and distribution in response to environmental

forcings are also simulated.

ORCHIDEE consists of three major components: (a)

SECHIBA, which calculates the exchanges of energy and

water between the atmosphere and the land surface; (b)

STOMATE, which simulates photosynthesis, carbon alloca-

tion, litter decomposition, soil carbon dynamics, and mainte-

nance and growth respiration and (c) the LPJ dynamic vege-

tation model (Sitch et al., 2003), which simulates long-term

changes in the composition and structure of vegetation result-

ing from sapling establishment, competition for light, and

tree mortality. Energy, water, and carbon fluxes resulting

from photosynthesis and autotrophic and heterotrophic res-

piration are calculated on a half-hourly basis, whereas plant

growth, phenology, and vegetation structure occur on a daily

timestep.

Plants in ORCHIDEE used in this study are divided into

the following functional types, each with different phenolog-

ical, physiological, and morphological characteristics: tem-

perate needleleaved evergreen, temperate broadleaved ever-

green, temperate broadleaved deciduous, and C3 herbaceous

types. In contrast to GOTILWA+, vegetation is represented

as an average individual plant, with no accounting for size-

distribution.

ORCHIDEE simulates photosynthesis for both C3 (us-

ing the method of Farquhar et al., 1980) and C4 (using

the method of Collatz et al., 1992) photosynthetic path-

ways, with stomatal conductance calculated using the BB

model. For model parameterisations, plant functional types

(PFT) (Table 1) parameters were used, taken from Krinner et

al. (2005). Prior studies of model optimization against eddy

covariance data have shown that the maximum rate of car-

boxylation in the ORCHIDEE model potentially was under-

estimated for some PFTs (Santaren et al., 2007). The canopy

average maximum rate of carboxylation was increased be-

tween 25–40% (to 70, 75, 50, and 40 µmol, m−2, s−1 for

Puéchabon, Blodgett, Collelongo and Roccarespampani re-

spectively) from the original parameter values (Krinner et al.,

2005) to calibrate ORCHIDEE to meet the observed canopy

average fluxes during the selected Golden days (see descrip-

tion of Golden days below). Soil water content is treated

within two layers, with inputs from precipitation less canopy

interception loss, and outputs to sub-surface drainage, run-

off, soil evaporation, and transpiration. Further model pa-

rameters were taken from Krinner et al. (2005).

2.2.3 Accounting for soil water stress in coupled

photosynthesis-conductance models

Two different approaches are frequently used to incorporate

the effect of drought stress on the (Farquhar – BB-type) cou-

pled conductance-assimilation model. Tenhunen et al. (1990)

originally proposed the application of stomatal limitations

under soil moisture stress through applying changes in the

slope m of the coupled Farquhar – BB-type model during

water stressed periods. This method decreases the empir-

ical scaling coefficient m, with moisture stress, leading to

reduced conductance and therefore reduced internal CO2

available for assimilation. Changing the slope during wa-

ter stressed periods has since been commonly adopted, and

was the methodology for water stress response applied in the

GOTILWA+ model. In GOTILWA+, stomata responded to

drought stress through the application of a linear scalar of

soil moisture, as:

Gs = Gs0 + ((Wf acstoma × m) × (An − Rd))/ (7)

((Ca − Ŵ∗) × (1 + (vpd/D0)))

where Wfacstoma is a soil moisture-dependent scalar with val-

ues between 0 and 1.

The effect of drought stress on the coupled photosynthesis-

conductance model (of Farquhar – BB-type) can be im-

plemented through changes in non-stomatal limitations, by

reducing photosynthetic potential through the application

of a scalar to both the maximum RuBP (ribulose-1,5-

bisphosphate) saturated rate of carboxylation, V cmax, and the

maximum rate of electron transport, Jmax, as follows:

V c max
′

= V c max × Wf acphoto,

J max
′

= J max × Wf acphoto

(8)

Where Wfacphoto is a soil moisture-dependent scalar with

values between 0 and 1. This causes stomatal closure as An

is reduced in Eqn. (5). The ORCHIDEE model applied a

linear scalar in this manner to directly reduce photosynthesis

during water stress.

The two approaches were tested in both models, thus

avoiding the potential for any model specific biases in results.

We used the flux data analysis outlined above to test three

hypotheses concerning the responses of canopy net photo-

synthesis and evapotranspiration to seasonally varying soil

moisture supply: 1) directly reducing stomatal conductance

by modifying the slope, m, within the BB or BBL model is

sufficient to explain observed responses, 2) directly reducing

Jmax and V cmax and hence net photosynthesis within the BB

or BBL models is sufficient to explain observed responses,

and 3) the simultaneous application of both stomatal and

non-stomatal limitations is necessary to capture the timing

and extent of the water stress induced decrease in CO2 and

water fluxes at each site.
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Table 2. Parameters for the calculation of stomatal conductance, and water stress parameters applied to stomatal conductance (Fig. 3) and

photosynthetic potential (Fig. 4) for each site. Wfac smax, and Wfac smin are given in % of maximum soil water holding capacity.

