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Abstract

Most commercial multicomputers use space-slicing schemes in which each schedul-

ing decision has an unknown impact on the future: should a job be scheduled, risking

that it will block other larger jobs later, or should the processors be left idle for now in

anticipation of future arrivals? This dillema is solved by using gang scheduling, because

then the impact of each decision is limited to its time slice, and future arrivals can be

accommodated in other time slices. This added flexibilityy is shown to improve overall

system utilization and responsiveness. Empirical evidence from using gang scheduling

on a Cray T3D installed at Lawrence Livermore National Lab corroborates these re-

sults, and shows conclusively that gang scheduling can be very effective with current

technology.

1 Introduction

As parallel computers become more popular, there is a growing need for good schedulers

that will manage these expensive shared resources. And indeed, many scheduling schemes

have been designed, evaluated, and implemented in recent years [5, 10].

Many papers investigate scheduling schemes from a system point of view, asking what

the system can do to improve utilization and response time, but disregarding the effect on

the user. As a result they sometimes advocate solutions that require users to depart from

common practice, e.g. to write applications in a style that supports dynamic partitioning

(i.e. the allocation may change at runtime) [26, 17], rather than the prevelant SPMD style.

We take different approach, and ask what the system can do given the constraint that

users require jobs to execute on a fixed number of processors (as in SPMD). Within this
.

framework, we tompare variable partitioning, possibly with reordering of the jobs in the

queue, with gang scheduling. We show that although gang scheduling suffers from more

overhead than variable partitioning, it can lead to significant improvements due to its added
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flexibility. Indeed, gang scheduling canactually give better service (reduced response time)

and improved utilization, so using it leads to a win-win situation relative to variable parti-

tioning.

The results agree with actual experience on the LLNL Cray T3D, which employs a home-

grown gang scheduler [11] (the original system software uses variable partitioning). When

this scheduler was ported to the new Cray machine, utilization nearly doubled from 33.4%

to 60.9% on average. Additional tuning has led to weekly utilizations that top 90%.

2 Approaches to Scheduling Jobs of Given Size

The schedulers of most commercial parallel systems use variable partitioning. The user

specifies the number of processors to use at the time of submitting the job. The scheduler

than carves out a partition of the required size, and dedicates it to the job for the duration of

its execution. If the required number of processors is not available, the job is either rejected

or queued. In most systems a time limit is also imposed, and if the job exceeds it it is killed.

The problem with this scheme is that scheduling decisions have a potentially large, per-

sistent, and unpredictable impact on the future. Specifically, when a new job arrives, the

system is faced with the following dillema:

if the new job can be accommodated, then scheduling it immediately will utilize unused

resources, so it is good.

however, if this job runs for a long time, and will block other jobs in the future, it may

lead to more future loss than current gain. so maybe it should be left aside.

Consider the following simple case as an example: a 128-node system is currently running

a 64-node job, and there are a 32-node job and a 128-node job in the queue. The question

is, should the 32-node job be scheduled to run concurrently with the 64-node job? Two

outcomes are possible. If the 32-node job is scheduled and it terminates before the 64-node

job, resource utilization is improved from 50% possibly up to 75%. But if the 64-node job

terminates soon after the 32-node job is scheduled, and the 32-node job runs for a long time,

the utilization drops from 50% to 25%. And, in order not to starve the 128-node job, it might

be necessary to just let the 64-node job run to completion, and settle for 50% utilization.

As the future is usually unknown, there is no solution to this dillema, and any decision

may lead to fragmentation. Thus using variable partitioning may lead to significant loss of

computing power [15, 29], either because jobs do not fit together, or because processors are

intentionally left idle in anticipation of future arrivals [23].

The most common solution is to reorder jobs in queues so as to pack them more tightly

[14]. One promising approach is to allow small jobs to move forward in the queue if they can

be scheduled immediately. However, this may cause starvation of large jobs, so it is typically

combined wit h allowing large jobs to make reservations of processors for some future time.

Only short jobs are then allowed to move ahead in the queue (Fig. 2) [3, 16].
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Figure3: Jobruntimes asafraction of the batch queue timeiimit, showing that most jobs

use only a fraction of the time limit, even for queues with very iong limits. The plot for each

queue limit is normalized independently.

