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ABSTRACT

A new upper limit on the 21 cm signal power spectrum at a redshift of z ≈ 9.1 is presented,

based on 141 h of data obtained with the Low-Frequency Array (LOFAR). The analysis

includes significant improvements in spectrally smooth gain-calibration, Gaussian Process

Regression (GPR) foreground mitigation and optimally weighted power spectrum inference.

Previously seen ‘excess power’ due to spectral structure in the gain solutions has markedly

reduced but some excess power still remains with a spectral correlation distinct from thermal

noise. This excess has a spectral coherence scale of 0.25–0.45 MHz and is partially correlated

between nights, especially in the foreground wedge region. The correlation is stronger between

nights covering similar local sidereal times. A best 2-σ upper limit of �2
21 < (73)2 mK2

at k = 0.075 h cMpc−1 is found, an improvement by a factor ≈8 in power compared to

the previously reported upper limit. The remaining excess power could be due to residual

foreground emission from sources or diffuse emission far away from the phase centre,

polarization leakage, chromatic calibration errors, ionosphere, or low-level radiofrequency

interference. We discuss future improvements to the signal processing chain that can further

reduce or even eliminate these causes of excess power.

Key words: methods: data analysis – techniques: interferometric – dark ages, reionization,

first stars – cosmology: observations.
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1 IN T RO D U C T I O N

Exploring the Cosmic Dawn (CD) and the subsequent Epoch of

Reionization (EoR), comprising two eras from z ∼ 6−30 when the

first stars, galaxies and black holes heated and ionized the Universe,

is of great importance to our understanding of the nature of these first

radiating sources. It provides insight on the timing and mechanisms

of their formation, as well as the impact on the physics of the

interstellar medium (ISM) and intergalactic medium (IGM) of the

radiation emitted by these first light sources (see e.g. Ciardi &

Ferrara 2005; Morales & Wyithe 2010; Pritchard & Loeb 2012;

Furlanetto 2016, for extensive reviews).

Observations of the Gunn–Peterson trough in high-redshift

quasar spectra (e.g. Becker et al. 2001; Fan et al. 2006) and

the measurement of the optical depth to Thomson scattering of

the Cosmic Microwave Background (CMB) radiation (e.g. Planck

Collaboration XIII 2016b) both suggest that the bulk of reionization

took place in the redshift range 6 � z � 10. The evolution of the

observed Ly α Emitter (LAE) luminosity function at z > 6 (Clément

et al. 2012; Schenker et al. 2013) and the Ly α absorption profile

towards very distant quasars (Mortlock 2016; Greig et al. 2017;

Davies et al. 2018) are other indirect probes of the EoR.

The most direct probe of this epoch, however, is the redshifted

21 cm line from neutral hydrogen, seen in emission or absorption

against the CMB (Madau, Meiksin & Rees 1997; Shaver et al.

1999; Tozzi et al. 2000; Zaroubi 2013). A number of observational

programs are currently underway, or have recently been completed

that aimed to detect the 21 cm brightness temperature from the EoR

and CD. The 21 cm global experiments, such as EDGES1 (Bowman

et al. 2018) or SARAS2 (Singh et al. 2017) aim to measure the

sky-averaged spectrum of the 21 cm signal. The tentative detection

of the global 21 cm signal reported by the EDGES team (Bowman

et al. 2018) has unexpected properties. This signal, consisting of

a flat-bottomed deep absorption-line feature during the CD at z =
14−21, is considerably stronger and wider than predicted (Fraser

et al. 2018), and, depending on the additional mechanism invoked

to explain it (e.g. Barkana et al. 2018; Berlin et al. 2018; Ewall-

Wice et al. 2018; Fialkov & Barkana 2019; Mirocha & Furlanetto

2019), could also have an impact on the predicted strength of

the 21 cm brightness temperature fluctuations during the EoR.

Complementary to these, the interferometric experiments aim at

a statistical detection of the fluctuations from the EoR using radio

interferometers such as LOFAR,3 MWA,4 or PAPER.5

These instruments have already set impressive upper limits on

the 21 cm signal power spectra, considering the extreme challenges

they face, but have not yet achieved a detection. Using the

GMRT,6 Paciga et al. (2013) reported a 2 − σ upper limit of

�2
21 < (248 mK)2 at z = 8.6 and wavenumber k ≈ 0.5 h cMpc−1

from a total of about 40 h of observed data. Recently, Barry et al.

(2019) reported a 2 − σ upper limit of �2
21 < (62.4 mK)2 at z =

7 and k ≈ 0.2 h cMpc−1 using 21 h of Phase I MWA data, and Li

et al. (2019) published a 2 − σ upper limit of �2
21 < (49 mK)2 at

z = 6.5 and k ≈ 0.59 h cMpc−1 using 40 h of Phase II MWA data.

1Experiment to Detect the Global Epoch of Reionization Signature, https:

//loco.lab.asu.edu/edges/
2Shaped Antenna measurement of the background RAdio Spectrum, http:

//www.rri.res.in/DISTORTION/saras.html
3Low-Frequency Array, http://www.lofar.org
4Murchison Widefield Array, http://www.mwatelescope.org
5Precision Array to Probe EoR, http://eor.berkeley.edu
6Giant Metrewave Radio Telescope, http://gmrt.ncra.tifr.res.in

The PAPER collaboration reported a very deep upper limit (Ali

et al. 2015), but after re-analysis (Cheng et al. 2018) have recently

reported revised and higher upper limits (Kolopanis et al. 2019), the

deepest being �2
21 < (200 mK)2 at z = 8.37 and k ≈ 0.37 h cMpc−1.

In Patil et al. (2017), the LOFAR-EoR Key Science Project (KSP)

published their first upper limit based on 13 h of data from LOFAR,

reporting a 2 − σ upper limit of �2
21 < (79.6 mK)2 at z = 10.1 and

k ≈ 0.053 h cMpc−1.

Much more research is still needed, however, to control the

many complex aspects in the signal processing chain (Liu &

Shaw 2019) in order to reach the expected 21 cm signal strengths

which lie two to three orders of magnitude below these limits (e.g.

Mesinger, Furlanetto & Cen 2011). Mitigating all possible effects

that could prevent a 21 cm signal detection is particularly important

since these instruments are also pathfinders for the much more

sensitive and ambitious second-generation instruments such as the

SKA7 (Koopmans et al. 2015) and HERA8 (DeBoer et al. 2017).

At the low radiofrequencies targeted by 21 cm signal observa-

tions, the radiation from the Milky Way and other extragalac-

tic sources dominates the sky by many orders of magnitude in

brightness (Shaver et al. 1999). The emission of these foregrounds

varies smoothly with frequency, and this characteristic can be used

to differentiate it from the rapidly fluctuating 21 cm signal (Jelić

et al. 2008). However, due to the ionosphere and the frequency-

dependent response of the radio telescopes (e.g. its primary beam

and uv-coverage both scale with frequency), structure is introduced

to the otherwise spectrally smooth foregrounds, causing the so-

called ‘mode-mixing’ (Morales et al. 2012). Most of these chromatic

effects are confined inside a wedge-like shape in k-space (Datta,

Bowman & Carilli 2010; Trott, Wayth & Tingay 2012; Vedan-

tham, Udaya Shankar & Subrahmanyan 2012; Liu, Parsons &

Trott 2014a,b), and to mitigate them, many experiments adopt a

‘foreground avoidance’ strategy which only performs statistical

analyses of the 21 cm signal inside a region in k-space where the

thermal noise and 21 cm signals dominate (e.g. Jacobs et al. 2016;

Kolopanis et al. 2019). In practice, however, leakage above the

wedge is also observed and is thought to be due to gain-calibration

errors because of an incomplete or incorrect sky model (Patil et al.

2016; Ewall-Wice et al. 2017), errors in band-pass calibration, cable

reflections (Beardsley et al. 2016), multipath propagation, mutual

coupling (Kern et al. 2019), residual radiofrequency interference

(RFI) (Offringa, Mertens & Koopmans 2019a; Whitler, Beardsley &

Jacobs 2019), as well as chromatic errors introduced due to leakage

from the polarized sky into Stokes I (Jelić et al. 2010; Spinelli,

Bernardi & Santos 2018) or ionospheric disturbances (Koopmans

2010; Vedantham & Koopmans 2016).

By modelling and removing the foreground contaminants, the

LOFAR EoR KSP team aims at probing the 21 cm signal both out-

side and inside the wedge, thereby potentially increasing the sensi-

tivity to the 21 cm signal by an order of magnitude (Pober et al. 2014)

and enabling exploration of the signal at the largest available scales,

which have more significance for cosmology/signal-clustering stud-

ies. This has required the development of a comprehensive sky

model of the North Celestial Pole (NCP) field (Yatawatta et al. 2013;

Patil et al. 2017), currently consisting of nearly thirty thousand

components. The model is used to solve station gains in a large

number of directions using the distributed gain-calibration code

7Square Kilometre Array, http://www.skatelescope.org
8Hydrogen Epoch of Reionization Array, http://reionization.org
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Table 1. List of all the nights of observation analysed in this work. Information on observation date, time, and duration, along with noise statistics

is given for every nights.

Night ID LOFAR UTC observing start LSTa starting Duration (h) SEFDb estimate
<|δνVV |2>

<|δt VI |2>

c
<|δνVI |2>

<|δt VI |2>

d

cycle date and time time (h) (Jy)

L80847 0 2012-12-31 15:33:06 22.7 16.0 4304 1.28 1.88

L80850∗ 0 2012-12-24 15:30:06 22.2 16.0 4226 1.61 2.19

L86762 0 2013-02-06 17:20:06 2.9 13.0 4264 1.30 1.93

L90490 0 2013-02-11 17:20:06 3.2 13.0 4331 1.32 1.91

L196421 1 2013-12-27 15:48:38 22.7 15.5 4077 1.62 2.21

L205861 1 2014-03-06 17:46:30 5.2 11.9 3884 1.37 1.92

L246297 2 2014-10-23 16:46:30 19.3 13.0 4294 1.31 1.95

L246309 2 2014-10-16 17:01:41 19.1 12.6 4253 1.24 1.60

L253987 2 2014-12-05 15:44:35 21.1 15.3 3978 1.23 1.88

L254116 2 2014-12-10 15:42:54 21.4 15.4 4298 1.21 1.80

L254865 2 2014-12-23 15:45:36 22.3 15.5 4057 1.31 1.88

L254871∗ 2 2014-12-20 15:44:04 22.1 15.5 3917 1.25 1.73

Notes.aLocal sidereal time.
bSystem equivalent flux density.
cRatio of Stokes V sub-band difference power over thermal noise power.
dRatio of Stokes I sub-band difference power over thermal noise power.
∗ These two nights are not part of the 10 nights selection.

SAGECAL-CO9 (Yatawatta 2016), and subsequently removes these

components with their direction-dependent instrumental response

functions. Confusion-limited residual compact and diffuse fore-

grounds also need to be removed and, to this end, we employ a

novel strategy consisting of statistically separating the contribution

of the 21 cm signal from the foregrounds using the technique of

Gaussian Process Regression (GPR; Mertens, Ghosh & Koopmans

2018; Gehlot et al. 2019). These data processing steps are described

in Section 3.

We report here an improved 21 cm power spectrum upper limit

from the LOFAR EoR Key Science Project based on a total of ten

nights of observations (141 h of data) of the NCP field, acquired

during the first three LOFAR cycles. In this work, we focus on

the redshift bin z ≈ 8.7–9.6, corresponding to the frequency range

134–146 MHz. Our observational strategy is described in Section 2.

The processing and analyses of these observations are discussed

in Sections 3 and 4. A new upper limit on the 21 cm signal

power spectra is presented in Section 5. Finally, we discuss the

remaining excess power (in comparison with the thermal noise

power) that we observe, its potential origins, and improvements

of the processing pipeline that we aim to implement to reduce it,

in Section 6. The implications of this improved upper limit are

studied in Ghara et al. (2020) and a summary of their finding

is also presented in Section 7.1. Throughout this paper we use a

�CDM cosmology consistent with the Planck 2015 results (Planck

Collaboration XIII 2016a). All distances and wavenumbers are in

comoving coordinates.

2 LO FA R - H BA O B S E RVAT I O N S

The LOFAR EoR KSP targets mainly two deep fields: the NCP and

the field surrounding the bright compact radio source 3C 196 (de

Bruyn & LOFAR EoR Key Science Project Team 2012). Here we

present results on the NCP field for which we already published

an upper limit on the 21 cm signal based on 13 h of data (Patil

et al. 2017). The NCP can be observed every night of the year,

9https://github.com/nlesc-dirac/sagecal

making it an excellent EoR window. Currently ≈2480 h of data have

been observed with the LOFAR High-Band Antenna (HBA) system.

The LOFAR HBA radio interferometer consists of 24 core stations

distributed over an area of about 2 km diameter, 14 remote stations

distributed over the Netherlands, providing a maximum baseline

length of ∼100 km, and an increasing number of international

stations distributed over Europe (van Haarlem et al. 2013). In this

work, we analysed 12 nights of observations from the LOFAR

Cycle 0, 1, and 2. The observations are carried out using all core

stations (in split mode, so de facto providing 48 stations) and

remote stations10 in the frequency range from 115 to 189 MHz,

with a spectral resolution of 3.05 kHz (i.e. 64 channels per sub-

band of 195.3 kHz width), and a temporal resolution of 2 s. NCP

observations were scheduled from ‘dusk to dawn’ (thus avoiding

strong ionospheric effects and avoiding the sun), and have a typical

duration of 12–16 h. While data have been acquired over the 115–

189 MHz band, we concentrate our effort in this work on the redshift

bin z ≈ 8.7–9.6 (frequency range 134–146 MHz), thus reducing

the required processing time while we are further optimizing our

calibration strategy. The observational details of the different nights

analysed are summarized in Table 1.