Site Stomata – Wfacstoma Photosynthesis – Wfacphoto

Slope Intercept (mol m−2 s−1) Wfac smax Wfac smin q Wfac smax Wfac smin q

Puéchabon 9 0.0017 80 10 0.15 75 30 0.6

Roccarespampani 8.5 0.0015 95 10 0.22 70 10 0.85

Collelongo 10.5 0.000025 95 0 0.23 75 5 0.3

Blodgett 10.5 0.00002 85 5 0.18 45 5 0.2

To test the different hypothesis, we parameterised the re-

duction scalars already in use in both GOTILWA+ and OR-

CHIDEE from the data for both changes in the slope param-

eter, m, Wfacstoma and non-stomatal related changes in pho-

tosynthesis Wfacphoto. These scalars have the form:

Wfac =

{

1, if S(t) ≥ Smax
[

s(t)−smin
smax−smin

]q

, if S(t) < Smax
(9)

where q is a measure of the non-linearity of the effects of soil

water stress on physiological processes, smax the soil water

content at which reductions are first evident, and smin is the

wilting point, expressed as percentages of maximum soil wa-

ter holding capacity. These two scalars were parameterised

independently for each site and were then applied separately

in both GOTILWA+ and ORCHIDEE.

2.2.4 Modelling protocol, hypothesis testing, and model

evaluation

Simulations of CO2 and water fluxes with each model were

run separately for the time periods outlined in Table 1 at each

of the four sites to evaluate the models and test the outlined

hypothesis. For each model and site, 4 runs were made with:

1) with the model’s original water stress response parame-

terisations, 2) the application of the modified stomatal limi-

tations (Wfacstoma, Table 2), 3) the application of the modi-

fied non-stomatal limitation (Wfacphoto, Table 2), and 4) the

application of both the modified stomatal and non-stomatal

limitations together.

To assess the different hypothesis for modeling soil wa-

ter stress responses using Golden days, we ran simulations

with the soil water content at each time step set to the re-

constructed soil water content for the corresponding day.

This enabled the evaluation of the canopy physiological pro-

cess descriptions independent of potential inaccuracies in

the modelled latent heat fluxes, which would confound any

model-data comparison. This decoupling of the simula-

tion of soil and canopy processes was achieved by remov-

ing the water volume equivalent of the observed latent heat

flux at each time step instead of the simulated evapotranspi-

ration Thus, in simulations with forced soil water content

the modelled photosynthesis and conductance were calcu-

lated as functions of the reconstructed soil water, and any

under- or over-estimations of evapotranspiration did not af-

fect the soil water content and thus did not propagate into the

next time step. In simulations comparing the two models,

GOTILWA+ and ORCHIDEE (presented in Figs. 6, 7), the

constraint of a forced soil water content was removed, and a

full bi-directional feedback between the soil and the canopy

was considered.

Both models were forced with the same half-hourly mete-

orological variables (temperature, precipitation, vapour pres-

sure deficit, wind speed, global radiation, and atmospheric

CO2 concentration), which were taken from site observa-

tions, and site conditions including soil characteristics and

hydrological parameters (Table 1). The site specific con-

ductance parameters, m and Gs0 were calculated from the

data (m and Gs0 were the same for both GOTILWA+ and

ORCHIDEE) for each site (Table 2). In addition to the

above site-level parameters required by the two models,

GOTILWA+ used descriptions of stand characteristics (in-

cluding the structure of the canopy and the DBH class distri-

bution), and also a number of tree physiological parameters

(biomass allocations and compartment specific growth and

maintenance respiration rates).

GOTILWA+ simulations of CO2 and water fluxes at each

site were initialised by specifying forest structure variables

specific to the first year of simulation at each site, with data

obtained from the literature. ORCHIDEE simulations were

initialised by prescribing the fractional cover of each plant

functional type for each site.

Statistics. The hypotheses were evaluated using the correla-

tion coefficient r2, the Root Mean Squared Error (RMSE),

and the statistic Model Efficiency (MEF). The modelling

efficiency statistic (MEF) is similar to r2, which is inter-

preted as the proportion of variation explained by the fit-

ted line whereas the MEF statistic is the proportion of

variation explained by the line Y = f(X1, ..., Xp). This statis-

tic has been extensively used in hydrology models (Byers

et al., 1989, Loague and Green, 1991 and Zacharias et al.,

1996), but has also been used in biological models. It is re-

lated to the RMSE according to: MEF = 1-RMSE2/s2 where

s2 is the variance of the observations. A value near one (the
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Fig. 1. Hourly meteorological conditions (Radiation, air temperature), flux data (Assimilation – An, actual evapotranspiration – Ea), and

estimated Canopy bulk conductance (Gc) at each site day for the well-watered (Wet) and drought (Dry) Golden day periods. Solid lines

represent the average diurnal cycle for each period.

upper bound) indicates a close match between observations

and model predictions. A value of zero indicates that the

model predicts individual observations no better than if it al-

ways predicted the average of the observations. Values less

than zero indicate that the observation average would be a

better predictor than the model results. The MEF statistic is

more sensitive than r2 to systematic deviations and is a use-

ful additional tool in the assessment of goodness of fit (Mayer

and Butler, 1993).

3 Results

3.1 Primary fluxes

All sites showed typical Mediterranean-type climate evolu-

tion during the studied years, including an extended sum-

mer drought. Strong seasonal patterns were observed with

reduced photosynthesis and evapotranspiration during peak

summer periods (Fig. 1), in contrast to higher fluxes during

late spring. This seasonality was particularly noticeable at

Puechabon, Collelongo, and Roccarespampani, and less so

at the Blodgett site.
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Fig. 2. Reconstructed daily relative soil water content (RSWC – total soil water in the soil column relative to the maximum soil water holding

capacity) for the simulated periods at each of the studied sites, separated by year. Data represent soil water measurements at Puechabon (over

the total 4.5 m soil profile) and Collelongo (for the top 1 m of soil).