The problem with this idea is that it requires information about job runtimes. A rough

approximation may be obtained from the queue time limit (in most systems users may choose

which queue to use, the difference being that each queue has a distinct set of resource limits

associated with it). The idea is that the user would choose the queue that best represents the

applicat ion’s needs, and the system would then be able to select jobs from the different queues

to create a job mix that uses the system’s resources effectively [27]. However, experience

indicates that this information is unreliable, as shown by the dist ribut ions of queue-time

utilization in Fig. 3. The graphs show that users tend to be extremely sloppy in selecting

the queue, thus undermining the whole scheme. (the graphs show the distributions in buckets

of 4 percentage points. Thus the top left data point in the left graph shows that about 38%

of the jobs submitted to all the 6-hour queues on the Cornell SP2 only used between O and

4% of their time limit, i.e. they were actually shorter than 15 minutes)

Another solution to the fragmentation problem is to use adaptive partitioning rather

than variable partitioning [25, 24, 22]. The idea here is that the number of processors used

is a compromise between the user’s request and what the system can provide. Thus the

system can take the current load into account, and reduce the partition sizes under high

load conditions. However, this scheme also requires change of user interfaces, albeit much

less disruptive than dynamic partitioning.

The prefered solution is to use gang scheduling [19, 7, 8]. With gang scheduling jobs

receive the number of processors requested, but only for a limited time quant urn. Then a

“multi-context-switch” is performed on all the processors at once, and another job (or set of

jobs) is scheduled instead. Thus all jobs can execute concurrently using time slicing, as in

convent ional uniprocessors. As a result, a scheduling decision only impacts the scheduling

slot to which it pertains; other slots are available to handle other jobs and future arrivals.

this adds flexibility and boosts performance.
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Returning to the example considered earlier, the situation with gang scheduling is illus-

trated in Fig. 4. The 32-node job can safely run in the same time-slot with the 64-node job,

while the 128-node job gets a separate time-slot. There is no danger of starvation. As long

as all three jobs are active, the utilization is 87.5Y0. Even if the 64-node job terminates,

leaving the 32-node job to run alone in its time-slot, the utilization is 62.5%. Naturally,

a few percentage points should be shaved off these figures to account for context-switching

overhead. Nevertheless, this is a unique caee where time-slicing, despite its added overhead,

can lead to better resource utilization than batch scheduling.

Using gang scheduling not only improves utilization — it zdso reduces mean response

time. It is well known that mean response time is reduced by the shortest-job-first dicipline.

In workloads with high variability this is approximated by time slicing, because chances are

that a new job will have a short runtime [21, 20]. As production workloads do indeed exhibit

a high variabilityy [6], it follows that gang scheduling will reduce mean response time. Indeed,

gang scheduling hae even beerr advocated in conjunction with dynamic partitioning [18].

3 Simulation Results

3.1 The Compared Scheduling Schemes

In order to’ demonstrate the ideas described above, we simulate the performance of a mul-

ticomputer subjected to a realistic workload and using one of a set of different scheduling

schemes. these are
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FCFS: the base case we use for comparison is variable partitioning with first-come-first-

serve queueing. This scheme is expected to suffer from significant fragmentation.

Backfill: backfilling W,M developed for the Argonne National Lab SP1 machine [16], and

has recently also been installed on the Cornell SP2 and other machines. It allows short

jobs to move forward in the queue provided they do not cause delays for any other job.

only jobs that do not cause delay are moved forward. We assume the scheduler has

perfect information when making such decisions, i.e. it knows the exact runtimes of all

the jobs in the queue.

Prime: this policy is a simplified version of a policy used on the SP2 machine at NASA

Ames [121. The idea is to distinguish between prime time and non-prime timel: during

prime time, large jobs (more than 32 nodes) are restricted to 10 minutes, while small

jobs are allowed up to 4 hours provided at least 32 nodes are available. Thus, if only

a few nodes are available, all jobs are restricted to 10 minutes, and responsiveness for

short jobs is improved. This achieves a similar effect to setting aside a pool of nodes

for interactive jobs [27]. During non-prime time these restrictions are removed. Again,

we assume the scheduler knows the runtimes of all jobs.

Gang: gang scheduling with no information regarding runtimes. The jobs are packed into

slots using the buddy scheme, including alternate scheduling [4]. Two versions with

different scheduling time quanta are compared: one has relatively small time quantum

of 10 seconds, so most jobs effectively run immediately, and the other has a time

quantum of 10 minutes (600 seconds), so jobs may be queued for a certain time before

getting to run.

In all cases, exactly the same workload is used.

3.2 Simulation Methodology

The workload model is an improved version of the model used in [4]. It is based on workload

analysis from a number of production systems [6, 13, 28], and is characterized as follows

(Fig. 5)

● The distribution of job sizes emphasizes small jobs and powers of two.