3 M E T H O D O L O G Y A N D DATA P RO C E S S I N G

We first introduce the methods and processing steps used to reduce

the data from the raw observed visibilities to the power spectra.

The LOFAR-EoR data processing pipeline consists, in essence, of

(1) Pre-processing and RFI excision, (2) direction-independent cal-

ibration (DI-calibration), (3) direction-dependent calibration (DD-

calibration) including subtraction of the sky-model, (4) imaging,

(5) residual foregrounds modelling and removal, (6) power spectra

estimation. The strategy used in steps (1) and (2) is similar to the one

adopted in Patil et al. (2017) while the strategy used for the rest of the

steps has undergone significant revisions. Fig. 1 shows an overview

10The remote stations, which comprise nominally 48 tiles compared to the

24 tiles of a split core station, were tapered to have the same size and shape

as the core stations.
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Observations

Freq. range: 134.1 - 147.1 MHz
Resolution: 2s, 3.1 kHz

DI calibration (Sagecal-CO)

Sky model: 1416 components
(app. flux > 35 mJy), 2 clusters

Sol. interval: 10s, 1 SB

Baselines > 50 λ

DD calibration (Sagecal-CO)

Sky model: 28773
components, 122 clusters

Sol. interval: 2.5-20 min, 1 SB

Baselines > 250 λ

Imaging (WSClean)

1 image per SB

Baselines: 50 - 250 λ

Pixel size: 30 arcsec

Size: 1500 x 1500 pix

NCP sky model

28755 point sources
18 shapelet components

Includes also Cygnus A and
Cassiopeia A

Conversion to Kelvin

Spatial tapering using a 
4 degrees Tukey window.

Flagging: flag outliers in UV
and frequency space.

Nights averaging

Inverse variance weighted

Residual foregrounds removal

Gaussian Process Regression
(see Section 3.3 and Table 3)

Power spectra

Inverse variance weighted

Pre Processing (DPPP)

RFI flagging (AOFlagger)

Averaging to 2s, 61 kHz

Averaging

Averaging to 10s, 61 kHz

Figure 1. The LOFAR-EoR HBA processing pipeline, describing the steps required to reduce the raw observed visibilities to the 21 cm signal power spectra.

The development of the sky-model used at the calibration steps is not described here. The orange outline denotes processes of the pipeline which can have a

substantial impact on the 21 cm signal and which are tested through signal injection and simulation (see Section 6.1 and Mevius et al. in preparation).

of the LOFAR-EoR data processing pipeline. All data processing

is performed on a dedicated compute-cluster called Dawn (Pandey

et al. 2020), which consists of 48 × 32 hyperthreaded compute cores

and 124 Nvidia K40 GPUs. The cluster is located at the Centre for

Information Technology of the University of Groningen.

3.1 Calibration and imaging

In this section, we describe the processes involved in transforming

uncalibrated observed visibilities to calibrated, sky-model sub-

tracted image cubes.

3.1.1 RFI flagging

RFI-flagging is done on the highest time and frequency resolution

data (2 s, 64 channels per sub-band) using AOFLAGGER
11 (Offringa,

van de Gronde & Roerdink 2012). The four edge channels of the

64 sub-band channels, each having 3.05 kHz spectral resolution,

affected by aliasing from the poly-phase filter, are also flagged. This

reduces the effective width of a sub-band to 183 kHz. The data are

then averaged to 15 channels (12.2 kHz) per sub-band to reduce

the data volume for archiving purposes and further processing

(all LOFAR-EoR observations are archived in the LOFAR LTA

at surfSARA, and Poznan). It was later found that the data were

not correctly flagged during this first RFI flagging stage (the time-

window was of insufficient size to correctly detect time-correlated

11https://sourceforge.net/projects/aoflagger/

RFI). Since the highest resolution on which the data are archived is

15 channels per sub-band and 2 s, we decided to apply a second RFI

flagging on these data before averaging to the three channels and 2 s

data product which is used in the initial steps of the calibration. The

intrastation baselines of length 127 m share the same electronics

cabinet and are prone to correlated RFI generated inside the cabinet

itself. Hence, these baselines are also flagged during the pre-

processing step. Typically about 5 per cent of visibilities are flagged

at this stage (Offringa et al. 2013).

3.1.2 The NCP sky model

The source model components of the NCP field (Bernardi et al.

2010; Yatawatta et al. 2013) has been iteratively built over many

years from the highest resolution images, with an angular resolution

≈6 arcsec, using BUILDSKY (Yatawatta et al. 2013). This sky model

is composed of 28 773 unpolarized components (28 755 delta

functions and 18 shaplets12) covering all sources up to 19 degrees

distance from the NCP and down to an apparent flux density

of ≈3 mJy inside the primary beam. It also includes Cygnus A

about 50◦ away from the NCP, and Cassiopeia A about 30◦

away from the NCP, which are the two brightest radio sources

in the Northern hemisphere. The spectra of each component are

modelled by a third-order polynomial function in log–log space.

12Shapelets form an orthonormal basis in which a source of arbitrary

shape can be described by a limited number of coefficients with sufficient

accuracy (Yatawatta 2011).
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Figure 2. LOFAR-HBA Stokes I continuum images (134–146 MHz) of the NCP field. All 12 nights (≈170 h) were included in making these images. The

top panels show the field after DI calibration, with 3C 61.1 subtracted in the visibilities using SAGECAL, and the images deconvolved using WSCLEAN. The

bottom panels show the residual after DD calibration. The left-hand panels show a 34◦ × 34◦ image with a resolution of 3.5 arcmin (baselines between 50 and

1000λ) and include the positions of the 3C sources in the field (black circles). The right-hand panels are zoomed 4◦ × 4◦ images with a resolution of 42 arcsec

(baselines between 50 and 5000λ) in which we also indicate the position of NVSS J011732+892848 (black circle). Power spectra are measured in this 4◦ ×
4◦ field of view.

For modelling some of the brightest sources we have also made use

of international baselines in LOFAR, which provide a resolution

down to 0.25 arcsec.

The intensity scale of our sky model is set by

NVSS J011732+892848 (RA 01h 17m 33s, Dec 89◦ 28’ 49’ in

J2000) (see Fig. 2), a flat spectrum source with an intrinsic flux

of 8.1 Jy with 5 per cent accuracy (Patil et al. 2017). The flux

and spectrum of this source were obtained following a calibration

against 3C 295 in the range 120–160 MHz (Patil et al. 2017). Fig. 2

(top panels) shows images of the NCP field after DI calibration,

revealing the sources with flux >3 mJy in the inner 4◦ × 4◦ and

sources observable at a distance up to 15◦ from the phase centre (up

to the second side-lobe of the LOFAR-HBA primary beam). Many

of these sources have complex spatial structure and are modelled

by multiple delta functions (or shaplets). The accuracy of our flux

scale calibration is tested by cross-identifying the 100 brightest

sources observed at a distance <3◦ from the phase centre with

the 6C (Baldwin et al. 1985) and 7C (Hales et al. 2007) 151 MHz

radio catalogues. We obtained the intrinsic flux of these sources by

first applying a primary-beam correction, and then modelling their

spectra over the 13 MHz bandwidth with a power-law to estimate

their flux at 151 MHz. We found a mean ratio of 1.02 between our

intrinsic flux and the 6C/7C flux with a standard deviation of 0.12,

highlighting the accuracy of our absolute flux scale calibration. We

additionally found that the night-to-night fluctuations of the flux of

these bright sources are on average about 5 per cent, likely due to

intrinsic sources fluctuations and primary beam errors not captured

by the DI-calibration step.
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LOFAR-EoR 21 cm power spectrum upper limit 1667

3.1.3 Direction-independent calibration

For direction-independent calibration, we use the same approach as

described in Patil et al. (2017). Since the relatively bright source

in the NCP field, 3C 61.1 (see Fig. 2), is close to the first null of

the station’s primary beam, it is necessary to have a separate set

of solutions for this direction. In that way we isolate the strong

direction-dependent effects of this source. The remainder of the

field is modelled by selecting the 1416 brightest components from

the NCP sky model, down to an apparent flux limit of 35 mJy.

This flux limit was chosen to reduce the processing time while

still preserving the signal-to-noise (S/N) required to calibrate the

instrument towards these two directions at high time resolution, the

power of the remaining sources in the 28 773 components NCP sky

model account for only 1 per cent of the total power of the sky

model. Calibration is performed on the three channels (61 kHz),

and 2 s resolution data set with a spectral and time solution interval

of 195.3 kHz (one sub-band) and 10 s, thus allowing us to solve for

fast direction-independent ionospheric phase variations. Calibration

is done using SAGECAL-CO (Yatawatta 2016), constraining the

solutions in frequency with a third-order Bernstein polynomial

over 13 MHz bandwidth. SAGECAL’s consensus optimization dis-

tributes the processing over several compute nodes while iteratively

penalizing solutions that deviate from a frequency smooth prior

by a quadratic regularization term. The frequency smooth prior is

updated at each iteration. If given a sufficient number of iterations,

this process should converge to this prior. We refer the readers

to Yatawatta (2015, 2016) for a more detailed description of

the SAGECAL-CO algorithm. In addition to smooth spectral gain

variations, we also solve at this stage for the fast frequency varying

band-pass response of the stations, which are caused by low-pass

and high-pass filters in the signal chain as well as reflections in

the coax-cables between tiles and receivers (Offringa et al. 2013;

Beardsley et al. 2016; Kern et al. 2020). For this purpose, we use a

low regularization parameter and limit the number of iterations

to 20. After DI-calibration, outliers in the visibilities (with an

amplitude conservatively set to be larger than 70 Jy) are flagged

and the data are averaged to the final data product of three channels

and 10 s.

3.1.4 Direction-dependent calibration and sky-model subtraction

LOFAR has a wide field-of-view (about 10◦ between nulls at

140 MHz; van Haarlem et al. 2013) and the visibilities are sus-

ceptible to direction-dependent gain variations mainly due to time

varying primary beam and ionospheric effects. Therefore, source

subtraction is not a simple deconvolution problem and has to be

done with the appropriate gain corrections applied along different

source directions. Solving for the gains in each direction would be

impractical. The extent of the problem is reduced by (i) clustering

the sky-model components (Kazemi, Yatawatta & Zaroubi 2013)

in a limited number of directions (here we use 122 directions), (ii)

constraining the per-sub-band (195.3 kHz) solutions to be spectrally

smooth over the 13 MHz bandwidth. The number of clusters,

which are typically 1–2 degrees in diameter, is a trade-off between

maximizing the S/N inside each cluster and minimizing the cluster

size in which all direction-dependent effects (DDE) are assumed

to be constant. Constraining the solutions to be spectrally smooth

is possible because the earlier direction-independent calibration

has taken out most non-smooth instrumental response from the

signal chain, and we assume the DDE to be spectrally smooth.

We again use SAGECAL-CO (Yatawatta 2016) with a third-order

Bernstein polynomial frequency regularization over the 13 MHz

bandwidth to solve for the direction-dependent full Stokes gains,

represented by a complex 2 × 2 Jones matrix (Hamaker, Breg-

man & Sault 1996). They incorporate all DDE (at this stage

mainly the temporally slow primary beam and ionospheric phase

fluctuations). The solution time intervals are chosen between 2.5

and 20 min, depending on the apparent total flux in each cluster.

This should be adequate for capturing primary beam changes over

time, but not for the fast ionospheric phase variations on most

baselines (Vedantham & Koopmans 2016). In the future, we plan

to investigate the reduction of this solution time interval and to

decouple the phase and amplitude solution time (e.g. van Weeren

et al. 2016).

SAGECAL-CO uses a consensus optimization with an alternating

direction method of multipliers (ADMM) algorithm to efficiently

solve for all clusters and all sub-bands simultaneously. The gain

solution is constrained to approach a smooth curve by a reg-

ularization prior. As for DI-calibration, here we again use the

Bernstein polynomial basis function. We use a total of 40 ADMM

iterations, which we found to be sufficient to achieve the required

convergence. The regularization parameter must be carefully chosen

for the fitting process to converge while still enforcing sufficient

smoothness. Low or no regularization will effectively overfit the

data, resulting in signal suppression at the smallest baselines where

we are most sensitive to the 21 cm signal (Patil et al. 2016). The

solution adopted in Patil et al. (2017) is to split the baseline set

into non-overlapping calibration and 21 cm signal analysis subsets.

We chose to exclude the baselines <250 λ in DD calibration. This

limit is chosen as a compromise: (i) the lower set includes the

baselines lengths where we are most sensitive to the 21 cm signal,

(ii) it excludes from the calibration the baselines at which the

Galactic diffuse emission, not included in our sky-model, starts

to be significant, (iii) it still includes enough baselines in the

calibration to reach the required S/N. The downside is that the

calibration errors now cause excess noise for the baselines not

part of the calibration (an effect that was investigated in detail

in Patil et al. 2016). This additional source of noise can be mitigated

by adequately enforcing spectrally smooth solutions, which has

the combined benefit of reducing calibration errors, improving

the convergence rate, and smoothing the remaining calibration

errors along the frequency direction (Yatawatta 2015; Barry et al.