3.2 Data analysis results

Soil Water Content. Figure 2 shows the evolution of esti-

mated relative soil water content (RSWC – total soil water

in the soil column divided by the soil water holding capac-

ity) for each simulated site and year, derived by inverting

the observed latent heat fluxes as described in Sect. 2.1.1. At

each site, the soil water content stays high throughout spring,

being regularly recharged by precipitation events to compen-

sate for any losses from evapotranspiration. The effect of the

dry summers can be seen through strong decreases in the soil

water content. Soil water levels generally return to maximum

values during autumn, and remain relatively stable through

winter. The Blodgett soil water content shows little inter-

annual variability due to the lack of inter-annual variability

in its climate during the studied period. In contrast, at Puech-

abon annual summer soil water varies over a large range, with

levels reaching a prolonged low during 2003 due to the strong

drought experienced in that year. This dry summer period

is also reflected at the Roccarespampani site, with soil water
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Fig. 3. (Left): Changes in the slope parameter, m, of Eq. 5, (the empirical species specific factor that specifies the baseline ratio between

conductance and net photosynthesis) with relative daily soil water content (RSWC – total soil water in the soil column relative to the

maximum soil water holding capacity) for each site, calculated using mid-day values. Regression lines represent the functions (Wfacstoma)

applied in the models; (Right): Intercept parameter (Residual of Eq. 5), at each site, as a function of the RSWC.

levels in 2003 falling below 50% of those in 2004. Soil water

measurements are available for Puechabon and Collelongo,

and compare well to the reconstructed values (Fig. 1). Both

the timing and extent of the soil water drop in summer were

accurately captured at each site and year. At Collelongo, the

reconstruction slightly overestimated the autumn soil water

content in 1998. We are not aware of similar data for the

other sites.

Reductions of photosynthesis and conductance due to soil

water stress. The estimates of soil water content shown in

Fig. 2 are used with the observed flux data to determine

whether the m parameter in the BB-type models of canopy

conductance, non-stomatal limitations, or both vary signifi-

cantly with soil moisture. Values for the slope and intercept

of the BBL conductance model at high soil water content

for each site are given in Table 2. These values were calcu-

lated separately for both the BB and BBL canopy conduc-

tance model formulations, and were found to be independent

of the choice of conductance model.

The fitted empirical parameter in the BB-type model, m,

did not change notably during the slow onset of soil water

stress at the beginning of each summer, and then declined

only slightly at very low soil water levels (<30% relative

soil water) (Fig. 3a). The fitted intercept in Eq. 5 did not

change with decreases in available soil water at any of the

sites (Fig. 3b).

In contrast to the lack of major changes in the BB and

BBL model parameters, strong non-stomatal limitations to

photosynthesis were found under conditions of soil mois-

ture stress at all sites (Fig. 4). The point at which limita-

tions were first encountered was site dependent and between

50% and 80% RSWC Although inferred soil water in our re-

construction falls quite low in Blodgett, this did not lead to

decreases of the extent observed at the other sites in either

CO2 or water fluxes during the summer period (only slight

water stress), suggesting either root access to deep ground

water not simulated by our reconstruction, or an underesti-

mation of soil water capacity. At the other three sites, fluxes

declined with site-dependent intensities. Roccarespampani

showed the strongest decline in fluxes, followed by Puech-

abon and then Collelongo. The fitted Wfacphoto functions

shown in Eq. 8 are given in Fig. 4, with parameters given

in Table 2.

3.3 Modelled diurnal cycle and hypothesis testing

Evaluation of the stomatal vs. non-stomatal limitation hy-

potheses using process-based models and flux data. The abil-

ity of the alternative hypotheses outlined above to simulate

canopy responses to soil moisture stress is tested by incorpo-

rating the fitted empirical relationships shown in Figs. 3 and

4 into the framework of the two process-based models. The

simulation of the Golden day diurnal courses of CO2 and wa-

ter fluxes during periods of high water availability was very

accurate for all model combinations (three hypotheses im-

plemented separately in two models) (Fig. 5a1, a2, b1, b2).

As expected, simulated fluxes during high water availability

were relatively unaffected by the modelling approach cho-

sen, due to the fact that the approaches only differ in their

treatment of responses to water stress. Conversely, responses

to water stress were highly dependent on the chosen response

description.
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Table 3. Statistics for the comparison of each model (GOTILWA+ and ORCHIDEE) and approach (Stomatal vs. Non-Stomatal restrictions)

with FLUXNET data at each site, for assimilation (An) and actual evapotranspiration (Ea) during wet and dry period Golden days, with soil

water in both models prescribed (SL – Applying stomatal limitations only, NSL – Applying Non-stomatal restrictions, Original – Original

models).

An Ea

SL NSL Original SL NSL Original

wet dry wet dry wet dry wet dry wet dry wet dry

GOTILWA+:

Puechabon

Model Efficiency 0.74 −18.6 0.74 −0.41 0.63 −25 0.76 −2.95 0.77 −1.4 0.65 −0.64

R2 0.84 0.82 0.84 0.82 0.85 0.78 0.81 0.7 0.81 0.65 0.81 0.65

RMSE 2.4 4.76 2.4 1.84 2.7 6.1 0.03 0.07 0.03 0.06 0.02 0.047

Collelongo

Model Efficiency 0.81 −10.3 0.83 −3.72 0.73 −0.45 0.77 −12.1 0.76 −13.2 0.82 −0.02