● The distribution of runtimes is a three-st age hyperexponent ial, where the relative

weights of the three stages depends on the job size. This dependence is used to create

a correlation between the job size and the runtime.

● The arrivals are poisson; except for jobs that are re-run a number of times, in which

case they are re-submitted immediately upon completion.

10ur workload model does not include a daily cycle of job submittals — it is a continuous stream of jobs

with the same statistical properties. Thus in our simulationsthe distinction is only in the schedulingpolicy,
which is switched every 12 houra.
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Figure 5: Statistical properties of the workload model: (a) distribution of job sizes (b)

distribution of rurdengths (c) corre~ationof runtime with job size, for al sizes and when jobs

are grouped into four buckets according to size (d) distributions of run times for the jobs in

the four buckets.

The simulation uses the batch means method to evaluate confidence intervals. Each batch

includes 3333 job terminations. The first batch discarded to account for simulation warmup.

The length of each experiment (i.e. the simulation for each data point in the results) is at

least 3 batches, or more as required so that the 90% confidence interval is no larger than

10% of the data point value, up to a maximum of 100 batches. Interestingly, simulations of

all scheduling schemes except gang scheduling with short time quanta used all 100 bat ches,

without a significant reductions in the confidence interval: it was typically in the range of

20-40% of the data point value. This reflects the very high variance present in the workload.

The sequence of job arrivals is generated once and reused for each data point and each

scheme. Only the mean interarrival time is changed to create different load conditions.
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Figure 6: Simulation results.

Experimental Results

The results are shown in Fig. 6. As expected, FCFS saturates at extremely low loads, and

even before saturation it tends to create very high slowdowns. Backfilling and delaying large

jobs to non-prime time are both much better, but backfilling can sustain a higher load and

produces lower slowdowns. Attempts to improve the performance of the prime/non-prime

policy by fiddling with its parameters (the threshold between small and large jobs, and the

length of the prime shift) showed that it is relatively insensitive to the exact values of these

parameters. However, it should be remembered that our workload is not optimal for checking

the prime/non-prime policy, because it does not display a daily cycle.

Gang scheduling, even with relatively long quanta of 10 minutes, takes the cake: the

slowdowns are very low, and saturation is delayed until system load approaches 1. This

agrees with the informal arguments presented in Section 2. While our simulations may be

criticized for not modeling the overheads involved in gang scheduling — for example, the

overhead of context switching and the effect of corrupting cache state — we feel that with

long enough time quanta these overheads can be kept relatively low, so the main results

remain valid.

4 Experience with Gang Scheduling on the Cray T3D

The default mode of operation for the Cray T3D is that of variable partitioning. Generally,

jobs are allocated a partition of processors as soon as a suitable set becomes available. In the

case where a job has waited for longer than some configurable period of time, the initiation

of all other jobs is deferred until it begins execution. The partitions are held until the job

completes and relinquishes them, effect ively locking out any other use for those processors.
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With such a processor allocation mechanism, the computational requirements of long-running

production jobs directly conflict with those of interactive code development work.

Our goals in the development of the Gang Scheduler for the Cray T3D were:

● Provide better response for interactive jobs

● Provide better throughput for batch jobs

● Permit larger jobs to be executed

● Provide optimum throughput for specific jobs, as designated by management

While achieving all of these objectives would seem impossible, our initial utilization rate

of 33.470 provided us a great deal of room for improvement. By creating a larger virtual

machine through gang scheduling, we believed these objectives could be met by:

● Time sharing processors for interactive jobs when experiencing an extremely heavy

interactive workload

● Keep processors fully utilized with batch jobs until preempted by an interactive or

other high priority job

● Make processors available in a timely fashion for large jobs

● Make processors available in a timely for specific jobs and make those jobs non-

preemptable

Some might argue that interactive computing with a massively parallel computer is unrea-

sonable, but interactive computing accounts for a substantial portion of our workload and

is used for code development and rapid throughput. Interactive jobs currently account for

79% of all jobs executed and 11% of all CPU cycles used in our environment. A single

interact ive job can be allocated up to 25$Z0of all processors and memory. The aggregate

of all interactive work will normally consume between zero and 15070 of all processors and

memory in our environment. While the Cray T3D is well suited for addressing the execution

of grand challenge problems, we wanted to expand its range of functionalist y into general

purpose support of these challenge problems.

4.1 Design of the Cray T3D

The Cray T3D is a massively parallel computer incorporating DEC alpha 21064 microproces-

sors, capable of 150 MFLOPS peak performance. Each processor has its own local memory.