2016). Mouri Sardarabadi & Koopmans (2019) have theoretically

quantified the level of the expected signal suppression and leakage

from direction-dependent calibration. By excluding the <250 λ

baselines during calibration and enforcing spectral smoothness of

the gains, they found no signal loss on the baselines of interest and

limited amplification for k‖ modes below 0.15 h cMpc−1. Even when

considering sky-model incompleteness and that spectral smoothness

is only partially achieved, very limited suppression of maximally

5 per cent is observed. We confirm these results experimentally

(Mevius et al. in preparation) using signals injected in to the

data and a setup identical to our observational and processing

setup.

The regularization parameters and number of iterations adopted

in Patil et al. (2017) were later found to be sub-optimal: the

convergence was never reached, resulting in relatively high excess

noise. For the analysis presented here, significant focus is placed on

improving this aspect. We tested increasing regularization values

over a limited set of visibilities (about 1 h of data) by evaluating the

ADMM residuals after each iteration to assess the convergence and
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1668 F. G. Mertens et al.

gain in signal-to-noise ratio. The latter is calculated for every gain-

direction (hence cluster of sky-model components) individually

and is defined as the ratio of the mean of the gain solution over

the standard deviation of the sub-band gain differences. For each

individual cluster, we select the regularization value that maximizes

the above-mentioned ratio (Mevius et al. in preparation). Compared

to Patil et al. (2017) this ratio is improved by a factor of five. For

most clusters, we now reach an S/N ratio �20, with clusters inside

the first lobe of the primary lobe closer to an S/N ratio of 100 or

above (Mevius et al., in preparation).

Gain-corrected sky-model visibilities are computed after DD-

calibration by applying the gain solutions to the predicted sky-

model visibilities for each cluster, and subsequently subtracting

these from the observed visibilities. Fig. 2 (bottom panels) shows

residual images of the NCP field after DD calibration. While most

of the sources have been correctly subtracted, the brightest sources

leave residuals with flux between −50 and +50 mJy.

3.1.5 Imaging after sky-model subtraction

Residual visibilities obtained after calibration and source subtrac-

tion are gridded and imaged independently for each sub-band using

WSCLEAN
13 (Offringa et al. 2014), creating an (l, m, ν) image

cube. Recently, several studies analysed the impact of visibility

gridding on the 21 cm signal power spectra. Offringa et al. (2019a)

assessed the impact of missing data due to RFI flagging and

found that the combination of flagging and averaging causes tiny

spectral fluctuations, resulting in ‘flagging excess power’ which

can be mitigated to a sufficient level by sky-model subtraction

before gridding and by using unitary weighted visibilities during

gridding.14 The impact of the gridding algorithm itself is also

assessed in Offringa et al. (2019b), and a minimum requirement on

various gridding parameters is prescribed. In this work we follow all

these recommendations: (i) our sky-model is subtracted by SAGECAL

before gridding, (ii) we use unit weighting during gridding, (iii) we

use a Kaiser-Bessel anti-aliasing filter with a kernel size of 15

pixels and an oversampling factor of 4095, along with 32 w layers.

These ensure that any systematics due to gridding are confined

significantly below the predicted 21 cm signal and thermal noise

(see fig. 8 in Offringa et al. 2019a and fig. 5 in Offringa et al.

2019b).

Stokes I and V images in Jy PSF−1 and point-spread function

(PSF) maps are produced with natural weighting for each sub-

band separately. We also create even and odd 10 s time-step images

to generate gridded time-difference visibilities, which are used to

estimate the thermal noise variance in the data. We then combine

the different sub-bands to form image cubes with a field of view

of 12◦ × 12◦ and 0.5 arcmin pixel size and these are subsequently

trimmed using a Tukey (i.e. tapered cosine) spatial filter with a

diameter of 4◦. This ensures that we reduce our analysis to the

most sensitive part of the primary beam, which has a full width

at half-maximum (FWHM) at 140 MHz of ≈4.1◦, and avoid the

uncertainties of the primary beam at a substantial distance from the

beam centre. We choose a Tukey window as a compromise between

avoiding sharp edges when trimming the images and maximizing

the observed volume (i.e. maximizing the sensitivity).

13https://sourceforge.net/projects/wsclean/
14All visibilities that go into one uv-cell are assumed to have the same noise

and therefore the same weight.

3.2 Conversion to brightness temperature and the

combination of power spectra

Here we discuss how visibilities are converted to brightness tem-

perature and how data are averaged both per night of observations

and between nights.

3.2.1 Conversion to brightness temperature

The image cube produced by WSCLEAN, ID(l, m, ν), has units

of Jy/PSF and needs to be converted to units of Kelvin before

generating the power spectrum. In order to do that, we recall that

the image cube is the spatial Fourier transform of the gridded (and

w-corrected) visibilities VJ(u, v, ν), in units of Jansky, with weights

W(u, v, ν) that depend on the chosen weighting scheme (Thompson,

Moran & Swenson 2001):

ID(l, m, ν) =
∑

u,v

VJ (u, v, ν)W (u, v, ν)e+2πi(ul+vm), (1)

while the corresponding synthesis beam (or PSF) is given by:

I PSF(l, m, ν) =
∑

u,v

W (u, v, ν)e+2πi(ul+vm). (2)

Converting the image cube to units of Kelvin consists of dividing

out the PSF, i.e. dividing equation (1) by equation (2) in visibility

space and converting the measurements to units of Kelvin:

T (l, m, ν) =
10−26c2

2kBν2δlδm

F−1
u,v

[
Fl,m[ID] ⊘ Fl,m[I PSF]

]
, (3)

with Fl,m denoting the Fourier transform which converts images to

visibilities, F−1
u,v its inverse, kB the Boltzmann constant, (δl, δm) the

image pixel resolution in radians, and ⊘ the element-wise division

operator.

For each analysed data set, we store the gridded visibilities V(u,

v, ν) in HDF5 format in units of Kelvin, along with the numbers of

visibilities that went into each (u, v, ν) grid point, Nvis(u, v, ν).

3.2.2 Outlier flagging

We use a k-sigma clipping method with detrending, to flag outliers

in the gridded visibility cubes. These are likely due to low-level RFI

not flagged by AOFLAGGER or due to non-converged gain solutions.

Sub-band outliers are flagged based on their Stokes-V and Stokes-I

variance, while (u, v) grid outliers are flagged based on their Stokes-

V and sub-band-difference Stokes-I variance. Depending on the data

set, we found that about 20–35 per cent of the sub-bands and about

5–10 per cent of uv-cells are flagged. At this stage, we are very

conservative in our approach to flagging data, favouring less data

rather than bad data. These ratios could be reduced in the future by

improving low-level RFI flagging before visibilities gridding, and

using new algorithms able to filter certain type of RFI instead of

flagging them.

3.2.3 Noise statistics and weight estimates

Several noise metrics are computed to analyse the noise statistics

in the data. In general, the noise can be estimated with reasonable

accuracy from the Stokes V image cube (circularly polarized sky),

the sky being only weakly circularly polarized. Ten second time-

difference visibilities, δtV(u, v, ν), are obtained from taking the

difference between the odd and even gridded visibilities sets,

yielding a good estimate of the thermal noise (at this time resolution,
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Figure 3. Ratio between sub-band difference and time difference angular

power spectra for Stokes I (orange lines) and Stokes V (magenta lines). All

nights are shown, and the average over all nights is indicated by thicker line.

the foregrounds, and ionospheric errors cancel out almost perfectly).

We can compare it to the per-station system equivalent flux density

(SEFD), given that the gridded visibility thermal-noise rms σ (u, v,

ν) follows, by definition (Thompson et al. 2001),

σ (u, v, ν) =
1

Nvis(u, v, ν)

SEFD
√

2�ν�t
, (4)

with �ν and �t the frequency channel and integration time,

respectively. Using equation (4), we estimate the SEFD of the 12

nights analysed to be ≈4150 Jy (almost constant over the 13 MHz

bandwidth) with a standard deviation of ≈160 Jy (fifth column of

Table 1). This is similar to the empirical values estimated in van

Haarlem et al. (2013) for the LOFAR-HBA core stations, after

correction for the primary beam sensitivity in the direction of the

NCP (Patil et al. 2017). The small night-to-night variation could

be attributed to a combination of different observing LST time (the

sky noise being one component of the thermal noise, along with the

system noise) and/or missing tiles for some of the stations during

some nights. We also note that our absolute calibration is accurate

at the 5 per cent level.

Another noise estimate can be derived from the visibility differ-

ence between sub-bands, δνV(u, v, ν), which should better reflect

the spectrally uncorrelated noise in the data. Compared to the time

difference noise spectrum (in baseline-frequency space), we find

that the sub-band difference noise variance is on average higher

by a factor ≈1.35 for Stokes V and ≈2 for Stokes I (sixth and

seventh columns of Table 1, respectively) with a small night-to-night

variation. We also find that this additional spectrally uncorrelated

noise term is dependent on the baseline length, with the ratio of the

sub-band difference over time difference noise spectrum gradually

increasing as a function of decreasing baseline length. A similar

trend is observed for both Stokes I and V (see Fig. 3).

While the origin of this increased noise is still being investigated,

and will be discussed in more detail in Section 4, it needs to be taken

into account when weighting the data. Inverse variance weighting is

used to obtain an optimal average over the data sets from different

nights and for power spectrum estimation. Theoretically, if all

visibilities had the same noise statistics, the optimal thermal-noise

weights would be given by the effective number of visibilities that

went inside each (u, v) grid point, Nvis(u, v, ν). Here, we additionally

account for the night-to-night and baseline variation of the noise

Figure 4. Weights scaling factor Ŵv as a function of baseline length, for

all nights (one colour per night).

using Stokes V sub-band difference noise estimates by computing:

Wv(u, v) =
1

MADν(δνVV (u, v, ν)
√

Nvis(u, v, ν))2
(5)

with MAD denoting the median absolute deviation estimator. This

effectively computes weights based on per-visibility Stokes V

variance which we then combined with the weights related to the

(u, v) density of the gridded visibilities. The per-visibility noise

variance is theoretically invariant and any night-to-night or baseline-

dependent variation will be reflected in Wv. Because we are mainly

interested in accounting for the baseline variation of the noise, we

additionally perform a third-order polynomial fit of Wv(|u|) to form

Ŵv(|u|), and a normalization such that
〈
Ŵv(|u|)

〉
= 1 averaged

over all nights and all baselines. This makes this estimator even more

robust against outliers and biases due to small number statistics. The

final weights per night are then given by:

W (u, v, ν) = Nvis(u, v, ν)Ŵv(|u|). (6)

The scaling factor Ŵv(|u|) for all nights is plotted in Fig. 4.

3.2.4 Averaging multiple nights

It is necessary to combine several nights of observation to reduce

the thermal noise level. It is expected that a total of about 1000 h of

LOFAR-HBA observation on one deep field will be required for a

statistical detection of the 21 cm signal from the EoR. In this work,

12 nights are analysed, of which the best 10 nights are combined,

totalling 141 h of observations. The different nights are combined

in visibilities with the weights obtained from equation (6):

Vcn(u, v, ν) =
∑n

i=1 Vi(u, v, ν)Wi(u, v, ν)∑n

i=1 Wi(u, v, ν)
, (7)

where Vi is the visibility cube of the i-th night, and Vcn is the

visibility cube of n nights combined.

3.3 Residual foreground removal

After direction-dependent calibration and subtraction of the gain-

corrected sky model, the residual Stokes I visibilities are composed

of extragalactic emission below the confusion limit (and thus not

removable by source subtraction) and partially polarized diffuse

MNRAS 493, 1662–1685 (2020)
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1670 F. G. Mertens et al.

Galactic emission which is still approximately three orders of

magnitude brighter than the 21 cm signal. The emission mechanism

of these foreground sources (predominantly synchrotron and free–

free emission) are well-known to vary smoothly in frequency,

and this characteristic can differentiate them from the rapidly

fluctuating 21 cm signal (Shaver et al. 1999; Jelić et al. 2008).

However, the interaction of the spectrally smooth foregrounds

with the Earth’s ionosphere, the inherent chromatic nature of our

observing instrument (in both the PSF and the primary beam),

and chromatic calibration errors create additional ‘mode-mixing’

foreground contaminants which introduce spectral structure to the

otherwise smooth foregrounds (Datta et al. 2010; Morales et al.

2012; Trott et al. 2012; Vedantham et al. 2012).

In the 2D angular (k⊥) versus line-of-sight (k‖) power spectra, the

foregrounds and mode-mixing contaminants are primarily localized

inside a wedge-like region.15 This makes them separable from the

21 cm signal by either avoiding the predominantly foreground-

contaminated region and only probe a k-space region where the

21 cm signal dominates (foreground avoidance strategy; e.g. Liu

et al. 2014a; Trott et al. 2016), or by exploiting their different spec-

tral (and spatial) correlation signature to separate them (foreground

removal strategy; e.g. Chapman et al. 2012, 2013; Patil et al. 2017;

Mertens et al. 2018).