R2 0.91 0.8 0.91 0.81 0.91 0.26 0.85 0.51 0.85 0.5 0.86 0.42

RMSE 4.6 7.5 4.4 5.34 4.9 4.9 0.1 0.16 0.11 0.16 0.1 0.02

Roccarespampani

Model Efficiency 0.81 −5.21 0.8 0.82 0.76 −3.87 0.73 −8.36 0.59 −0.14 0.42 −5.6

R2 0.89 0.83 0.88 0.87 0.88 0.83 0.89 0.9 0.89 0.89 0.89 0.9

RMSE 4.0 9.8 4.3 3.24 4.8 8.85 0.05 0.13 0.07 0.06 0.08 0.11

Blodgett

Model Efficiency 0.62 0.43 0.62 0.36 0.6 0.42 −0.71 0.76 −0.71 0.70 0.54 0.67

R2 0.83 0.81 0.83 0.82 0.81 0.81 0.71 0.83 0.72 0.83 0.78 0.83

RMSE 3.4 −18.6 3.4 3.4 3.5 3.49 0.08 0.013 0.08 0.015 0.04 0.008

ORCHIDEE:

Puechabon

Model Efficiency 0.74 −8.9 0.73 −4.5 0.66 −1.15 0.38 −7.85 0.39 −6.5 0.47 −1.45

R2 0.74 0.77 0.74 0.78 0.75 0.67 0.66 0.51 0.66 0.5 0.8 0.7

RMSE 2.5 3.98 2.6 3.0 3.0 2.63 0.04 0.09 0.04 0.08 0.04 0.04

Collelongo

Model Efficiency 0.91 −6.1 0.92 0.7 0.92 −0.57 0.77 −4.8 0.82 −0.4 0.81 −5.07

R2 0.92 0.82 0.92 0.8 0.92 0.65 0.87 0.53 0.88 0.53 0.87 0.47

RMSE 3.2 5.41 2.9 1.61 2.95 4.34 0.07 0.12 0.08 0.06 0.08 0.22

Roccarespampani

Model Efficiency 0.87 0.42 0.87 0.88 0.87 0.54 0.81 0.29 0.83 0.62 0.81 −0.11

R2 0.84 0.79 0.82 0.83 0.83 0.81 0.77 0.78 0.78 0.79 0.77 0.78

RMSE 3.2 4.6 3.2 2.66 3.2 4.1 0.05 0.06 0.04 0.04 0.04 0.06

Blodgett

Model Efficiency 0.5 0.60 0.5 0.65 0.5 0.59 −19.5 −40.63 −19.66 −41.7 −19.0 −41.4

R2 0.81 0.77 0.81 0.77 0.81 0.77 0.47 0.61 0.47 0.63 0.47 0.62

RMSE 3.0 2.27 3.0 1.98 2.99 2.3 0.27 0.18 0.27 0.18 0.27 0.18

The shape of the diurnal cycle during dry periods, shown

for the Roccarespampani site (Fig. 5), is relatively insen-

sitive to the chosen soil moisture limitation approach for

each process-based model system, demonstrated by a com-

parable r2. However, the different approaches gave marked

differences in the root mean squared error (RMSE) and in

the model efficiency (MEF). Applying the calculated water

stress functions presented in Table 2, to V cmax, and Jmax

led to an 80% reduction in the RMSE for assimilated carbon

using the GOTILWA+ model, and 47% in the case of OR-

CHIDEE, when compared to the original model parameteri-

sations. Applying the water stress functions solely to stom-

atal control produced a marked increase (13% GOTILWA+;

9%, ORCHIDEE, Table 3) in the RMSE, compared to the

original model parameterisations, and was the only approach

to give a negative average MEF.

The same relative performance of the different hypothe-

ses was observed at all sites, with marked improvements in

the accuracy of simulations of the diurnal cycle of both net

photosynthesis and evapotranspiration under drought stress
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Fig. 4. Non-stomatal limitations to normalised net assimilation, An,

as a function of relative soil water content (total soil water in the

soil column relative to the maximum soil water holding capacity),

calculated at each site individually (Using An over restricted ranges

of leaf Ci concentrations (220<Ci<300), radiation (>250 W m−2),

and temperature (<25◦C)), (Parameters of the adjusted functions in

Table 2). An was normalized to the observed average assimilation

rate under well watered conditions (>0.8 Relative soil water hold-

ing capacity).

when photosynthetic capacity was reduced using Eq. (8).

Remarkably, no direct effect of soil moisture on stomatal

conductance was necessary to successfully reproduce the re-

sponse of evapotranspiration to water stress, i.e. both the

BBL and BB models were sufficient for this purpose. Con-

versely, the application of restrictions to only stomatal con-

ductance led to photosynthesis being overestimated under

drought stress (by an average of 47% in Puechabon, 55% in

Roccarespampani, 34% in Collelongo, and 8% in Blodgett,

of monthly net photosynthesis values during water stressed

months) (Table 3). Applying a stronger stomatal conduc-

tance restriction than that calculated from the data allowed

for the effective simulation of stomatal conductance, but the

lowered conductance was not sufficient to decrease assimila-

tion rates.

We also tested the effects of applying the calibrated func-

tions to both conductance and assimilation (Eqs. 4 and 5),

thus applying stomatal and non-stomatal limitations together.

This gave no improvement in the modelled carbon and wa-

ter fluxes when compared to simulations applying just non-

stomatal limitations to photosynthesis, suggesting that hy-

pothesis two is correct.