The system is configured into nodes, consisting of two processors with their local memory

and a network interconnect. The nodes are connected by a bidirectional three-dimensional

torus communications network. There are also four synchronization circuits (barrier wires)

connected to all processors in a tree shaped structure. The system at Lawrence Livermore
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National Laboratory (LLNL) has 256 processors, each with 64 megabytes of DRAM. Disk

storage is required to store the job state information for preempted jobs. This can be either

shared or private storage space. We have created a shared 48 gigabyte file system for this

purpose. The storage requirements will depend upon the T3D configuration and the amount

of resource oversubscription permitted.

Without getting into great detail, the T3D severely constrains processor and barrier wire

assignments to jobs. Jobs must be allocated a processor count which is a power of two,

with a minimum of two processors or one node. The processors allocated to a job must

have a specific shape with specific dimensions for a given problem size. For example, an

allocation of 32 processors must be made with a contiguous block with 8 processors in the X

direction, 2 processors in the Y direction and 2 processors in the Z direction. Furthermore,

the possible location of the processors assignments is restricted. These very specific shapes

and locations for processor assignments are the result of the barrier wire structure. Jobs

must be allocated one of the four barrier wires when initiated. The barrier wire assigned to

a job can not change if the job is relocated and, under some circumstances, two jobs sharing

a single barrier wire may not be located adjacent to each other. The number of processors

assigned to a job can not change during execution [2].

There are two fundamentally different ways of providing for timesharing of processors.

The entire state of a job, including memory contents, register contents and switch state

information can be written to disk. Alternately, the register and switch state information

can be saved and the memory shared through paging. Saving the entire job state clearly

makes context switches very time consuming, however, it can provide a means of relocating

jobs to different processors and provide a means of preserving executing jobs over computer

rest arts. Sharing memory through paging can make for much faster context switches.

The Cray T3D provides timesharing by saving the entire state of a job to disk. Given the

T3D’s constraints on processor assignment, the ability to relocate jobs with this mechanism

clearly make it preferable. While the ability to preserve executing jobs over computer restarts

has proven to be of some use, most programs complete in a few hours and can be restarted

without substantial impact upon the system. Unfortunately, the high context switch time

provides lower interactivity y than would be desirable. It should also been noted that the

Cray T3D only supports the movement of a job’s state in it’s entirety. It is not possible

to initiate state transfers on a processor by processor basis, although that would capability

would improve the context switch time.

The original version of this Gang Scheduler was developed for the BBN TC2000 com-

puter. The BBN computer permitted programs to be assigned processors without locality

constraints. Its timesharing through shared memory and paging was successful at providing

both excellent interactivity and utilization [?, 11].

4.2 Implementation Overview

The T3D Gang Scheduler allocates processors and barrier circuits for all programs. In order

to satisfy the diverse computational requirements of our clients, the programs are classified
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by access requirements:

● Interactive class jobs require responsive service

● Debug class jobs require responsive service and can not be preempted

● Production class jobs require good throughput

● Benchmark class jobs can not be preempted

● Standby class jobs have low priority and are suitable for absorbing otherwise idle

compute resources

There are several class dependent scheduling parameters to achieve the desired perfor-

mance characteristics.

● Priority: Job classes are prioritized for service

● Wait time: The maximum time that a job should wait before (or between) processor

access

● Do-not-disturb time multiplier: This parameter is multiplied by the number of pro-

cessors to arrive at the do-not-disturb time, the minimum processor allocation time

before preemption

● Processor limit: The maximum number of processors which can be allocated to jobs

of this class

The priority assigns a relative importance to loading jobs of a given class. We make

interactive jobs higher priority than production jobs during the daytime and assign them

equal priority at night.

The wait time is designed to insure timely responsiveness, especially for interactive and

debug class jobs. After a job has waited to be loaded for the maximum wait time, an attempt

will be made to reserve a block of processors for it. This processor reservation mechanism

frequently preempts multiple small jobs to prevent starvation of large jobs.

The desire for timely response needs to be balanced against the cost of moving a job’s

state onto disk and back to memory. In order to prevent job thrashing, a job is assigned

processors for a minimum of its do-not-disturb time before preemption. After a job’s do-

not-disturb time has been exceeded, the job may be preempted by any other job, although

preference is given to jobs of higher priority classes and larger jobs. Some jobs might not

be preempted until long after, their do-not-disturb time has been exceeded. This scheme has

been shown to keep the processors efficiently utilized by high priority class jobs. A job’s do-

not-disturb time is computed by multiplying the do-not-disturb time multiplier for the job’s

class by the number of processors used. The do-not-disturb time multiplier should be set

to a value substantially larger than the time required to move a job’s state in one processor
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from memory to disk and back to memory. This time will vary with the disk configuration.

