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Abstract

Background: Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods

of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo

synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker’s

yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved

productivity and thereby at developing an attractive alternative to chemical synthesis.

Results: Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain

served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing

strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic

network. Two targets (PDC1 and GDH1) were selected for experimental verification resulting in four engineered

strains. Three of the mutants showed up to 1.5 fold higher vanillin b-D-glucoside yield in batch mode, while

continuous culture of the ∆pdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-

fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in

baker’s yeast.

Conclusion: Use of constraints corresponding to different physiological states was found to greatly influence the

target predictions given minimization of metabolic adjustment (MOMA) as biological objective function. In vivo

verification of the targets, selected based on their predicted metabolic adjustment, successfully led to

overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection

for improving microbial cell factories.

Background
Vanillin is a plant secondary metabolite and the main

constituent of natural vanilla - one of the most impor-

tant flavouring agents. The annual market for vanillin

exceeds 16,000 tons, although only 0.25% of this origi-

nates from cured seed pods of the vanilla orchid,

Vanilla planifolia. The remaining demand for vanillin is

fulfilled by chemical synthesis from lignin or fossil

hydrocarbons, in particular guaiacol [1]. Sustainable and

environmental friendly routes have been proposed for

obtaining vanillin through bioconversion of eugenol and

ferulic acid by bacteria or fungi [2-4]. To this end, an

attractive option was recently reported by Hansen et al

(2009), who demonstrated de novo vanillin biosynthesis

from glucose in baker’s and fission yeasts as a major step

towards developing an environmental friendly and eco-

nomically sustainable process [5]. The native metabolic

precursor for this de novo pathway is 3-dehydroshikimate

(3-DHS), an intermediate of the shikimate pathway for

aromatic amino acids biosynthesis. To convert 3-dehry-

droshikimate into vanillin, four genes encoding the

required four enzymatic activities were obtained from dif-

ferent organisms, Podospora pausiceta, Nocardia sp.,

Escherichia coli and Homo sapiens (Figure 1) [5]. Inspired

by the fact that metabolic engineering has been success-

fully applied to improve the yield of e.g. sesquiterpenes

[6], ethanol [7,8], artemisinic acid [9] and succinic acid

[10] production in Saccharomyces cerevisiae, we hypothe-

sized that vanillin production could also be improved by

implementing a metabolic engineering strategy [11]. An

immense collection of systems biology tools, in addition

to well-established technologies for genetic manipulation,
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renders S. cerevisiae a very amenable organism for meta-

bolic engineering [12-14].

The aim of this study was to design and construct an

improved S. cerevisiae vanillin cell factory guided by gen-

ome-scale metabolic modelling. In silico metabolic engi-

neering algorithms were used to identify target reactions

in the metabolic network, knockout of which would lead

to improved vanillin production. A set of knockouts that

maximizes the flux towards a desired metabolite must be

searched for, while the overall flux distribution is deter-

mined by the cellular objective function (e.g. maximiza-

tion of biomass yield). This problem was formulated by

Burgard et al. (2003) as a bi-level optimization algorithm

termed OptKnock [15]. OptKnock can be applied in case

of a linear design objective, such as maximizing flux

towards a desired metabolite [15]. Optimization of non-

linear objective functions, such as productivity, is also of

great interest for a variety of metabolic engineering pro-

blems. OptGene, an extension of OptKnock, allows maxi-

mization of non-linear objective functions, while at the

same time accounting for non-linear constraints on the

metabolic network [16].

The most widely used approach for calculating flux dis-

tribution is flux balance analysis (FBA), where a given

flux (or a linear combination of chosen fluxes) is used as

the objective function [17]. For microorganisms, biomass

maximization is generally accepted as a cellular objective

function when simulating flux distributions [18,19]. Alter-

native fluxes have been proposed as biologically meaning-

ful objective functions, such as maximization of ATP

yield [20]. FBA has been successfully applied to predict

gene essentiality [21,22], end point of adaptive evolution

experiments [23] and optimal metabolic states under

given environmental conditions [19]. However, a mutant

strain that is not subjected to evolutionary pressure

might have a disturbed metabolic network and the princi-

ple of optimality for growth may not be prevailing. To

address this question, the algorithm Minimization Of

Metabolic Adjustments (MOMA) has been suggested by

Segrè et al. (2002), where it is advocated that the cellular

objective for a mutant strain is to minimize its metabolic

distance from the wild type flux distribution [24]. In

MOMA approach, it is crucial to have a physiologically

meaningful wild type flux distribution, as it will strongly

influence the predicted phenotype [24]. Within this

study, the S. cerevisiae genome-scale stoichiometric

model iFF708 [22] was used to identify and select target

reactions by using OptGene [16]. MOMA [24] was used

as the biological objective function with wild type flux

distributions spanning three major modes of yeast meta-

bolic physiology. The model-based metabolic engineering

strategy was tested experimentally by strain construction

and characterization. These research efforts resulted in

three mutant yeast strains with significantly increased

vanillin production.