3.4 Simulation of diurnal and seasonal fluxes with

GOTILWA+ and ORCHIDEE

To evaluate the capacity of the two models to reproduce

the Observed diurnal and seasonal fluxes following updat-

ing with the best fitting empirical model of soil moisture

effects (i.e. non-stomatal limitations only), we repeated the

hourly simulations of CO2 and water fluxes for all years (Ta-

ble 1) for each site with soil water content calculated from

the model simulation itself (Figs. 6, 7).

Simulation of diurnal fluxes.

For well-watered Golden days at Puechabon, both mod-

els accurately reproduced the shape of the diurnal time

courses of CO2 and water fluxes, with ORCHIDEE perform-

ing slightly better (Fig. 6, Table 4). Under dry conditions

at Puechabon, both models responded accurately to drought

(Table 4).

CO2 and water fluxes were accurately modelled by both

models in Collelongo (Table 4). Both models were capa-

ble of simulating net photosynthesis to a very high degree

of accuracy in both wet and dry conditions (Table 4). Water

fluxes proved more difficult, with both models encountering

the same problems, underestimating actual evapotranspira-

tion during wet periods and overestimating in dry periods.

At Roccarespampani (Fig. 6), both models accurately re-

produced CO2 and moisture fluxes (Table 4). The diurnal cy-

cle of CO2 fluxes at Blodgett was well captured by both mod-

els (Table 4, Fig. 6). ORCHIDEE correctly calculated the

rate of photosynthesis and conductance in wet conditions, as

did GOTILWA+. In dry conditions GOTILWA+ accurately

modelled assimilation rates, but both models had difficulties

in calculating the quantity of water transpired, giving much

lower evapotranspiration rates than those observed.

It is worth noting that, statistically (Table 4), both models

simulate the diurnal cycle of assimilated carbon as well under

water stressed conditions as they do in wet conditions when

including the new water stress functions.

Seasonal cycles and inter-annual variations

Finally, the ORCHIDEE and GOTILWA+ simulations (the

same diurnal simulations shown in Fig. 6) for each site and

the entire time series are compared to the observations in

Fig. 7. The eleven site-years cover a wide range of inter-

annual and inter-site variability in climatic forcings, and thus

varying levels of drought. The effect of drought on simu-

lated photosynthesis and conductance, which is characterised

by a sharp decline in fluxes in otherwise optimal conditions,

is most obvious at Puechabon in all years, at Collelongo in

1998, and at Roccarespampani in 2003.

For Puechabon, both models were capable of accurately

predicting photosynthesis in non-water stressed conditions.

The timing of the onset of summer reductions in both CO2

and water fluxes was also well captured in each year. The

magnitude of summer reductions in CO2 and water fluxes
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Fig. 5. Golden day diurnal courses for the observed hourly photosynthesis (An, in umol m−2 s−1) and actual evapotranspiration (Ea , in mm h−1), and average modelled (a:

GOTILWA+, b: ORCHIDEE) values for the same Golden days, for the Roccarespampani site, using 3 different modelling approaches, with the soil water content prescribed in

each: 1) Applying the factors to stomatal conductance only. 2) Applying the factors to Photosynthetic potential only, and 3) Applying the original parameterisations. Wet and dry

Golden day periods are compared. Error bars represent the standard deviation from the mean. Golden day periods for Roccarespampani: 2004, 17 May–1 June (wet), 19 August–8th

September (dry)
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Fig. 6. Diurnal cycles of observed photosynthesis (An, in µmol m−2 s−1) and actual evapotranspiration (Ea in mm h−1), and average

modelled values for the same Golden days for both GOTILWA+ and ORCHIDEE at all sites for both wet and dry Golden day periods (with

dynamic soil water). Golden day periods for each site: Puechabon 2002, 22 May to 4 June (wet), 19 August–17 September (dry); Collelongo

1998, 16 June–4 July (wet), 11–29 August (dry); Roccarespampani 2004, 17 May–1 June (wet), 19 August–8 September (dry); Blodgett

2002, 13 April–1st May (wet), 4–17 July (dry).

Fig. 7. Measured (black solid line) and modelled (both GOTILWA+ (red long dash) and ORCHIDEE (blue short dash)) seasonal cycles of

daily assimilation rates (An) and actual evapotranspiration (Ea) at all sites (data shown has been smoothed using a ten-day running mean).
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Table 4. Statistics for the comparison of GOTILWA+ and ORCHIDEE diurnal cycles of assimilation (An) and actual evapotranspiration

(Ea) with FLUXNET data at each site, for wet and dry period Golden days, with free simulated soil water content, based on hourly data.

Wet An Dry An

GOTILWA+ ORCHIDEE GOTILWA+ ORCHIDEE

Puechabon

Model Efficiency 0.83 0.62 0.6 −0.05

R2 0.87 0.74 0.81 0.76

RMSE 2.1 3.1 1.0 0.5

Collelongo

Model Efficiency 0.86 0.91 0.70 0.76

R2 0.91 0.92 0.51 0.82

RMSE 4.0 3.3 2.2 1.9

Roccarespampani

Model Efficiency 0.81 0.87 0.85 0.86

R2 0.89 0.84 0.91 0.83

RMSE 4.1 3.2 2.5 2.9

Blodgett

Model Efficiency 0.64 0.50 0.78 0.64

R2 0.87 0.81 0.89 0.76

RMSE 3.3 2.9 1.9 2.3

Wet Ea Dry Ea

GOTILWA+ ORCHIDEE GOTILWA+ ORCHIDEE

Puechabon

Model Efficiency 0.68 0.56 −0.27 −0.22

R2 0.81 0.79 0.65 0.63

RMSE 0.04 0.04 0.03 0.02

Collelongo

Model Efficiency 0.79 0.78 −0.30 −0.27

R2 0.86 0.88 0.51 0.52

RMSE 0.10 0.07 0.06 0.05

Roccarespampani

Model Efficiency 0.64 0.87 0.80 0.81

R2 0.89 0.90 0.90 0.88

RMSE 0.07 0.04 0.04 0.04

Blodgett

Model Efficiency 0.63 0.69 −0.68 −1.52

R2 0.73 0.71 0.89 0.62

RMSE 0.07 0.09 0.24 0.23

encountered was accurately simulated in 2002, but overes-

timated in 2003 and 2004 when simulating with a full bi-

directional feedback between soil water and canopy fluxes.