On the LLNL T3D with 256 processors and 64 megabytes of memory each, the entire torus

or processors can be repacked in about eight minutes or one second per processor.

We use the class processor limit to restrict the number of processors allocated to non-

preemptable jobs during the daytime.

Several non-class dependent scheduling parameters also exist to regulate computer-wide

resource use.

●

●

●

●

Large job size: The minimum number of processors requested by a job for it to be

considered “large”

Large processor limit: The maximum number of processors which can be allocated to

“large” jobs at any time

Job processor limit: The maximum number of processors which can be allocated to

any single job

System processor limit: The maximum number of processors used by jobs either run-

ning or swapped to disk

Since “large” jobs can take a significant period of time to have their state moved between

memory and disk, interactivity can be improved by restricting the number of processors

allocated to them.

The system processor limit is used to avoid filling the file system used for job state

information. We are conservative in our allocation of this storage area because it is shared.

Jobs will be queued, but not initiated to avoid exceeding this parameter. If an attempt is

made to preempt a job when insufficient storage is available, that job will continue execution

and no further attempts will be made to preempt it.

Several sets of the jobs scheduling parameters can be defined for different hours of the day

and job scheduling parameters may be altered in real time. For example, it may be desirable

to provide a lower level of interactivity at night. The reduced level of job preemption (and

reduced time for such idled processors) can result in improved system throughput. It might

also be desirable to severely restrict processor availabilityy to benchmark class jobs except at

night or on weekends.

These parameters can result in conflicting job scheduling rules if not set appropriately

or if the workload is irregular. Performance will degrade under such circumstances, but

“reasonable” behavior can be expected

best performance.

The scheduling parameters currently

with the highest priority job classes receiving the

being used during the daytime on weekdays are:

12



Wait Do-not-disturb Processor

Job Class Priority Time Time per Processor Limit

Interactive 4 0 Sec 10 Sec 256

Debug 4 300 Sec 1 Year 96

Production 3 1 Hour 10 Sec 256

Benchmark 2 1 Year 1 Year 64

Standby

The time of one year is

for some job classes.

1 1 Year 3 Seconds 256

Large Job Size 64 processors

Large Processor Limit 192 processors

Job Processor Limit 256 processors

System Processor Limit 576 processors

used in several cases to insure no preemption or an indefinite wait

4.3 Job Scheduling Algorithm

We have implemented a two pass scheduling algorithm. The first pass checks for jobs which

have waited for loading longer than their job class’ maximum wait time. These jobs are

viewed as having a high priority for loading and special measures are taken for loading

them. If there is more than one such job, a list of these jobs is constructed then sorted by

job class priority and within each priority value by the time waiting for loading. Each of

these jobs is considered for loading in the sorted order. The processor requirement for the job

will be compared against the scheduler’s job processor limit. If the job’s processor request

can not be satisfied, that job will no longer be considered a candidate for loading. Possible

processor assignments for the job are considered. For each possible processor assignment,

a cost is computed. The cost considers the number of nodes occupied by the potentially

preempted jobs, their relative priority, and how much time remains in their do-not-disturb

time. In no case will a job be preempted for another job of a lower priority class. Jobs of

benchmark and debug class will never be preempted. If no possible processor assignment

for loading the waiting job is located, its loading will be deferred. If a possible processor

assignment is located, the lowest cost set of processors will be reserved for the exclusive

use of this waiting job and jobs occupying those processors will be preempted when their

do-not-disturb times have been exhausted. Only one job will will have processors reserved

for it at any point in time. Once a set of processors have been reserved for a waiting job,

the reservation of processors for other waiting jobs will be deferred until the selected job has

been loaded. An exception is made only in the case that a higher priority class job exceeds

its maximum wait time. For example, an interactive class job could preempt the reservation

of processors for a production class job. The job with reserved processors can be loaded into

other processors if another compatible set of processors becomes available at an earlier

As soon as that job is loaded, the reserved processors are made generally available.

mechanism insures timely interactivity and prevents the starvation of large jobs.

13
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Inthesecond scheduler pass, other executable jobs arerecordedin a list sorted by job

class priority and within each priority by the time waiting for loading. Each job in the sorted

list is considered for processor assignment. First the limits (job processor limit, large job

limit, and job class limit) are checked to determine if the job should be allocated processors.