We adopt a foreground removal strategy which, if done correctly,

has the advantage of considerably increasing our sensitivity to larger

comoving scales (smaller k-modes) (Pober et al. 2014). To that aim,

we developed a novel foregrounds removal technique based on GPR

(Mertens et al. 2018). In this framework, the different components

of the observations, including the astrophysical foregrounds, mode-

mixing contaminants, and the 21 cm signal, are modelled as a

Gaussian Process (GP). A GP is the joint distribution of a collection

of normally distributed random variables (Rasmussen & Williams

2005). The sum of the covariances of these distributions, which

define the covariance between pairs of observations (e.g. at different

frequencies), is specified by parametrizable covariance functions.

The covariance function determines the structure that the GP will be

able to model. In GPR, we use the GP as parametrized priors, and the

Bayesian likelihood of the model is estimated by conditioning this

prior to the observations. Standard optimization or Monte Carlo

Markov Chain (MCMC) methods can be used to determine the

optimal hyperparameters of the covariance functions. The GPR

method is closely related to Wiener filtering (Zaroubi et al. 1995;

Särkkä & Solin 2013). Compared to the Generalized Morphological

Component Analysis (GMCA; Bobin et al. 2008; Chapman et al.

2013) used in Patil et al. (2017), GPR is more suited to treat the

problem of foregrounds in high redshift 21 cm experiments (Mertens

et al. 2018) and reduces the risk of signal suppression by explicitly

incorporating a 21 cm signal covariance prior in its GP covariance

model.

3.3.1 Gaussian process regression

Formally, we model our data d observed at frequencies ν by a

foreground ffg, a 21 cm signal f21and noise n components:

d = ffg + f21 + n. (8)

15This peculiar shape is explained by the fact that longer baselines (higher

k⊥) change length more rapidly as a function of frequency than smaller base-

lines, causing increasingly faster spectral fluctuations, and thus producing

power into proportionally higher k‖ modes.

The foreground signal can be statistically separated from the

21 cm signal by exploiting their different spectral behaviour. The

covariance of our GP model (in GPR the covariance matrix entries

are defined by a parametrized function and the distance between

entries in the data vector, e.g. the difference in frequency) can then

be composed of a foreground covariance Kfg and a 21 cm signal

covariance K21,

K = Kfg + K21. (9)

The foreground covariance itself is decomposed into two parts,

accounting for the large frequency coherence scale of the intrinsic

extragalactic and Galactic foreground emission and the smaller

frequency coherence scale (in the range of 1–5 MHz) of the mode-

mixing component.16

We use an exponential covariance function for the 21 cm signal,

as we found that it was able to match well the frequency covariance

from a simulated 21 cm signal (Mertens et al. 2018). Eventually,

the choice of the covariance functions is data driven, in a Bayesian

sense, selecting the one that maximizes the evidence. We will see in

Section 4 that the simple foregrounds +21 cm dichotomy will need

to be adapted, introducing an additional component, to match the

data better.

The joint probability density distribution of the observations d

and the function values ffg of the foreground model at the same

frequencies ν are then given by,
[

d

ffg

]
∼ N

([
0

0

]
,

[
Kfg + K21 + Kn Kfg

Kfg Kfg

])
(10)

using the shorthand K ≡ K(ν, ν), and where Kn = diag(σ 2
n (ν)) is

the noise covariance. The foreground model is then a Gaussian

Process, conditional on the data:

ffg ∼ N
(
E(ffg), cov(ffg)

)
(11)

with expectation value and covariance defined by:

E(ffg) = Kfg

[
Kfg + K21 + Kn

]−1
d (12)

cov(ffg) = Kfg − Kfg

[
Kfg + K21 + Kn

]−1
Kfg. (13)

The residual is obtained by subtracting E(ffg) from the observed

data:

r = d − E(ffg). (14)

3.3.2 Bias corrections

Inferring the variance of a distribution in general leads to a bias

when its expectation value is also inferred at the same time. To

correct for this bias, we derive an unbiased version of the residual

covariance (or power spectra). The residual covariance is formally

given by:

〈r rH〉 = 〈(d − E(ffg))(d − E(ffg))H〉 (15)

which, after replacing E(ffg) by equation (12), and introducing the

residual covariance Kr = K21 + Kn, evaluates to:

〈r rH〉 = (I − Kfg[Kfg + Kr]
−1)〈d dH〉

× (I − [Kfg + Kr]
−1Kfg). (16)

16Formally the chromatic nature of the instrument implies that mode-mixing

has a multiplicative effect, but this can be approximated, to first order, as an

additive effect, justifying the use of separable additive covariance for large

and small frequency coherence scale foregrounds.
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LOFAR-EoR 21 cm power spectrum upper limit 1671

Assuming the GP covariance model is adequate (which translates

to < d dH >= Kfg + Kr), we have:

〈r rH〉 = (I − Kfg[Kfg + Kr]
−1)(Kfg + Kr)

× (I − [Kfg + Kr]
−1Kfg)

= Kr − Kr[Kfg + Kr]
−1Kfg

= Kr − (Kfg + Kr)[Kfg + Kr]
−1Kfg

+ Kfg[Kfg + Kr]
−1Kfg

= Kr − Kfg + Kfg[Kfg + Kr]
−1Kfg

= Kr − cov(ffg). (17)

We see that, in order to obtain the expected covariance of the

residual, Kr, we need to un-bias the estimator using cov(ffg). An

unbiased estimator of the covariance of the residual is then given

by:

〈r rH〉unbiased = 〈(d − E(ffg))(d − E(ffg))H〉 + cov(ffg). (18)

Intuitively, this can be understood by considering that E(ffg) is just

one possible realization of the foreground fit (the maximum a-

posterior, i.e. MAP, solution), and any function derived from the

distribution defined in equation (11) is a valid foreground fit to the

data. Similar derivations can be obtained for the power spectra. The

above bias correction has been tested numerically.

3.4 Power spectra estimation

Given the observed brightness temperature of the 21 cm signal T (r)

as a function of spatial coordinate r, the power spectrum P (k) as a

function of wavenumber k is defined as:

P (k) = Vc|T̃ (k)|2, (19)

with T̃ (k) the discrete Fourier transform of the temperature field

defined as:

T̃ (k) =
1

NlNmNν

∑

r

T (r)e−2iπkr, (20)

and Vc is the observed comoving cosmological volume, delimited

by the primary beam of the instrument Apb(l, m), the spatial tapering

function Aw(l, m) and frequency tapering function Bw(ν) applied to

the image cube before the Fourier transform:

Vc = (NlNmNν dldmdν)DM (z)2�D

AeffBeff
(21)

Aeff = 〈Apb(l, m)2Aw(l, m)2〉 (22)

Beff = 〈Bw(ν)2〉. (23)

Here DM(z) and �D are conversion factors from angle and fre-

quency, respectively, to comoving distance. We also define the

wavenumber k = (kl, km, k‖) as (Morales & Hewitt 2004; McQuinn

et al. 2006):

kl =
2πu

DM (z)
, km =

2πv

DM (z)
, k‖ =

2πH0ν21E(z)

c(1 + z)2
η, (24)

where H0 is the Hubble constant, ν21 is the frequency of the

hyperfine transition, and E(z) is the dimensionless Hubble pa-

rameter (Hogg 1999). With the assumption of an isotropic signal,

we can average P (k) in k-bins creating the spherically averaged

dimensionless power spectrum defined as:

�2(k) =
k3

2π2
〈P (k)〉k . (25)

For diagnostic purposes, we also generate the variance of the image

cube as a function of frequency, cylindrically averaged power

spectra, and angular power spectra (Cℓ) which characterize the

transverse scale fluctuation average over all frequencies. We define

the cylindrically averaged power spectrum, as a function of angular

(k⊥) versus line-of-sight (k‖) scales as:

P (k⊥, k‖) = 〈P (k)〉k⊥,k‖ . (26)

The angular, spherical, and cylindrical power spectra are all op-

timally weighted using the weights derived in Section 3.2.3. The

k‖ = 0 modes are discarded from the spherical and cylindrical

power spectra calculations as they are considered unreliable for

21 cm signal detection (for these modes, the foregrounds and 21 cm

signal are statistically difficult to distinguish).

The uncertainties on the power spectra reported here are sample

variance taking into account the number of individual uv-cells

averaged, and the effective observed field-of-view given by the

primary beam Apb(l, m) and spatial tapering function Aw(l, m). They

assume that all averaged uv-cells are independent measurements.17

All residual and noise power spectra are computed without a

frequency-tapering function to benefit from the full bandwidth

sensitivity. In the case of GPR residuals, we have another source

of uncertainty which comes from the uncertainty on the GP model

hyperparameters. These can be propagated using an MCMC method

(see Appendix B). This calculation shows it to be negligible

compared to the sample variance and it can be ignored in our

calculations (see also Mertens et al. 2018).

Foreground emission is usually confined to a wedge-like structure

in k space (Datta et al. 2010; Morales et al. 2012). This wedge line

is defined by:

k‖(θ ; k⊥) =
H0DM (z)E(z)

c(1 + z)
sin(θ )k⊥, (27)

where θ is the angular distance from the phase centre of the

foreground source. The instrumental horizon delay line is given

setting θ = 90◦ and delimits the ‘foreground wedge’ (k‖ modes

below this line) and ‘EoR window’ (k‖ modes above this line)

regions.

4 R E S U LT S F RO M N I G H T TO N I G H T

In this section we discuss the results of processing the data from

each night individually. We start by assessing the improvement

made to the data processing compared to Patil et al. (2017). The

residual foregrounds (after DD calibration) and noise in the data

are analysed and we examine the residual image cubes after GPR

foreground removal, and its night-to-night correlation.

4.1 Power spectra before foreground removal

All nights are calibrated and imaged following the procedure

described in Section 3.

17The primary beam and spatial tapering function introduce correlation, but

those can be ignore at the scales we measure our power spectra: the width

of the primary beam and tapering window is four times larger than the scale

probed by our smallest baseline of 50 λ.
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1672 F. G. Mertens et al.

Figure 5. Improvement due to the new calibration for a single night of observation. We compare the new DD calibration procedure (middle panel) against the

one adopted in Patil et al. (2017) (left-hand panel). The ratio of the two (right-hand panel) shows a substantial reduction of the excess noise related to the 250λ

baseline cut overfitting effect (by a factor >5 for k‖ > 0.8h cMpc−1), with no impact on the residual foregrounds (ratio ∼1 at low k‖). The plain grey lines

indicate, from bottom to top, 50◦ and instrumental horizon delay lines (delimiting the foreground wedge).

Figure 6. Improvement due to the new calibration for a single night of

observation. Here we compare Stokes I (blue lines) and Stokes V (green

lines) cylindrically averaged power spectra (averaged over all baselines)

processed with the new DD calibration procedure (new) against the one

used in Patil et al. (2017) (old). The excess noise (difference between old

and new) is reduced similarly in Stokes I (orange line) and Stokes V (red

line). The thermal noise power is indicated by the dashed grey line.

4.1.1 Calibration improvements

To demonstrate the improvement in the calibration, we process one

night of observation (L246309) with the DD calibration regulariza-

tion parameters used in Patil et al. (2017). Mevius et al. (in prepa-

ration) show that the latter approach leads to substantial excess

noise (beyond thermal noise), in particular if the constraints on

spectral smoothness are not correctly enforced. This leads to excess

noise on baselines <250 λ because of overfitting (see also Mouri

Sardarabadi & Koopmans 2019). Cylindrically averaged power

spectra of Stokes I and Stokes V for the two calibration procedures

(old versus new) are shown in Figs 5 and 6, indicating a significant

decrease of the excess noise, while leaving the residual foregrounds

largely unaffected. Taking the difference between the old and new

procedures shows that the excess noise is reduced in both Stokes I

and Stokes V in a similar manner (see Fig. 6). This excess noise is

mostly spectrally uncorrelated and close to constant as a function

of k‖, with the small increase of power at k‖ < 0.2h cMpc−1 related

to the basis function adopted as frequency gain constraint. This

is in good agreement with the theoretical predictions from Mouri

Sardarabadi & Koopmans (2019). With the new procedure, the

Stokes V power is now also closer to the thermal noise power.

4.1.2 Residual foregrounds

Fig. 7 shows the total intensity variance and angular power spectra

at different steps of processing. The foreground power is reduced

by a factor of ∼500 after DD calibration. The residual power is

consistent between nights, with a night-to-night relative variation of

≈ 12 per cent. The Stokes I angular power spectra are relatively flat

before sky-model subtraction, while afterwards, the power towards

the larger scales (smaller baselines) increases, consistent with a

power law with a spatial slope βℓ ≈ −1.18. On large scales, the

observed residual power, Cℓ(|u| = 50λ) ∼ 103 mK2, is comparable

with the power attributed to the Galactic foregrounds in the NCP

field observation from Bernardi et al. (2010) using the Westerbork

telescope. However, the spatial slope does not match the expectation

from Galactic diffuse emission, in the range [−2, −3] (Bernardi

et al. 2010). This suggests that the residual power observed here

is a combination of Galactic emission, residual confusion-limited

extragalactic sources, and calibration errors from the DD-calibration

stage. The latter may be substantial (see e.g Mouri Sardarabadi &

Koopmans 2019), but because they are now mostly frequency co-

herent (resulting from the high regularization used in the consensus

optimization), they are separable from the 21 cm signal and can be

removed using the GPR method.