Although with GOTILWA+, evapotranspiration was slightly

overestimated in the period of high production before wa-

ter stress was encountered, GOTILWA+ outperformed OR-

CHIDEE at Puechabon, giving a better correlation to the EU-

ROFLUX data, a higher model efficiency and a lower stan-

dard error (Table 5). GOTILWA+ also performed better at the

Blodgett site, where ORCHIDEE accurately captured CO2

and water flux dynamics during spring, but largely overesti-

mated the effect of drought on assimilation and conductance

during summer periods.

Comparisons of simulations with measurements at the

two deciduous sites were complicated by an active under-

storey. Phenology also proved difficult to model, with neither

model capable of accurately predicting the timing of bud-

burst or leaf-fall, particularly in 2003. In Roccarespampani,

both models produced an equal match to the data, but were

prone to higher levels of standard error (Table 5). Roccares-

pampani had vegetative growth beneath the canopy, which

was not taken into account in GOTILWA+, but was simu-

lated by ORCHIDEE. Relatively high latent heat fluxes were

observed outside of the growing season of the deciduous

oak, Quercus cerris. These were not reproduced by either

model, leading to difficulties when simulating the evolution
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Table 5. Assimilation and actual evapotranspiration statistics for the comparison of GOTILWA+ and ORCHIDEE with FLUXNET data

at each site, for seasonal daily simulation values. For Collelongo and Roccarespampani, which are deciduous sites, data from outside the

growing period was omitted. New and original model formulations are compared.

GOTILWA+ ORCHIDEE

An Ea An Ea

New Original New Original New Original New Original

Puechabon

Model Efficiency 0.76 −0.09 0.46 0.42 0.64 0.69 0.18 −0.82

R2 0.90 0.83 0.92 0.91 0.88 0.68 0.48 0.39

RMSE 1.23 1.96 0.61 0.36 1.32 1.36 0.63 0.92

Collelongo

Model Efficiency 0.82 0.69 0.5 0.45 0.77 0.74 0.6 0.55

R2 0.93 0.93 0.79 0.79 0.91 0.90 0.68 0.7

RMSE 1.68 1.78 0.93 0.92 1.88 1.91 0.74 0.83

Roccarespampani

Model Efficiency 0.68 0.31 0.16 −0.11 0.67 0.58 0.64 −0.46

R2 0.88 0.85 0.87 0.86 0.84 0.85 0.82 0.66

RMSE 2.36 3.11 1.08 1.23 2.34 2.44 0.64 1.32

Blodgett

Model Efficiency 0.69 0.006 0.53 0.36 0.37 −0.1 0.18 0.23

R2 0.89 0.79 0.71 0.70 0.71 0.47 0.49 0.50

RMSE 1.47 1.74 0.65 0.62 1.95 2.21 0.93 1.03

of available soil water at the Roccarespampani site. In Col-

lelongo, ORCHIDEE preformed better than GOTILWA+.

GOTILWA+ accurately reproduced the strength and duration

of the drought in 1998 and its effect on photosynthesis, but

due to inaccuracies in the prediction of budburst and leaf-

fall dates, total photosynthesis over the growing season was

overestimated (Table 5, Fig. 7).

Overall, both models accurately capture the observed CO2

and moisture fluxes at all sites. GOTILWA+ gave an aver-

age site r2 of 0.90 for An and 0.82 for Ea , and an average

MEF of 0.74 for An and 0.41 for Ea , over all sites. OR-

CHIDEE gave an average site r2 of 0.84 for An and 0.59

for Ea , and an average MEF of 0.61 for An and 0.34 for

Ea (Table 5). These values represent a marked increase in

model accuracy when compared with the original models.

For GOTILWA+ the new implementation led to an average

decrease of 22% in the RMSE over all sites for simulated An

and a decrease of 9% in the RMSE of simulated Ea over all

sites when compared against the original model formulation.

For ORCHIDEE the RMSE for An was relatively unchanged

(though the r2 increased by 15%) and the RMSE for Ea de-

creased by an average of 21% over all sites. These statis-

tics suggest signficantly better model performance than that

found in recent published model comparisons including wa-

ter stressed sites (Morales et al., 2005; a study including the

original versions of the ORCHIDEE and GOTILWA+ mod-

els).

4 Discussion

A number of recent studies have brought into question the

ability of process-based models to accurately simulated sea-

sonal changes in CO2 and water fluxes in Mediterranean-type

forest ecosystems (e.g., Krinner et al., 2005; Morales et al.,

2005; Jung et al., 2007). The use of equations in which the

photosynthetic response to drought solely depends on stom-

atal control fails to capture both the timing and extent of the

response of the coupled photosynthesis-conductance system

to water stress. From our analysis of half-hourly FLUXNET

data at four Mediterranean-type sites, this appears not to be

due to a fundamental inaccuracy in the description of stom-

atal conductance (e.g. using a BB-type approach), but rather

an incomplete description of the mechanisms controlling the

seasonal response of the photosynthetic capacity of Mediter-

ranean trees to gradually occurring water stress.