Any job satisfying these limits will have its barrier wire circuit and processor requirements

considered. If the job can have its requirements met either with unallocated resources or

resources which can be made available by preempting jobs which have exceeded their do-

not-disturb time, it will have a barrier wire circuit and processors assigned. If a specific

barrier wire is not requested, one of those available will be assigned. All four barrier wire

circuits are considered for use and selected on the basis of lowest contention. More efficient

relocation of jobs can be achieved by using all four barrier wire circuits.

The time required to save the state of a job on disk can be up to four minutes. Given

this delay, it is not ideal to queue the loading of a job until the processors assigned to it

are actually available. Whenever processors are actually made available, the job scheduler

is executed again. This insures that when processors become available, they are assigned to

the most appropriate jobs then available.

When a newly started job can immediately begin execution in a variety of possible sets

of processor, a best-fit algorithm is used to make the selection. We also try to locate debug

and benchmark class jobs, which can not be preempted, together in order to avoid blocking

large jobs.

4.4 Client Interface

The default mode of operation

be initiated through a program

for the Cray T3D requires all jobs, batch and interactive, to

called mppexec, which will accept as arguments the number of

processors required, specific processor requirements, specific barrier wire requirements, etc.

The Gang Scheduler takes advantage of this feature by creating a wrapper for mppexec which

is upwardly compatible with it. The interface registers the job with the Gang Scheduler and

waits for an assignment of processors and barrier circuit before continuing. On a heavily

utilized, computer, this typically takes a matter of seconds for small numbers of processors

and possibly much longer for large jobs. The only additional argument to the Gang Scheduler

interface is the job class, which is optional. By default, interactive jobs are assigned to the

interactive job class, the Totalview debugger jobs are assigned to the debug class, and batch

jobs are assigned to the production job class.

4.5 The Gangster Tool

We provide users with an interactive tool, gangster, for observing the

and controlling some aspects of their jobs. Gangster communicates withzyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

stateof the system

the Gang Scheduler

to determine the state of the machine’s processors and individual jobs. Gangster’s three-

dimensional node map displays the status of each node (each node consists of two processing

elements on the T3D). Gangster’s job summary reports the state of each job, including jobs
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hhccaa aa

hh c c aa aa

hhccaa aa

hh c c a a aa

h h c czyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa aaa

hh c c a aa a

hh c c a a aa

hh c c aa a a

b dgg aa a a

b d gg a a aa

efggaa aa

e f gg aaa a

CLAS JOB-USER

Int d - colombo

Int h - mshaw

Bmrk g - grote

Prod a - caturla

Prod b - colombo

Prod c - wenski

Prod e - colombo

Prod f - colombo

Prod i - dan

Prod j - vickie

PID COMMAND#PE BASE W ST MM:SS

2976 icll 8 100 1 R 42:44

9529 icf3d 32 020 2 R 00:33

9264 warpslav 32 200 1 R 00:20

95396 moldy 128 400 2 R 107:35

98057 vdif 8 000 3R 91:54

98484 pproto6. 32 220 3 R 85:12

8712 ic13 80041R 6:23

8873 ic12 81042R 4:54

5684 camille 32 020 0 0 32:08

99393 kiten 64 400 3 0 132:59

bdggaa aa

b d gg a aaa

e f gg a a aa

e f gg aaa a

gangster:

Figure 7: Sample gangster display.

moving between processors and disk (see the sample display below). Users can use gangster

to change theclass oftheirownjobs or to explicitlymove theirjob’s state to disk (suspending

execution) or makeit available for execution (resume).

Gangster communicates with the Gang Scheduler via sockets in the /tmpdirectory. A

socket with a file name of the form gsched#is used to establish communications, where #

represents the Gang Scheduler daemon version number. A second socket with afile name

of the form user# is used for communications with a specific gangster process, where #

represents a process ID number. Authentication is provided by checking the owner of the

socket.

Asample gangster display is shown in Fig.7. This display identifies jobs inthe system

and assigned processors. The node map ison the left. Adotorletter denotes each node (two

processing elements onthe T3D): adot indicates the node isnot in use, a letter designates

the job currently occupying that node. On the right is asummary ofall jobs. The Wfield

shows the barrier wire used. The MM:SS field shows the total execution time. The STfield

shows thejob’s state:
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i = swapping in

N = new job, not yet assigned nodes or barrier wire

o = swapping out

O = swapped out

R = running

S = suspended

W = waiting job, assigned nodes and barrier wire

Node number 000 is in the upper left corner of the lowest plane. The X axis extends

downward within a plane. The Y axis extends up, with one Y value in each plane. The Z

axis extends to the right. This orientation was selected for ease of display for a 256 processor

T3D configuration. The diagram below shows a typical weekday gangster output.