4.1.3 Noise statistics

Following the procedure detailed in Section 3.2.3, Stokes V and

Stokes I sub-band difference power spectra (δνI and δνV, respec-

tively) are generated as a proxy for spectrally uncorrelated noise,

and time-difference power spectra from even/odd sets are generated

MNRAS 493, 1662–1685 (2020)
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Figure 7. Variance (left-hand panel) and angular power spectra (right-hand panel) for all nights at different processing stages. Different nights are indicated

by a different colour. The top lines show the Stokes I power after DI calibration. The middle lines show the Stokes I power after DD calibration and sky model

subtraction (but before GPR). The lines at the bottom show the Stokes V sub-band difference power. The black dashed line represent the thermal noise power

for an average observing duration time (14.4 h) and an average SEFD (4150 Jy).

as a proxy for the thermal noise power spectra (δtV). Taking the

power ratio of δνV over δtV, exhibits a non-negligible excess power

well above the thermal noise level (≈35 per cent, see Table 1).

This additional spectrally uncorrelated noise is baseline dependent,

with a flat ratio of ≈1.25 for baselines of length > 125 λ, and then

gradually increasing to smaller baselines (see Figs 7 and 3). The

ratio also varies considerably from night to night. Examining the

power ratio of δνV over δνI, shows a higher sub-band difference

noise level (by a factor ≈50 per cent) in Stokes I. This ratio has a

weak dependence on the baseline length (with a Pearson correlation

coefficient between ratio and baselines r = 0.23 and a corresponding

p-value <10−5).

This source of noise is still being investigated. One hypothesis

is mutual-coupling between spatially close stations (e.g. Fagnoni

et al. 2019). This would explain the rise of power with decreasing

baseline length. It might also be a source of broad-band and faint

RFI at the central LOFAR ‘superterp’ region. It is also interesting

to note that the Galactic diffuse emission is prominent at baselines

<125 λ. Each of these effects will be further analysed in future

publications.

4.2 Residual foreground removal

The residual foreground emission after DD calibration is removed

using GPR modelling which is applied to the same gridded vis-

ibilities (4◦ × 4◦ field of view) as used for the power spectrum

analysis.

4.2.1 Covariance model

In Section 3.3 it was shown that we can recover unbiased power

spectra of the signal as long as the covariance model matches the

data. The GP model therefore needs to be as comprehensive as

possible, incorporating covariance functions for all components of

the data, including the 21 cm signal and known systematics. The

selection of the covariance functions is driven by the data in a

Bayesian framework, by selecting the model that maximizes the

evidence. Because these covariance functions are parametrized, they

too are optimized.

(1) The foregrounds – At this stage, the foreground residuals are

mainly composed of intrinsic sky emission from confusion-limited

extragalactic sources and from our own Galaxy, and of mode-

mixing contaminants related to e.g. the instrument chromaticity

and calibration errors that can originate from all sources in the

sky leaking into the 4◦ × 4◦ image cubes through their side lobes.

We build this property into the GP spectral-covariance model by

decomposing the foreground covariance matrix into two separate

parts,

Kfg = Ksky + Kmix, (28)

with ‘sky’ denoting the intrinsic sky and ‘mix’ denoting the mode-

mixing contaminants. A Matern covariance function is adopted for

each of the components of the GP model of the data, which is

defined as (Stein 1999):

κMatern(νp, νq ) = σ 2 21−η

Ŵ(η)

(√
2ηr

l

)η

Kη

(√
2ηr

l

)
, (29)

where σ 2 is the variance, r = |νq − νp| is the absolute difference

between the frequencies of two sub-bands, and Kη is the modified

Bessel function of the second kind. The parameter η controls the

smoothness of the resulting function. Functions obtained with this

class of kernels are at least η-times differentiable. The kernel is also

parametrized by the hyperparameter l, which is the characteristic

scale over which the spectrum is coherent. Setting η to ∞ yields

a Gaussian covariance function, also known as the radial basis

function, which is well-adapted to model the intrinsic (sky) fore-

ground emission (Mertens et al. 2018). The coherence scale of this

component is usually large, and we adopt a uniform priorU(10, 100)

MNRAS 493, 1662–1685 (2020)
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Table 2. Different GP models assessed against the fidu-

cial GP model, being a Matern kernel with ηmix = 3/2

(see Section 4.2.1). Negative values of the difference

in log-evidence (Z) indicate a less probable model. A

difference of |�Z| > 20 is typically regarded as a very

strong difference in evidence.

Model change �Z

ηex = 5/2, ηmix = 3/2 (fiducial) 0

ηmix = 5/2 −39

ηmix = +∞ −147

κmix ≡ κRatQuad −7

αn = 1 (fixed) −110

σ 2
ex = 0 (fixed) −149

ηex = 3/2 −17

MHz for lsky. For the mode-mixing component, several covariance

functions are evaluated. We test the Matern covariance function with

different values of ηmix (+ inf, 5/2 and 3/2), and also the Rational

Quadratic function (κRatQuad) which was used recently in Gehlot

et al. (2019) to model the foreground contaminants of LOFAR-

LBA data. A Matern kernel with ηmix = 3/2 is favoured by the data

when comparing the Bayes factor (the ratio of the evidence of one

hypothesis to the evidence of another), with very strong evidence

against a wide range of alternatives (see Table 2 for a comparison of

all tested GP models). A uniform prior lmix ∼ U(1, 10) is adopted,

because simulations show that the foreground signal is separable

from the 21 cm signal as long as lmix � 1 MHz (Mertens et al. 2018).

(2) The 21 cm signal – The covariance shape of the real 21 cm

signal is not known. However, information from current 21 cm

simulations can be used to assess which family of models is a

good approximation of the 21 cm signal. Mertens et al. (2018)

show that the 21 cm signal frequency covariance – calculated using

21cmFAST (Mesinger et al. 2011) – can be well-approximated by

an exponential covariance function (i.e. a Matern function with

η = 1/2). This function has two hyperparameters: the frequency

coherence scale l21 and a variance σ 2
21. These allow some degree

of freedom to match different phases of reionization. Based on the

covariance of 21 cmFAST simulations at different redshifts (see

fig. 2 in Mertens et al. 2018), a uniform prior U(0.1, 1.2) MHz on

l21 is adopted.

(3) The noise – Various noise estimators can be used to build

the noise covariance. The time-differenced visibilities – obtained

from the difference between even and odd sets of visibilities

(e.g. separated by only several seconds) – is expected to be an

excellent estimator of the thermal noise. It does, however, not fully

reflect the spectrally uncorrelated random errors in our data (e.g.

due to increased noise at short baselines; see Section 4.1.3). An

alternative is to use Stokes V, which has previously been used as a

noise estimator (Patil et al. 2017). It, however, can be corrupted

by polarization leakage from Stokes I. The difference between

alternating sub-bands in Stokes V can also be a good noise estimator,

but it introduces correlation between consecutive sub-bands. The

solution that is adopted is to simulate the noise covariance Kvsn

that we will use in our GP model using the weights in equation (6)

and the noise definition of the gridded visibilities in equation (4).

This estimator is based on Stokes V noise, while the actual noise

in Stokes I can be slightly higher (see Section 3.2.3 and Table 1).

A noise scaling factor αn is therefore adopted, which is optimized

along with the other hyperparameters of the GP model, resulting

in the final noise covariance K′
sn = αnKsn. An associated noise data

Table 3. Summary of the GP model, the priors on its hyperparam-

eters, and the estimated median and 68 per cent confidence intervals

obtained using an MCMC procedure for the 10 nights data set (see

Appendix B. All covariance functions are Matern functions.

Hyperparameter Prior MCMC estimate (10 nights)

ηsky +∞ −
σ 2

sky/σ
2
n − 611+22

−19

lsky U (10, 100) 47.5+3.1
−2.8

ηmix 3/2 −
σ 2

mix/σ
2
n − 50.4+2.1

−1.9

lmix U (1, 10) 2.97+0.09
−0.08

ηex 5/2 −
σ 2

ex/σ
2
n − 2.18+0.09

−0.14

lex U (0.2, 0.8) 0.26+0.01
−0.01

η21 1/2 −
σ 2

21/σ
2
n − <0.77

l21 U (0.1, 1.2) >0.73a

αn − 1.17+0.06
−0.06

Note. aThe upper confidence interval hits the prior boundaries, hence

we report here only the lower limit.

set VN(u, v, ν) is built to compute the noise power spectra and is

used to subtract the noise bias from the residual power spectra.

(4) The excess noise – After applying GPR using foreground,

21 cm signal and noise-only covariance models, a significant spec-

trally correlated residual is still present. This ‘excess noise or power’

is accommodated in the model by an additional Matern covariance

kernel Kex. Different values of ηex were tested and ηex = 5/2 is

strongly favoured by the data. Adding this ‘excess’ component to the

model significantly increases the Bayesian evidence (see Table 2),

motivating this choice.

The final parametric GP model is composed of five terms:

K = Ksky + Kmix + K21 + K′
sn + Kex, (30)

with a total of nine hyperparameters which we list in Table 3,

along with their priors. An optimal GP model is obtained for

each night separately by maximizing the Bayesian evidence. The

PYTHON package GPY18 is used to do this optimization. The

covariance parameters converge to very similar optimal values

for all nights. The ‘sky’ spectral-coherence scales are typically

lsky ∼ 50 MHz, lmix ≈ 2.5–4.5 MHz for the ‘mix’ component

and lex ≈ 0.25–0.45 MHz for the ‘excess’ component. The ‘sky’

component is expected to model emission from our Galaxy and

extragalactic sources emitting predominately synchrotron and free–

free radiation. These radiating sources have power-law spectra with

temperature spectral-indices β ∼ 2.5 for the Galactic synchrotron

component (e.g. Jelić et al. 2008; Dowell et al. 2017), β ∼ 2.1

for the free–free radiation (e.g. Jelić et al. 2008) and β ∼ 2.8 for

the extragalactic synchrotron component (e.g. Lane et al. 2014).

We verified experimentally that the coherence-scale lsky ∼ 50 MHz

is well adapted to model power-law functions with spectral-index

β ≈ 2–3. The ‘mix’ component is expected to model mode-

mixing contaminants which in the cylindrically averaged power

spectra should be confined to the ‘foregrounds wedge’ region. The

coherence scale lmix ≈ 2.5 of Kmix is associated with a step drop

of power as function of k‖, dropping to ∼1 per cent of the total

18https://sheffieldml.github.io/GPy/
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Figure 8. Variance (left-hand panel), cylindrically averaged power spectra (averaged over all baselines) (middle panel) and spherically averaged power spectra

(right-hand panel) of Stokes I after GPR residual foreground removal, for all nights analysed in this work. The black dashed line represent the thermal noise

power for an average observing duration time (14.4 h) and an average SEFD (4150 Jy). At high k‖, the residual power after GPR is close to the thermal noise

level, but a frequency correlated excess power is present. Note that the noise bias has not been removed here.

power at k‖ ≈ 0.17 h cMpc−1, and is thus well adapted to model this

component. The variance of the ‘excess’ is similar or below the noise

variance (σ 2
ex ≈ 0.6–1 σ 2

n ) while for the ‘21 cm signal’ it is typically

very small (σ 2
21 < 0.1 σ 2

n ). Hence the residuals after removing the

foregrounds are mainly composed of noise and ‘excess’.

4.2.2 Power spectra after foreground removal

Fig. 8 shows the variance and power spectra of the residual after

GPR foreground removal for all nights, compared to the expected

thermal noise level for an average observing duration time of 14.4 h

with an SEFD of 4150 Jy. For all nights, the excess power per sub-

band is a factor of 2–3 times higher than the thermal noise. This

excess corresponds to the ‘excess’ component of our GP model

which is not removed from the data due to its small frequency

coherence scale. At small k‖, the ratio of residual to thermal noise

power is ≈5–10, while it is ≈1–2 at large k‖. The same can be seen

in the spherically averaged power spectra. Night-to-night variations

of the residual power is a factor 2–3 and cannot be explained by

the different total observing times between nights. For example, the

excess power in LOFAR observing-cycle 2 observations is below

that for cycles 0 and 1. Different ionospheric or RFI conditions

might contribute to these night-to-night variations. Hence, although

this excess power is drastically lower than in Patil et al. (2017) due

to improved calibration, it is still not entirely mitigated. Below we

investigate the excess power in more detail.

4.3 Night-to-night correlations between residuals

To better understand the origin of the excess power after foreground

removal, the residuals obtained after GPR foreground removal

are correlated between all pairs of nights, by computing the

cylindrically averaged cross-coherence, defined as:

C1,2(k⊥, k‖) ≡
〈
|T̃ ∗

1 (k)T̃2(k)|
〉2

〈
|T̃1(k)|2

〉 〈
|T̃2(k)|2

〉 , (31)

which is a normalized quantity between one (indicating maximum

correlation) and zero (no correlation). The cylindrically averaged

cross coherence is computed between all pairs of nights. The average

over three regions in (k⊥, k‖) space is determined: the ‘foregrounds

wedge’ region bounded by the instrumental horizon delay line (see

equation 27) and two EoR-window regions distinguishing between

the shorter (|u| < 100; roughly the central LOFAR ‘superterp’

region) and the longer core-baselines. This allows an additional

test of whether the night-to-night correlations of the excess noise

described in Section 4.1.3 correlate with where it is found in the

power spectrum and correlates with baseline length.