Despite the widespread use of BB-type canopy conduc-

tance models, detailed studies that would allow incorporation

of the effects of water stress are lacking, and reported results

are inconsistent. Several studies reported that the reductions

in stomatal conductance with soil water stress is sufficient

(e.g. Harley and Tenhunen, 1991; Sala and Tenhunen, 1996),

whilst others maintain that it remains constant (e.g. Sellers

et al., 1996; Colello et al., 1998). We found that the relation-

ship between Gs and An changed only slightly under soil

water stress, resulting in an almost constant slope parame-

ter, m. This suggests that stomatal conductance changes in

parallel with photosynthesis, as originally reported by Wong
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et al. (1979). Further, our finding that the residual conduc-

tance does not change under soil water stress is contrary to

results previously reported at the Blodgett site by Misson et

al. (2004).

It is well known that the stomata react to changes in soil

water availability (e.g. Kramer, 1983). The water reserves

in leaves and stems are very small when compared to the

amount of water transpired, and thus these organs could be

quickly dehydrated in the absence of fast mechanisms, such

as stomatal closure, to limit water loss (Slatyer, 1967). The

effect of such stomatal closure is most commonly observed in

the mid-day decline in stomatal conductance due to decreas-

ing leaf water potential. This limits photosynthetic activity

through reductions in Ci . Such short-term responses are es-

sential to conserving the plant hydraulic balance. However,

with the slow onset of water stress, as experienced season-

ally by all Mediterranean ecosystems, the picture becomes

less clear. Other processes have been identified (e.g. Flexas

and Medrano, 2002; Galmes et al., 2007), and can be di-

vided into two categories: mesophyll conductance responses

and metabolic adjustments. Changes in mesophyll conduc-

tance can reduce the concentration of CO2 in the chloro-

plast with reference to leaf Ci . Whilst stomatal conductance

rapidly changes to maintain the leaf hydraulic status, mes-

ophyll conductance has been related to anatomical features

and thus subject to slower responses, with large changes re-

ported during the onset of slowly developing drought (e.g.

Flexas and Medrano, 2002; Flexas et al., 2004). Metabolic

adjustments can take many forms, and may include the re-

duction of enzyme activity necessary for RuBP regenera-

tion (Maroco et al., 2002), reduced nitrate reductase activity

(as an indicator of nitrate utilisation) (Smirnoff and Stew-

art, 1985), and the reduction of sucrose phosphate synthase

(Vassey and Sharkey, 1989). It has been suggested that all of

these responses can play some role in the control of photo-

synthesis (Loreto and Centritto, 2008), depending on the de-

gree of water stress encountered and the relevant time scales

involved. None of these processes, however, are taken into

account by current large-scale ecosystem models.

The non-stomatal limitations found in this study differ in

strength between sites. The two sites with Quercus species,

Puechabon and Roccarespampani, showed similar responses,

likely reflecting similarities in their leaf physiologies and

overall anatomy. Quercus ilex (present in Puechabon) is

an evergreen sclerophyllous species, commonly found in

Mediterranean regions, and well adapted to drought stress

with tough coarse leaves. Quercus cerris (in Roccarespam-

pani), although deciduous, also has a high sclerophyll in-

dex (Kutbay and Kilinc, 1994). Highly sclerophyllous leaves

have been reported to have relatively high mesophyll conduc-

tance limitations (Loreto et al., 1992; Syvertsen et al., 1995).

The Pinus ponderosa species studied at Blodgett encountered

very little water stress, with only a minimal reduction in pho-

tosynthetic activity during periods of low soil water content.

This could hypotheticaly be explained by access to ground

water and mild air temperatures during summer due to high

altitude. Fagus sylvatica, found at Collelongo, is not a typical

Mediterranean species, and is therefore not moisture-stress

adapted. The low water stress encountered at this site could

also be explained by the possibility of ground water access at

this site as suggested by Hickler et al. (2006). The large role

of non-stomatal limitations found at each site suggests that

the observed reduction in canopy conductance during slowly

progressing natural water-stressed periods is larger than can

be accounted for by stomatal closure.

The work presented here makes several assumptions re-

garding possible influencing factors which could not be

quantified from the available data. It was first necessary

to assume that stomatal patchiness does not have a signifi-

cant effect when making calculations which average over the

whole canopy. It has been reported that, in leaf-level exper-

iments, stomatal patchiness may invalidate leaf Ci calcula-

tions, in particular under drought conditions (Buckley et al.,

1997; Mott and Buckley, 2000). However, more recent stud-

ies have shown that the influence of stomatal patchiness on

calculations of leaf Ci is less than once thought (e.g. Lawlor

and Cornic, 2002). Also, it has been reported that the effect

of stomatal patchiness is not as large in the field as it is in

laboratory experiments, (Gunasekera and Berkowitz, 1992;

Kubiske and Abrams, 1993).