4.6 Configuration

Prior to installation of the Gang Scheduler, our NQS batch system was configured to leave

an adequate number of processors available for interactive computing. The following table

summarizes the original global NQS processor limits at various times of the day:

Start End User Run Aggregate

Time Time Limit Limit mpp-pe-limit

00:00 04:00 2 8 256

04:00 18:00 2 8 96

18:00 24:00 2 8 192

The User Limit specifies the maximum number of batch jobs a single user may have exe-

cuting. The Run Limit specifies the maximum number of batch jobs the system may have

executing at one time. The mpp-pe-limit is the maximum number of processors which the

batch jobs may have allocate at one time. These limits apply to the entire batch system, an

aggregate of all queues. The limits on individual NQS queues were configured by processor

limits and time limit as shown below:

Queue

Name

pe32

pe64

pe6410ng

pe128-short

pe128

pe256=hort

pe256

User

Limit

1

1

2

1

,1

1

1

Run

Limit

4

3

2

4

1

1

1

Time

Limit

4 Hr

4 Hr

19 Hr

15 Min

4 Hr

15 Min

4 Hr

Job

Processor

Limit

32

64

64

128

128

256

256

Single Job

Aggregate .

mpp-pe-limit

128

192

96

128

128

256

256

Note that jobs requiring more than a four hour time limit were limited to 64 processors.

Also note that substantial compute resources were sacrificed in order to insure processors for

16



interactive computing. This was particularly noticeable in the early morning hours as the

mpp-pe-limit dropped to 96 at 04:00 in order to insure the availability of 160 processors for

interactive use at 08:00. Frequently this left many processors idle. Under the occasionally

heavy interactive workload, all processors would be allocated and interactive jobs experienced

lengthy initiation delays.

Significant changes in the NQS configuration have been made possible by the Clang

Scheduler. Instead of leaving a significant number of processors available for interactive use,

NQS fully subscribes the computer during times of peak use and over allocates the processors

by as much as 100% at night to process jobs needing all of the processors. The overallocation

of processors permits the execution of larger jobs and makes more jobs available for fully

packing the T3D’s torus of processors. The global limits and those of most queues have been

changed as shown below.

Start End User Run Aggregate

Time Time Limit Limit mpp-pe-limit

00:00 04:00 5 20 512

04:00 07:00 5 20 320

07:00 18:00 5 20 256-320*

18:00 24:00 5 20 320

Queue

Name

pe32

pe64

pe6410ng

pe128fihort

pe128

pe256~hort

pe256

User

Limit

3

2

2

1

o-2*

o-1*

o-1*

Run

Limit

8

2-3*

2

4

1

1

1

Time

Limit

4 Hr

4 Hr

40 Hr

15 Min

4 Hr

15 Min

4 Hr

Job

Processor

Limit

32

64

128

96

128

256

256

Job

Aggregate

mpp-pe-limit

128

128-192*

96-128”

128

O-256*

O-256*

O-256*

*Varies by time of day and/or day of week

NQS jobs now relinquish their processors only as needed, not in anticipation of interactive

work. During periods of heavy use, this improves our realized throughput substantially

while preserving good interactivity. While average interactivity has decreased slightly due

to interference from NQS jobs, the worse case startup time has dropped from tens of minutes

to about one minute. This is still quite acceptable to our user community, especially when

accompanied by a substantial increase in realized batch throughput. We also see a few jobs

relocated to better utilize the available processors during periods of heavy use, especially

when jobs requiring 64 or 128 processors exist.
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Scheduler

UNICOS MAX

DJM

Gang Scheduler

Batch

Only

3327 Sec

2848 Sec

2950 Sec

Batch and Interactive

*

Interactive Batch

Part Part

3553 Sec 3347 Sec

2339 Sec 3248 Sec

2797 Sec 3565 Sec

Table 1: Benchmark results for the three schedulers.

4.7 Performance Results

In order to quantify the effect upon system throughput and interactivity under heavy load,

we have tested the Gang Scheduler against the standard UNICOS MAX scheduler and the

Distributed Job Manager (DJM). DJM is a gang scheduler developed by the Minnesota

Supercomputer Center. DJM has undergone substantial modification for performance en-

hancements by Cray analysts at LLNL. All of the DJM code to accomplish job swapping is

new. The enhanced version of DJM was used for testing purposes.