A corner-plot of the correlations between nights is presented

in Fig. 9 for each of the three different regions. We also show

the correlation coefficients as a function of their difference in

the start of the observations in Local Siderial Time (LST) versus

their start in number of (Julian) days. This representation provides

additional clues about the different observing conditions between

nights. In the ‘EoR window’, only very small correlations are

observed. The correlation is on average slightly larger for the shorter

baselines (≈0.04, significance >0.032) than for the larger baselines

(≈0.02, significance >0.018), as defined above. Significantly larger

correlations are found in the ‘foregrounds wedge’ region (≈0.03–

0.25, significance >0.018). For each of the three regions, also a clear

trend between the correlation coefficients and either difference in

Julian date (between nights) or LST are found: correlations are

larger if the observations are either close in Julian date or close in

LST, and largest if they are close in both, hence they observe the

same sky during the observing runs with a similar primary beam and

a similar PSF. The largest correlation, in particular inside the wedge

region, is found when two nights are close and separated by only a

small number of days. This suggests that some of the excess power

in the data residuals (after sky-model and foreground subtraction)

originates from sky emission that is far from the phase centre for

which the primary beam will change considerably at different values

of the LST. The PSF will also change but, for all nights, the uv-

plane is always fully sampled in the 50–250λ range, given the long

(12–16h) duration of our observing nights. For the shorter baselines

and in the ‘EoR window’ region, the trend with LST difference is

less pronounced, which suggests that part of the additional noise at

baselines <100λ discussed in Section 4.1.3 may have a local origin
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1676 F. G. Mertens et al.

Figure 9. Top: Cross-coherence matrix between all nights after GPR foregrounds removal. Three different regions of the cylindrically averaged power spectra

are analysed: The EoR window for baselines >100 λ (left-hand panel), the EoR window for baselines <100 λ (middle panel), and the foreground wedge

region for baselines >100 λ (right-hand panel). We note there is no or a small correlation in the EoR window, while the correlation is more noticeable in

the foreground wedge, especially for certain combinations of nights. Bottom: Cross-coherence (colour scale) between two nights as a function of LST time

difference (abscissa) and UTC time difference (ordinate). We observe higher correlation between observation started at the same LST time (which will see the

same sky throughout the observation).

(e.g. RFI). These are all baselines from stations in the superterp and

might arise from mutual-coupling. Its origin will be investigated in

the future using a near-field imaging technique (Paciga et al. 2011).

Based on this analysis, we discard nights L80850 and L254871 as

the former has a high residual power and both have a high correlation

coefficient between their residuals with other nights. This leaves a

total of ten nights for further analysis.

5 C OMBININ G DATA SETS

In this section, we discuss the power spectra obtained by combining

the ten selected nights of observations, corresponding to about 141 h

of data.

5.1 Weighted averaging of the data

The gridded visibilities of separate nightly data sets are averaged

following the procedure described in Section 3.2.4. They are

combined in the order of their date of observation.19 Intermediate

data sets are also kept, yielding a total of nine combined data sets

19This is only done for illustration purposes, since the final result does not

depend on the order in which the data are combined.

with an increasing total observation time. For each accumulated data

set, the residual foregrounds are estimated and subtracted following

the same GPR procedure and GP covariance model described in Sec-

tion 4.2. Hence, the GPR is only applied to the combined data sets.

When combining the data, the GP spectral coherence scales of

the foregrounds converge to similar values as found from individual

nights. This suggests that these scales are stable between nights. The

GP variances for the ‘sky’ and ‘mix’ components also do not vary

much when compared to the total variance (≈0.85–0.9 for the ‘sky’

component, and ≈0.04–0.065 for the ‘mix’ component). This is

expected for a signal that is coherent over nights. The GP variance of

the ‘excess’ component decreases with increasing total observation

time. It does not decrease, however, as would be expected from

uncorrelated noise, with a ratio ≈2.2 found between the two nights

data set (28 h) and ten nights data set (141 h), confirming that the

‘excess’ component partly correlates between nights. The most

probable hyperparameter values for the combined (i.e. ten nights)

data set are given in Table 3, with their confidence intervals obtained

using an MCMC procedure (see Appendix B and Mertens et al.

2018). Most parameters are well constrained, except the variance

of the ‘21 cm signal’ component which is consistent with zero, as

expected for such a short total integration time, and the coherence-

scale of the ‘21 cm signal’ for which the upper bound of the posterior

MNRAS 493, 1662–1685 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
9
3
/2

/1
6
6
2
/5

7
2
7
3
3
7
 b

y
 U

n
iv

e
rs

ity
 o

f O
s
lo

 L
ib

ra
ry

. L
ib

ra
ry

 o
f M

e
d
ic

in
e
 a

n
d
 H

e
a
lth

 S
c
ie

n
c
e
s
 u

s
e
r o

n
 0

4
 S

e
p
te

m
b
e
r 2

0
2
0



LOFAR-EoR 21 cm power spectrum upper limit 1677

Figure 10. Variance (left-hand panel), cylindrically averaged power spectra (averaged over all baselines) (middle panel), and spherically averaged power

spectra (right-hand panel) of Stokes I after GPR residual foreground removal, as we combine the nights, from 2 (yellow) to 10 (dark blue). The black dashed

line represent the thermal noise power of the 10 nights data set, estimated from 10 s time difference visibilities. Note that the noise bias is not removed here.

distribution hit the prior boundary, also the significance of the later

is reduced given the non-significant variance of this component.

Hence only upper limits on the 21 cm signal (power spectra) can be

given.

5.2 Residual power spectra

Fig. 10 shows the power spectrum and its integrated variance

after applying GPR, but before subtracting the noise bias, as we

combine more data. The frequency range of 136–140 MHz is

heavily affected by RFI and many of the corresponding sub-bands

are therefore discarded. The results are compared to the thermal

noise power estimated from the 10 s time difference visibilities. The

data are combined (i.e. integrated) in the order of the observation.

The integrated variance as a function of frequency (left-hand

panel) shows a gradual reduction of power as we combine more

data. However, taking the ratio between the 2 and 10 nights of

accumulated data, a value of ≈3 is found while theoretically a

ratio closer to ≈5 is expected. Examining the power spectra as

a function of k‖ (middle panel) shows that the ratio of residual

power over thermal noise is worse in the foreground-dominated

region (i.e. inside the ‘wedge’), where only a reduction in power

of ≈2.8 is found. At k‖ > 1h cMpc−1, the ratio is closer to ≈4.

Comparing the residual power to the thermal-noise power in

the spherically averaged power spectrum (right-hand panel), the

residual power is found to be ≈14 times the thermal noise power at

k ≈ 0.08h cMpc−1, and about ≈6 times the thermal noise power at

k ≈ 0.45h cMpc−1.

In Fig. 11, we compare the cylindrically averaged power spectra

of the 10 nights data set residual (middle panel) to a 1 night

equivalent data set power spectrum in which the different nights are

averaged incoherently (i.e. averaged in power spectra) (left-hand

panel). Taking the ratio of the two (right-hand panel), we observe a

ratio ≈4 in the foreground wedge region and ≈5–6 outside it where

a ratio of 10 is expected. This indicates that the night-to-night

correlation of the residual is not just limited to the wedge, where

some residual sky foregrounds might be expected, but also affects

the EoR window. Even at high k‖, the residuals are not thermal noise

dominated in the combined data set. This night-to-night correlation

of the residuals, that we also observed in Section 4.3, is the major

challenge that needs to be understood and solved in the future as it

limits our ability to integrate >200 h of data. Possible origins will

be discussed in Section 6.

5.2.1 Residual over thermal-noise power ratio

Fig. 12 shows the ratio of the power spectrum of the Stokes I

residuals over the observed noise power spectrum (left-hand panel)

and over the thermal noise power spectrum (right-hand panel). The

noise power spectrum is computed from the simulated noise data set

VN(u, v, ν) used in the GP model (see Section 4.2.1) and accounts for

the larger spectrally uncorrelated noise level observed on baseline

lengths of <125 λ as compared to the thermal noise. Hence, it

incorporates the noise scaling factor αn which is optimized as part

of the GP covariance model. The residual of the Stokes I over the

observed noise ratio shows that the GP model properly accounts for

the spectrally uncorrelated noise in the data: a ratio ∼1 is reached at

k‖ > 1h cMpc−1. At lower values of k‖, however, the ratio gradually

increases. This is the spectrally correlated excess power, which

is also part of the GP model, but is not part of the foreground

covariance model. Remarkably, the ratio appears to be baseline

independent, indicating that the excess power follows the same

baseline dependence as the noise (which corresponds to the uv-

density). Examining the ratio of the residual over the thermal noise

shows that it increases towards shorter baseline lengths.

In summary, the residual power spectrum from the combined

data set, after GPR foreground removal, can be decomposed into

(i) thermal noise, (ii) an additional noise-like component that is

spectrally uncorrelated, and (iii) an excess noise that is partially

correlated between nights and spectrally correlated (i.e. its power

spectrum in delay space is not white) and cannot be removed by

the GPR method as part of the spectrally smooth foregrounds. The

noise power is still significantly larger than the thermal noise power,

especially on shorter baseline lengths, although the excess is much

smaller than found in Patil et al. (2017) due to the signal-processing

improvements presented in this paper.
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1678 F. G. Mertens et al.

Figure 11. Cylindrical Stokes I power spectra after GPR residual foreground removal of the 10 nights incoherently averaged (left-hand panel) and coherently

averaged (middle panel). Both are optimally combined and thus the ratio of the two (right-hand panel) is expected to be 10 in the case of uncorrelated residuals.

We observe significant residuals in the foreground wedge region, especially below the 50◦ delay line (black lines), for both the incoherently and coherently

averaged cases. The ratio of the two is <5 in this region, suggesting frequency correlated excess power which is also partially correlated between nights.

Figure 12. Ratio of cylindrical Stokes I power spectra of the 10 nights Stokes I after GPR residual foreground removal over the noise estimated by GPR

(left-hand panel) and the thermal noise estimated from 10 s time difference visibilities (right-hand panel). The excess power (against the frequency uncorrelated

noise) does not show strong baselines dependence. The baseline dependence of the excess noise (described in Section 4.1.3) is striking when compared against

the thermal noise.

5.3 Upper limit on the 21 cm signal power spectrum

The spherically averaged power spectrum is computed inside seven

k-bins logarithmically spaced between kmin = 0.06 h cMpc−1 and

kmax = 0.5 h cMpc−1, with a bin size of dk/k ≈ 0.3. Assuming

that (i) the GPR foregrounds have limited impact on the power

spectra of the 21 cm signal (see Appendix A), and that (ii) the

power spectra of the noise VN(u, v, ν), estimated as part of the GP

covariance model optimization, are a good representation of the

spectrally uncorrelated noise power in our data set, we can compute

the spherically averaged noise subtracted power spectrum of the

residual and its associated error as:

�2
21 = �2

I − �2
N (32)

�2
21,err =

√(
�2

I ,err

)2 +
(
�2

N,err

)2
. (33)

The resulting power spectrum is presented in Fig. 13. It significantly

exceeds both the thermal noise power �2
th and the estimated noise

power �2
N , because on large scales it is dominated by the excess

power described in previous sections. Although the value of �2
21

for the combined data sets is significantly larger than zero, we do

not consider it a detection. The reason is that the residuals are

only partially correlated between nights whereas the 21 cm signal

would be fully correlated (assuming it dominates the noise), and

it is not isotropic (i.e. constant power for all modes of a given k).

Conservatively, we therefore consider it to be an upper limit on the

21 cm signal and report the 2 − σ upper limits in Table 4.

The deepest upper limit �2
21 < (72.86)2 mK2, is observed at

k = 0.075 h cMpc−1. Despite it being the deepest upper limit at

this redshift, this is still a factor ∼30 higher in power than the

upper limit that could theoretically be achieved if the residual would

be consistent with thermal noise. To make a comparison with the

previous upper limits based on 13 h of data (Patil et al. 2017),

we note that in this work we discard the smallest k‖ modes when

computing the spherically averaged power spectra while this was
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Figure 13. Final 10 nights Stokes I spherically averaged power spectra

after GPR residual foreground removal and noise bias removal (orange). The

green and blue dashed lines represent, respectively, the estimated frequency

uncorrelated noise and thermal noise power of the 10 nights data set. The

black dashed line represents the 2 − σ upper limit theoretically achievable

if the residual of the 10 nights data set were thermal noise dominated.

Table 4. �2
21 upper limit at the 2 – σ level (�2

21,UL) and theoretical

thermal noise sensitivity (�2
th,err) from the 10 nights data set, at given

k bins.

k �2
21 �2

21,err �2
21,UL 2 �2

th,err

h cMpc−1 mK2 mK2 mK2 mK2

0.075 (58.96)2 (30.26)2 (72.86)2 (13.10)2

0.100 (95.21)2 (33.98)2 (106.65)2 (14.30)2

0.133 (142.17)2 (39.98)2 (153.00)2 (18.73)2

0.179 (235.80)2 (51.81)2 (246.92)2 (25.16)2

0.238 (358.95)2 (64.00)2 (370.18)2 (31.54)2

0.319 (505.26)2 (87.90)2 (520.33)2 (44.60)2

0.432 (664.23)2 (113.04)2 (683.20)2 (67.76)2

not the case in Patil et al. (2017), limiting the smallest measurable

k mode.20 We also use different foregrounds-removal and power

spectrum estimation methods. Nevertheless, at k = 0.1 h cMpc−1,

the upper limit on �2
21 is improved by a factor 7.7. Most of this

improvement can be attributed to the improved DD calibration.

6 D ISCUSSION

In this section, a number of checks of the results of our processing

pipeline are discussed. Further improvements to the upper limit by

investigating potential sources for the still large excess power and

mitigation methods are also discussed.