The nature of the data analysed here, gathered at the

canopy scale under field conditions, leads to large variabil-

ity in some of the variables necessary to calculate the pa-

rameter response functions. The derivation of model param-

eters using canopy level eddy-covariance data is also sub-

ject to a number of uncertainties. For example, we assume

all latent heat and CO2 flux measurements result from the

fluxes of water and CO2 across the canopy sufaces of the

dominant species at each site. We recognise that this may

not always be true. Other tree species on a site, or an ac-

tive understorey, could potentially make large contributions

to the total measured fluxes. Hence, we tried to minimise this

problem by focusing on highly monospecific stands, and ex-

cluded sites at which strong contributions from understorey

activity had been reported. These measures, however, can-

not guarantee that the results are unaffected by the presence

of non-dominant species, but we assume that any bias intro-

duced is minimal. Soil evaporation is another potential con-

tributor to the total fluxes. We assume that soil evaporation

is minimal in a closed Mediterranean forest with a dry floor.

We exclude data related to periods during or soon after rain

events to reduce the potential impact of soil evaporation on

our calculations.

The usefulness of our analyses depends directly on the

accuracy of the flux measurements and calculations for the

partitioning of fluxes. Unfortunately, information on obser-

vational errors are difficult to obtain for flux measurements

(Dore et al., 2003). Error estimates for CO2 fluxes across

different sites range between 30 and 180 gC m2 yr1. This

is of the same order as our model-data differences. Such
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errors can be due to instrument calibration, and certain at-

mospheric processes such as advection and high atmospheric

stability. The calculations used in this study also rely on the

assumption that the energy balance of the ecosystem mea-

surements is closed, i.e. energy inputs (mainly from down-

ward shorwave and infra-red radiation) equal outputs to la-

tent and sensible heat exchange, with a smaller flux to ground

heat. This assumption is frequently not fulfilled by the eddy

covariance (EC) method (Wilson et al., 2002). Our under-

standing of the causes of energy imbalance is limited, but any

imbalance could introduce uncertainty in the calculations ap-

plied in this study (Wohlfahrt et al., 2009). In particular, la-

tent heat fluxes are often, though not always, underestimated

by the order of 10–30% (e.g., Wilson et al., 2002). This

would affect the accuracy of the soil water reconstruction and

the calculated bulk canopy conductance in this study. This

problem is confounded by the potential for seasonal bias in

the partitioning method used for partitioning the measured

CO2 fluxes into gross primary productivity and ecosystem

respiration. The lack of knowledge of such errors increases

the uncertainty related to the derived parameter values ob-

tained in this study, and their seasonal changes. However,

we would argue that the qualitative finding that non-stomatal

limitations are necessary for the accurate simulation of CO2

and water fluxes from forest canopies is robust regardless of

the uncertainty highlighted above.

Although the main factors of the soil water balance, pre-

cipitation and evapotranspiration, are known, the modelled

drainage and run-off at each site are subject to various sim-

plifying assumptions (such as homogeneity of soil depth and

texture). Uncertainty related to the calculation of recon-

structed soil water may affect the slopes of the responses to

soil water stress reported in this study, but would not qualita-

tively affect the general conclusions.

Inaccuracies in the simulation of the seasonal cycle of

CO2 and water fluxes were attributed largely to difficulties

in modelling phenological events, and the existence of ac-

tive understory vegetation (which is not taken into account

by GOTILWA+). Both models predict phenological events

using a running mean temperature, but were not capable of

accurately predicting budburst at either of the two decidu-

ous sites. Leaf-fall date estimation was slightly more accu-

rate. Understorey vegetation potentialy explains difficulties

observed for GOTILWA+, as in the current version this is not

taken into account. This may explain the underestimation of

spring water fluxes at Roccarespampani.

The role of non-stomatal limitations in modelling CO2 and

water fluxes, shown in this study, will be of particular impor-

tance for regional scale modelling. Preliminary regional sim-

ulations with ORCHIDEE suggest that the new implementa-

tion leads, on average, to an 8% reduction in the predicted

rate summer net photosynthesis across the Mediterranean

Basin. Any regional model applying only stomatal limita-

tions will likely overestimate assimilation by Mediterranean-

type vegetation by an even greater amount. The applicability

of the derived water stress parameterisations across different

plant functional types is, however, as yet unclear, given the

differences observed in the studied species. More research

is needed to identify the range of water stress. This, coupled

with difficulties in accurately modelling phenological events,

will be the main challenges for regional modelling efforts in

the Mediterranean.

5 Conclusions

We have shown that canopy conductance and photosynthe-

sis co-vary with soil moisture in a consistent manner using

observations from four sites with Mediterranean climates.

Stomatal conductance was found to vary in parallel with pho-

tosynthesis, and with only small changes in the fitted slope

of the BB or BBL model formulations. Changes in photo-

synthetic capacity not related to stomatal closure under wa-

ter stressed conditions were found to be very important at

each of the sites studied. Incorporating this knowledge into

process-based models suggests that accounting for soil-water

mediated reductions of photosynthetic capacity alone is suf-

ficient to adequately model CO2 and water fluxes during dry

and wet periods using either the BB or BBL sub-models.

Stomatal regulation of photosynthesis alone is not sufficient

to reduce modelled photosynthesis to observed levels dur-

ing drought periods. Accounting for the empirically-derived

non-stomatal soil moisture responses with the derived param-

eters for each site improved substantially the performance

of two ecosystem models, and allowed for the simulation of

CO2 and water fluxes with similar accuracies under both wet

and dry conditions. Both models compare well against the

FLUXNET data, although GOTILWA+ performed slightly

better on average.

This study contributes to improving our ability to model

and predict carbon and water fluxes in Mediterranean-type

forest ecosystems, and thereby to reducing uncertainty in fu-

ture European terrestrial carbon and water fluxes. These re-

sults are of particular importance for any study of the effects

of climatic changes on Mediterranean ecosystem function-

ing.
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