All three schedulers were tested under a very heavy load of jobs typical of those executed

at LLNL. One test consisted of a single stream of batch jobs initiated at one time. A second

test consisted of the same batch workload with the addition of an interactive workload. The

initiation of each interactive job was fixed in relationship to the completion of the preceding

interactive job. The results are summarized in the below tables. The additional interactivity

of DJM and the Gang Scheduler come at the cost of processors idled during job swapping,

although movement of some jobs can result in more efficient packing of the processors and

a net increase in throughput. Note that the interactive execution time is not an absolute

measure of responsiveness, but the time required to execute the benchmark workload. The

results are shown in Table 1.

It should be noted that the Gang Scheduler results are based upon an early version

which has undergone substantial enhancement and tuning. Current Gang Scheduler results

should be within a percent or two of DJM results. The Gang Scheduler and DJM do give

some indication as to the additional throughput and interactivity achievable through gang

scheduling on a massively parallel computer.

Fig. 8 demonstrates the Gang Scheduler’s ability to execute large jobs, note the dramatic

improvement in throughput of 128 and 256 processor jobs. This charts the distribution of

resources allocated to each job size as percentage of CPU resources actually delivered to

customers. The percentage of gross CPU resources which are delivered to large jobs has

increased by an even wider margin. The January 1996 period is the last full month of

operation with the standard UNICOS MAX operating system. The later two dates show

periods of Gang Scheduler use.

The best measure of success is probably actual throughput achieved. While utilization

is quite low on weekend, the improvement in throughput at other times has dramatically

improved with preemptive schedulers. Current utilization on weekends is typically about ten
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percent, while utilization during normal work hours with apreemptive scheduler normally

exceeds 90 percent. Fig. 9 summaries utilization of processor resources over the course of

several entire weeks.

For the period recorded above, the percent utilization realized by the three schedulers

tested werti

UNICOS MAX 28.6

DJM 38.2

Gang Scheduler 50.2

Over the longer term, utilization has improved even more dramatically while providing
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good interactivity, as shown in Fig. 10. CPU utilization reported is the percentage of all

CPU cycles available which are delivered to customer computation. Weekly utilization rates

have reached over 93 percent.

While DJM would have provided for good interactivity and throughput, it became avail-

able at the same time as our Gang Scheduler was completed and we felt that continued

development of our Gmg Scheduler was worthwhile. In addition, our Gang Scheduler pro-

vided the means to arbitrarily lock jobs into processors. This was important for us to be

able to insure optimal throughput for jobs specified by our management.

4.8 Future Development

While the Gang Scheduler manages the currently active jobs well, the NQS batch system

selects the jobs to be started. It would be desirable to integrate the Gang Scheduler with

NQS in order to more efficiently schedule all available jobs. Work is also planned for the

gang scheduling of jobs across a heterogeneouscollection of computers.

5 Conclusions

Gang scheduling has often beerr advocated based on its advantages of

presenting jobs with an environment similar to that of a dedicated machine, thus

allowing fine grain interactions breed on user-level communication and busy waiting

[9],

support for interactive work by using time slicing, which guarmtees a reasonable re-

sponse time for short jobs, and

20



● not placing any restrictions or requirements on the model of computation and pro-

gramming style.

However, many researchers have expressed the fear that using gang scheduling would lead

to unacceptable system performance due to the overheads involved in context switching and

the 10SSof resources to fragmentation.

In contrast, we have shown that gang scheduling can improve system performance sig-

nificantly relative to static space slicing policies often used in practice on parallel suPercom-

puters. Gang scheduling adds flexibility to resource allocations, and reduces the impact of

bad decisions. This contributes directly to a reduction in fragmentation, and more than

offsets the cost of overheads. Indeed, experience with using gang scheduling for a production

workload on the Cray T3D at Lawrence Livermore National Lab has shown a dramatic raise

in system utilization.

The main obstacle to widespread use of gang scheduling is memory presure. If gang

scheduling is performed at a fine granularity, all jobs need to be memory resident at the

same time, so each has less memory available. The alternative is to swap jobs to disk when

they are de-scheduled, and swap them in again shen scheduled. This is a viable approach,

but it requires sufficient resources to be invested in adequate 1/0 facilities. The combination

of demand paging and prefet thing with gang scheduling remains an interesting topic for

future research.
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