6.1 Data-processing cross-checks

A critical assessment of the full processing pipeline is essential to

ensure a reliable upper limit on the 21 cm signal. Such a complex

experiment uses advanced signal processing techniques that may

potentially remove or alter the signal if not applied properly

(and sometimes even if they are applied properly). A number of

20The smallest k bin in Patil et al. (2017) was 0.053h cMpc−1.

such scenarios have been documented as a result of biases in the

calibration (e.g. Barry et al. 2016; Patil et al. 2016; Ewall-Wice

et al. 2017), foregrounds mitigation (e.g. Paciga et al. 2013), and

power spectra estimation (e.g. Cheng et al. 2018; Kolopanis et al.

2019). To ensure limited signal loss or bias of the 21 cm signal

power spectra, a number of checks were performed at various steps

in the processing pipeline.

Calibration – Direction-dependent calibration has the potential

to modify the signal when solving for too many parameters (Patil

et al. 2016). Our calibration scheme strictly limits this possibility

by discarding the baselines <250 λ during the calibration step

and enforcing spectral smoothness of the instrumental gains via

regularization. This bias reduction was also verified theoreti-

cally (Mouri Sardarabadi & Koopmans 2019) and experimentally

(Mevius et al. in preparation). We additionally checked that the

Stokes V power spectra before and after DD calibration are compa-

rable, checked that images of Stokes Q and Stokes U show the same

diffuse Galactic polarized structure before and after DD calibration

(only point sources due to polarization leakage are removed, as

expected), and checked that we observe the same polarized structure

at Faraday depths of −30 and −24.5 rad m−2 , before and after DD

calibration, as previously observed in Patil et al. (2016, fig. 3). In

each of the cases, we confirm that diffuse emission is not suppressed

on baselines <250 λ where we determine the 21 cm signal results,

as expected since they do not participate in the calibration.

Foregrounds mitigation – The GPR foregrounds mitigation

method has been extensively tested against a large range of

foreground simulations (Mertens et al. 2018) as well as simulated

LOFAR (Offringa et al. 2019a) and SKA foregrounds (Mitra et al. in

preparation). Mertens et al. (2018) showed that statistical separa-

tion between foregrounds and signal can be achieved when the

foregrounds are correlated on frequency scales �3 MHz which is

the case for the combined data set (lmix = 3.0 ± 0.1 MHz). We can

also recover an unbiased power spectrum of the signal when the

chosen GP covariance model is a good match to the data. In reality,

the model and data might not be perfect matches, and some biases

can be expected. To assess this, injection tests and simulation tests

were performed which reproduce the frequency correlations in the

data. The results are presented in Appendix A and Figs A1 and A2.

No signs of significant signal loss are found in any of tested cases.

The 21 cm signal is recovered effectively unbiased in the simulation

tests. In the injection test, we observe a positive bias <3 on large

scales and low S/N which is reduced to ∼1 at higher S/N scenario.

Power spectra – The power spectra estimation has been tested

against a data set with known power spectra as part of a SKA blind

challenge (Mitra et al. in preparation) and has been compared to

other power spectra pipelines (e.g. Offringa et al. 2019a) demon-

strating the accuracy of our power spectra pipeline. Uncertainty

estimates are tested using a Monte Carlo method with noise and

simulated 21 cm like signals showing good agreement between our

analytical estimates and the ones obtained from simulations.

6.2 Possible origin of the excess power

The residual power spectra after GPR foreground removal and

noise bias subtraction are dominated by an excess power that is in

part spectrally and temporally (i.e. between nights) correlated. On

large angular scales (k ≈ 0.1h cMpc−1), this excess power reaches

≈22 times the thermal noise power (Fig. 13), and currently it is the

dominant effect that impacts our 21 cm signal upper limits (or its

future detection) with LOFAR. In the ideal situation where one is
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1680 F. G. Mertens et al.

thermal noise limited, by combining >100 nights of data (roughly

the data in hand), limits of a few mK at k = 0.1h cMpc−1 can in

principle be reached. Understanding the origin of this excess power

is therefore essential. Below, we discuss several potential causes. A

more detailed analysis is left for a forthcoming work (Gan et al., in

preparation).

Foreground sources – Most of the foreground sources and their

associated PSF side-lobes are subtracted during DD calibration

and the GPR foreground-removal steps. In Fig. 14, a 20◦ × 20◦

image of the sky model is presented, restored with a 7 arcmin

FWHM Gaussian PSF (top left-hand panel) as well as an image

of the frequency-averaged (continuum) Stokes I image after DD

calibration (top right-hand panel). Most of the sources from the sky

model are correctly subtracted. The main lobe of the Primary Beam

(PB) is confusion noise limited on this angular scale and dominates

the residual foregrounds. The standard deviation in the frequency

direction of the DD-calibrated image cube (bottom left-hand panel),

indicates that although most of the line-of-sight power is inside the

main PB lobe, there is significant power outside as well. After

GPR (bottom right-hand panel), the residual power becomes more

spread over the full field but remains concentrated mainly inside the

first and second null of the PB. There is no significant correlation

between (i) the variance in the frequency direction after GPR and

(ii) the structure in the Stokes I image after DD calibration or the

sky-model image. This suggests that (i) GPR properly removed the

confusion limited foregrounds in the inner <20◦ from the phase

centre, and (ii) the excess power does not originate predominately

from sources <20◦ from the phase centre. The larger coherence

found between two nights observed at similar LST ranges and the

decorrelation at larger LST time difference (Fig. 9) could also be

explained by this hypothesis given that the average PB only changes

significantly between LSTs at distance >20◦. Foreground sources

further from the beam centre that are not part of the sky model result

in spectrally fluctuating side-lobes, due to the chromatic PSF, that

GPR might find hard to model. The Galactic plane, which is about

30◦ from the NCP, is very bright on large spatial scales and could

also be a source of the excess power. However, in the cylindrically

averaged power spectra, its power should still be limited to the

foreground wedge, while this is not the case for the excess (Fig. 12)

which has power up to high k‖ and no clear baseline dependence.

Polarization leakage – LOFAR has an instrumentally polarized

response. This may cause diffuse polarized emission to leak into

Stokes I. Faraday rotation of the polarized foreground could then

introduce spectral fluctuations, which may mimic or cover up the

frequency structure of the 21 cm signal (Asad et al. 2015; Jelić et al.

2015). Although this could explain the spectral correlation of the

excess power, the predicted level of leakage is expected to be much

smaller (i.e. ∼1 per cent) than the observed level of excess power

(see Asad et al. 2016). Hence, we believe that the current level of

excess power is not the result of polarization leakage in the NCP,

which is only marginally polarized.

DD-calibration errors – The overfitting of the data in the DD-

calibration step caused by the removal of baselines < 250 λ during

calibration in the past has been a clear origin of excess power in

LOFAR data (see the discussion in e.g. Patil et al. 2016, 2017

and the simulation from Mouri Sardarabadi & Koopmans 2019).

The improvements made in the calibration step have considerably

reduced its impact, and it should not introduce the kind of excess we

observe in the full 141 h data set. To verify this, the power spectrum

of the DD-calibrated sky model for one night (i.e. L253987) is

created, showing negligible power above the wedge. We therefore

conclude that the DD-calibrated sky-model in our current approach

is sufficiently spectrally smooth that it does not leak power in the

EoR window. On the other hand, no DD-calibration is applied to the

residuals after sky-model subtraction (e.g. confusion-level sources

and diffuse emission that are not part of the sky-model) which only

have DI-calibration gain applied to them.

DI-calibration errors – At present, the spectral smoothness via

Bernstein polynomials in SAGECAL is still only mildly enforced

at the DI-calibration step (i.e. the regularization strength is kept

low). The reason is that at this first step in the calibration process,

band-pass and cable-reflection structure in the frequency direction

are still present in the data and need to be corrected. Because the

signal-to-noise of the sky model is very high, spectrally correlated

calibration errors may still be introduced. It has been demonstrated

that chromatic DI-calibration errors due to an imperfect sky-model

can be transferred from longer to shorter baselines (Barry et al.

2016; Patil et al. 2016; Ewall-Wice et al. 2017). These spectrally

correlated gains, when applied to the data, can then introduce spec-

tral fluctuations well above the foreground wedge horizon and could

be an origin of our observed excess. The 1416 brightest sources in

our sky model account for about 99 per cent total sky model power,

suggesting the leakage is most probably relatively small. However

its impact on the power spectra is difficult to evaluate without

proper simulations, because of the spectrally correlated errors sky-

residuals introduce (Datta et al. 2010; Barry et al. 2016; Ewall-Wice

et al. 2017). We plan to perform such simulations in future work,

although the impact of sky-incompleteness has theoretically already

been analysed, in a LOFAR-like setup, by Mouri Sardarabadi &

Koopmans (2019), as discussed earlier.

RFI – Low-level RFI may still pass undetected by AOFLAG-

GER (Wilensky et al. 2019). It is currently applied on ≈12.2 kHz

frequency which is not optimal for detecting low-level narrow-band

RFI. The additional flagging operation that is applied to the gridded

visibilities cube may also miss such RFI. Faint broadband RFI could

also introduce frequency structure at high k‖ and is usually difficult

to detect and flag. However, it would be difficult to explain the LST

dependency of the night-to-night correlation.

Intrinsic spectral structure in the data and instrument – Our

calibration strategy assumes that direction-dependent effects are

spectrally smooth and relatively stable in time (we use a time

solution interval of 2.5–20 min). Some effects, such as ionospheric

scintillation noise, which have decorrelation times of the order of

seconds (Vedantham & Koopmans 2016), are not solved and can

leave frequency correlated noise. Scintillation noise due to bright

sources such as Cas A and Cygnus A could also scatter power at high

k‖, above the ‘foregrounds wedge’ (e.g. Gehlot et al. 2018). Spectral

structure in the signal chain of the instrument (Beardsley et al. 2016;

Kern et al. 2019) is another source of spectrally correlated errors. It

is however quite stable between nights and thus calibratable.

Most likely the excess power is not due to just one of the above

causes, but to a combination.

6.3 Future data-processing enhancements

Most of the causes of excess power that we discussed in the

previous section could be mitigated by improving RFI mitigation,

the instrumental and ionosphere calibration scheme, our sky model,

and the GPR covariance model:

Improving the low level RFI flagging – Currently about 5 per cent

of the uv-cells and several sub-bands are flagged after gridding. If

this low-level RFI could be flagged on higher resolution data sets,
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Figure 14. Top left-hand panel: Apparent NCP sky-model, convolved with a 7 arcmin FWHM Gaussian PSF, composed of more than 28 000 components

distributed in 122 clusters. Top right-hand panel: 10 nights total intensity (Stokes I) image averaged over the 12 MHz bandwidth after DD calibration and

sky-model subtraction, at 7 arcmin resolution. Bottom left-hand panel: 10 nights total intensity image rms along the frequency-direction, after DD calibration

and sky-model subtraction, at 13 arcmin resolution. Bottom right-hand panel: 10 nights total intensity image rms along the frequency-direction after GPR

residual foreground removal, at 13 arcmin resolution. All images are in units of Kelvin, and the three dashed circles indicate the approximate position of the

primary beam nulls (≈4.5, 9, 13.5 deg).

this could improve our sensitivity and reduce their impact in the EoR

window. Combining the time-differenced visibilities amplitude of

all baselines, a technique recently introduced in Wilensky et al.

(2019), will be used to identify faint RFI below the single baseline

thermal noise. Ground-plan sources of broad-band RFI will also be

investigated and suppressed using near-field imaging (e.g. Paciga

et al. 2011).

Enforcing spectrally smooth solutions at the DI steps – This is

not done right now and could still lead to small chromatic gain

calibration errors. In this process, we will have to separately fit

slowly time varying band-pass effects, such as cable reflections,

which would not be modelled by the Bernstein polynomial prior.

A second DI-calibration step with a long solution time and low

regularization (i.e. bandpass calibration) would be able to solve

them with limited extra noise (e.g. Barry et al. 2019; Li et al. 2019).

We will also investigate directly using the Bernstein polynomial

prior as gain solutions at the DI and DD steps which could

reduce chromatic gain errors and the overfitting effect even further.

This will also mitigate the impact of having an incomplete sky

model (Barry et al. 2016; Ewall-Wice et al. 2017).

Improving the GPR covariance model – The GPR method

requires a covariance model that is a good statistical description

of the data to be effective. Covariance kernels that would better

describe the foreground wedge and the 21 cm signal would improve

this model. This requires building a physically motivated spectral

and spatial covariance model for each source of mode-mixing

MNRAS 493, 1662–1685 (2020)
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contaminant (calibration errors, ionosphere, instrument chromatic-

ity, ...) and building a 21 cm signal covariance model, directly

parametrized with EoR physical parameters.

Optimizing SAGECAL calibration settings – We will also revise

the solution times of the DD-calibration, the order of Bernstein

polynomial prior and the maximum baselines used in the calibration.

Decoupling the phase and amplitude solution time intervals could

also further reduce calibration errors.

Improving the NCP sky model – Finally, a complete review of

our current sky model will be carried out, investigating as well the

inclusion of diffuse Stokes I, Q, and U emission as observed using

the AARTFAAC21 HBA system (Prasad et al. 2016; Gehlot 2019).

7 C O N C L U S I O N S

The LOFAR-EoR KSP’s primary objective is to detect the 21 cm

signal from the EoR in the redshift range z ≈ 7–11. We expect that a

total of at least 1000 h of observation with the LOFAR-HBA system

will be necessary for a detection of the signal predicated by a wide

range of theoretical models (Mertens et al. 2018). Whereas in Patil

et al. (2017) we presented a first upper limit from one night of data

(13 h), in this work we processed twelve nights of data, combining

the best ten nights (141 h). Compared to Patil et al. (2017), we have

introduced significant enhancements in the direction-dependent

calibration of the data, replaced the foregrounds mitigation strategy

and improved the power spectra extraction, leading to significantly

deeper limits on the 21 cm signal even when using the same data.

Our main results are the following:

(1) The excess power, due to gain overfitting (see Patil et al.

2016 for an extensive discussion), that appears on short baselines

when a baseline cut is introduced between the imaging and cali-

bration steps,22 has been considerably reduced by increasing (via

regularization) the spectral smoothness of the gain solutions in the

DD-calibration step. The ratio of the variance between adjacent

sub-band differences and thermal noise power (based on visibility

differences on a 10 s time scale) is reduced to a factor of ≈1.8

from a factor ≈10 in the procedure used in Patil et al. (2017).

In addition, we introduced GPR (Mertens et al. 2018) to remove

the residual foreground emission after sky-model subtraction in the

DD-calibration step. We find GPR to be more suitable compared to

the GMCA method (Chapman et al. 2013) in the implementation

used by Patil et al. (2017).

(2) We analysed data from twelve nights of observation obtained

during LOFAR Cycles 0, 1, and 2. The data quality was found to be

similar from night to night, except for two nights that were discarded

from the final analysis. In all data sets, spectrally uncorrelated (white

power spectrum) noise on baselines <100 λ is larger than expected

for thermal noise (by up to a factor 2 to 3). It is seen in both Stokes

I and Stokes V, and does not appear to be related to the calibration,

sky foregrounds, or polarization leakage, in any clear way. Low-

level RFI, below the flagging threshold, could be a possible cause

of this particular white excess noise on very short baselines. Further

examination and mitigation of the excess noise is planned.

(3) After foreground removal using both DD calibration and

GPR, the Stokes I residual power spectrum is characterized by

a spectrally correlated excess which is included in the overall

GPR covariance model as a Matern kernel. It has a coherence

21Amsterdam-ASTRON Radio Transients Facility and Analysis Center
22That is, removing baselines <250 λ during calibration and only imaging

50–250 λ baselines during the 21 cm signal analysis phase.

scale lex ≈ 0.25–0.45 MHz, depending on the night. This excess

is partially correlated between nights, especially in the foreground

wedge region but also outside it. Larger correlations are also found

between observations that started at similar LST times. The latter

finding and the relatively rapid spectral de-correlation, together

suggest that the residuals may originate from un-modelled or

incorrectly modelled sky emission far from the phase centre.

(4) After combining the best 10 out of 12 analysed nights of data

(141 h of data), the residual Stokes I power decreased by a factor of

≈4 in the foreground wedge region, and by a factor of 5–6 outside

of the wedge. The residuals are dominated by the same spectrally

correlated excess noise found in all individual nights.

(5) Based on the 141 h data set, we find an improved 2 −
σ upper limit on the 21 cm signal power spectrum at z ≈ 9.1

of �2
21 < (72.86)2 mK2 at k = 0.075h cMpc−1 (the lowest k-

mode) and �2
21 < (106.65)2 mK2 at k = 0.1h cMpc−1 (the reference

k-mode), with a dk/k ≈ 0.3. The latter is an improvement by a factor

≈8 in power compared to the previous upper limit reported in Patil

et al. (2017).

(6) We have examined a range of possible origins for the excess

power, including residual foregrounds emission from sources away

from the phase centre, polarization leakage of Stokes Q and U

emission to Stokes I, chromatic DI/DD-calibration errors and low-

level RFI. No clear cause has yet been identified, but further

improvements of our processing procedures are currently under

way to reduce its level by (i) improving low-level RFI flagging,

(ii) enforcing spectrally smooth solutions during DI-calibration,

(iii) further optimizing SAGECAL calibration settings (regulariza-

tion prior, number of ADMM iterations, applying the Bernstein

polynomial prior itself instead of the regularized gain solutions),

and (iv) using more physically motivated GPR covariance models

that are not only defined in the frequency direction, but also in

time and baseline, to better separate the various contributions to the

power spectrum and 21 cm signal limits.

(7) Based on current estimates of the thermal noise in the

analysed data sets, which we believe to be accurate, and assuming

that the excess power can be mitigated, one can reach a 2 − σ

sensitivity limit of ≈ (14)2 mK2 at k = 0.1 h cMpc−1 from the same

10 nights of data, and a very deep ≈ (4)2 mK2 sensitivity limit, when

combining about 100 nights of data, which is in the range where

current 21 cm EoR models predict the power to be.

Although the cause of excess noise has still not been fully solved,

the results presented in this paper are a significant step forward

compared to those by Patil et al. (2017). Several issues that were

identified in that work have now largely been mitigated, and a

number of major improvements in our data processing procedure

have been achieved. In the present analysis, possible sources of the

excess power have been unveiled and solutions to mitigate them are

currently investigated.

7.1 Implication of the upper limit on the EoR

The implications of the improved 21 cm signal power spectrum

upper limit on the Epoch of Heating (EoH) and EoR are analysed

in detail in an accompanying paper by Ghara et al. (2020) using

the reionization simulation code GRIZZLY (Ghara, Choudhury &

Datta 2015; Ghara et al. 2018) and a Bayesian inference framework

to constrain the parameters of the IGM. They study two sets of

extreme scenarios that can be constrained by this upper limit: (i)

For an IGM with a uniform spin temperature, they find that the

models which can be ruled out have a combination of a very cold

MNRAS 493, 1662–1685 (2020)
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IGM (spin temperature <3 K) and a high UV photon emission rate

(Ghara et al. 2020). (ii) In the case of a non-uniform IGM spin

temperature, they find that the current upper limit is likely to rule

out models with large emission regions which do not cover more

than a third of an otherwise unheated IGM (Ghara et al. 2020).
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Jelić V. et al., 2015, A&A, 583, A137

Kazemi S., Yatawatta S., Zaroubi S., 2013, MNRAS, 430, 1457

Kern N. S., Parsons A. R., Dillon J. S., Lanman A. E., Fagnoni N., de Lera

Acedo E., 2019, ApJ, 884, 105

Kern N. S. et al., 2020, ApJ, 888, 2

Kolopanis M. et al., 2019, ApJ, 883, 133

Koopmans L. V. E., 2010, ApJ, 718, 963

Koopmans L. et al., 2015, in Advancing Astrophysics with the Square

Kilometre Array (AASKA14). preprint (arXiv:1505.07568)

Lane W. M., Cotton W. D., van Velzen S., Clarke T. E., Kassim N. E.,

Helmboldt J. F., Lazio T. J. W., Cohen A. S., 2014, MNRAS, 440, 327

Li W. et al., 2019, ApJ, 887, 141

Liu A., Shaw J. R., 2019, preprint (arXiv:1907.08211)

Liu A., Parsons A. R., Trott C. M., 2014a, Phys. Rev. D, 90, 023018

Liu A., Parsons A. R., Trott C. M., 2014b, Phys. Rev. D, 90, 023019

Madau P., Meiksin A., Rees M. J., 1997, ApJ, 475, 429

McQuinn M., Zahn O., Zaldarriaga M., Hernquist L., Furlanetto S. R., 2006,

ApJ, 653, 815

Mertens F. G., Ghosh A., Koopmans L. V. E., 2018, MNRAS, 478, 3640

Mesinger A., Furlanetto S., Cen R., 2011, MNRAS, 411, 955

Mirocha J., Furlanetto S. R., 2019, MNRAS, 483, 1980

Morales M. F., Hewitt J., 2004, ApJ, 615, 7

Morales M. F., Wyithe J. S. B., 2010, ARA&A, 48, 127

Morales M. F., Hazelton B., Sullivan I., Beardsley A., 2012, ApJ, 752, 137

Mortlock D., 2016, in Mesinger A., ed., Astrophysics and Space Science

Library Vol. 423, Understanding the Epoch of Cosmic Reionization:

Challenges and Progress. Springer, Berlin, p. 187,

Mouri Sardarabadi A., Koopmans L. V. E., 2019, MNRAS, 483, 5480

Offringa A. R., van de Gronde J. J., Roerdink J. B. T. M., 2012, A&A, 539,

A95

Offringa A. R. et al., 2013, A&A, 549, A11

Offringa A. R. et al., 2014, MNRAS, 444, 606

Offringa A. R., Mertens F., Koopmans L. V. E., 2019a, MNRAS, 484, 2866

Offringa A. R., Mertens F., van der Tol S., Veenboer B., Gehlot B. K.,

Koopmans L. V. E., Mevius M., 2019b, A&A, 631, A12

Paciga G. et al., 2011, MNRAS, 413, 1174

Paciga G. et al., 2013, MNRAS, 433, 639

Pandey V., Koopmans L., Tiesinga E., Albers W., Koers H., (to appear),

2020, in Pizzo R., Deul E., Mol J., Plaa H., Verkouter H., Williams R.,

eds, ASP Conf. Ser. Vol. 524, ADASS XXVIV. Astron. Soc. Pac., San

Francisco

Patil A. H. et al., 2016, MNRAS, 463, 4317

Patil A. H. et al., 2017, ApJ, 838, 65

Planck Collaboration et al., 2016a, A&A, 594, A13

Planck Collaboration et al., 2016b, A&A, 596, A108

Pober J. C. et al., 2014, ApJ, 782, 66

Prasad P. et al., 2016, J. Astron. Instrum., 5, 1641008

Pritchard J. R., Loeb A., 2012, Rep. Progr. Phys., 75, 086901

Rasmussen C. E., Williams C. K. I., 2005, Gaussian Processes for Machine

Learning (Adaptive Computation and Machine Learning). The MIT

Press, Cambridge, MA
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APP ENDIX A : SIGNA L INJECTION TESTS

AND SIMULATIONS

GPR foreground mitigation may alter the 21 cm signal and assessing

its efficiency and robustness is therefore crucial. In Mertens et al.

(2018) we have carried out numerous tests against a large range

of foregrounds simulations. Here we present tests which are more

specifically connected to the frequency correlations observed in the

LOFAR data.

Signal injection in real data – One way to do this is by injecting

artificial 21 cm signals into real data and comparing the GPR results

to those without the additional 21 cm-like signal. Denoting the

matrix P as the GPR foreground-mitigation (projection) operator,

applied to the data (v), we obtain the recovered signal by taking the

difference between the two processed data sets:

vrec = P′(vdata + vinj) − P vdata. (A1)

The prime denotes here that the GP model parameters were re-

optimized for the data set with the injected signal. The 21 cm signals

are approximated by an exponential covariance function (Mertens

et al. 2018). Fig. A1 presents the ratio of the spherically averaged

power spectra from the recovered over the injected 21 cm signals

for a wide range of coherence scales and variances of the injected

signal. For each combination of these variables, we perform 10

simulations and the result is averaged. A ratio of 1.0 indicates no

bias and a ratio <1 indicates signal loss. We note that all bias values,

when found, are strictly confined to the regime >1 and are limited

to larger coherence scales and smaller signal-to-noise ratios.

Signal injection in simulated data – We also perform data

simulations that reproduce the spectral correlations found in the

full data set, using its optimal GPR covariance model parameters.

For these simulations, our input ‘signal’ is the ‘21 cm signal’ and

‘excess’. GPR is applied to these data sets using a similar setup as

Figure A1. Result of the injection test for a wide range of coherence scale

(l21) and S/N (σ 2
21/σ

2
n ) of the 21 cm like injected simulated signal. We plot

the ratio of the recovered over injected signal spherically averaged power

spectra for three k-bins.

Figure A2. Result of the simulation test for a wide range of coherence scale

l21 and S/N (σ 2
21/σ

2
n ) of the simulated 21 cm like signal. We plot the ratio

of the recovered over injected signal spherically averaged power spectra for

three k-bins. In this case, the recovered and input include the ‘excess’ signal.

for the injection tests, and we compute the ratio of the recovered

over input power spectra. Our results (Fig. A2) show a ratio ≈1 for

all the tested coherence scales and S/N of the 21 cm signal.

A P P E N D I X B: C O N F I D E N C E I N T E RVA L O N

T H E G P M O D E L H Y P E R PA R A M E T E R S

An MCMC can be used to fully sample the posterior distribution

of the GP model’s hyperparameters. This allows us to validate

the optimal values obtained by optimization algorithm, and to

estimate their confidence intervals. We apply the MCMC method23

described in Section 4.2.2 of Mertens et al. (2018) on the 10

nights data set. Fig. B1 shows the resulting posterior probability

distribution of the GP model hyperparameters. The parameter

estimates and confidence intervals are summarized in Table 3,

along with their input values and associated priors. The correlation

between the different parameters of the model is overall very small.

All parameters are also well constrained, except the variance of the

‘21 cm signal’ component, which is consistent with zero.

23This procedure uses the EMCEE PYTHON package (http://dfm.io/emcee/c

urrent/) (Foreman-Mackey et al. 2013).
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Figure B1. Posterior probability distributions of the GP model hyperparameters for the 10 nights data set. The covariance model has nine parameters: two for

each of the sky, mix, 21, and ex (excess) components, plus the scaling factor αn. The black dashed contours show the 68 per cent, 95 per cent, and 99.7 per cent

confidence interval.
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