Results and Discussion
Vanillin b-D-glucoside production in S. cerevisiae

Vanillin is toxic to many living organisms. In case of

S. cerevisiae, growth defect is significant with concentra-

tions as low as 0.5 g/l [5]. Tackling the problem of

vanillin toxicity is therefore an important pre-requisite

for building an economically viable vanillin cell factory.

An elegant solution is glycosylation of vanillin, which is

observed in the natural producer Vanilla planifolia

[25,26]. This strategy was successfully implemented by

Hansen et al. (2002) in Schizosaccharmyces pombe [5].

The glycosylation step implies reduction in the maxi-

mum theoretical yield, from 0.57 mmolVan/molglc to

0.35 mmolVan/molglc. On a mass basis, the maximum

Figure 1 Schematic representation of the de novo VG biosynthetic pathway in S. Cerevisisae (as designed by Hansen et al [5]). Metabolites are

shown in black, enzymes are shown in black and in italic, cofactors and additional precursors are shown in red. Reactions catalyzed by heterologously

introduced enzymes are shown in red. Reactions converting glucose to aromatic amino acids are represented by dashed black arrows. Metabolite

secretion is represented by solid black arrows where relative thickness corresponds to relative extracellular accumulation. 3-DSH stands for 3-

dedhydroshikimate, PAC stands for protocathechuic acid, PAL stands for protocatechuic aldehyde, SAM stands for S-adenosylmethionine. 3DSD stands

for 3-dedhydroshikimate dehydratase, ACAR stands for aryl carboxylic acid reductase, PPTase stands for phosphopantetheine transferase, hsOMT stands

for O-methyltransferase, and UGT stands for UDP-glycosyltransferase. Adapted from Hansen et al. [5].
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achievable yield of 486 mgvan/gglc changes to a relatively

modest 293 mgVan/gglc. Nevertheless, given the toxicity

and low solubility of vanillin, reaching high titers is not

a favourable option. In case of Vanillin b-D-glucoside

(or VG), extracellular concentration up to 25 g/l has

been shown not to affect growth and is thereby more

suitable for commercial production.

In S. pombe, heterologous expression of a gene encod-

ing a plant family 1 glycosyltransferase from Arabidopsis

thaliana (UGT72E2) resulted in 80% conversion of

vanillin to vanillin b-D-glucoside [5]. Within this study,

UGT72E2 was expressed in the vanillin producing S.

cerevisiae strain VAN286, obtained from Hansen et al.

[5]. The resulting strain, VG0, was grown in minimal

medium containing 20 g/l glucose for 90 h. At this

point, the culture was harvested and the extracellular

broth was analysed for the presence of vanillin and VG.

VG had significantly accumulated in the broth (>100

mg/l), while vanillin was barely detectable (<7 mg/l)

indicating efficient conversion of vanillin into VG.

In silico design

Existence of a large number of alternative flux routes

(pathways) in genome-scale metabolic models requires

the use of experimental constraints in order to obtain

physiologically meaningful flux distributions. This is

even more so in the case of MOMA, where predictions

of mutant flux distributions will be highly dependent on

the solution provided for the wild type (or reference)

flux distribution [24]. Thus, the model formulation

should be capable of taking into account the basic meta-

bolic physiological characteristics of the strains under

consideration. In particular, when grown with a fermen-

table carbon source, S. cerevisiae has the ability to grow

in the absence of oxygen, producing ethanol as a major

by-product. In the presence of oxygen, respiration

occurs but if the glucose concentration and/or uptake

rate surpasses a critical threshold value, the metabolism

becomes a combination of respiration and alcoholic fer-

mentation [27,28].

Reference metabolic states

Different metabolic states of S. cerevisiae are character-

ized by different nutrient uptake rates, different metabo-

lite production rates and different biomass yields.

Consequently, it is important to decide which metabolic

state/s should be used to constrain the metabolic model

in order to obtain reliable target predictions for genetic

manipulation towards improved productivity. In addi-

tion, it is to be expected that different constraints (cor-

responding to different metabolic states) may lead to

different suggestions for the metabolic engineering tar-

gets. To address this issue, we used three different sce-

narios for obtaining the reference flux distribution for

MOMA simulations. Reference 1 represented exclusive

respiratory metabolism, characterized by no ethanol for-

mation and low glucose uptake rate. Reference 2 was

simulated for respiro-fermentative metabolism, charac-

terized by high glucose uptake rates, alcoholic fermenta-

tion and active respiration. Since both flux distributions

were obtained by using FBA for maximizing biomass

production, no accumulation of VG or related com-

pounds was predicted. A third FBA simulation was per-

formed to obtain the flux distribution for VG0

(Reference 3). The model was constrained using data

obtained in this study from chemostat cultivations at a

dilution rate of 0.1 h-1. Highly fermentative metabolism

was observed at this dilution rate indicating limited

respiratory capacity of the strain. Together, the three

different reference flux distributions span all relevant

life styles of S. cerevisiae, and may therefore be used to

identify potential targets for genetic manipulations by

using OptGene simulation framework. As steady state

approaches cannot predict changes in substrate uptake

rates, and hence productivity for mutants, Patil et al.

(2005) suggested the use of Biomass Product Coupled

Yield (BPCY) for design objective. BPCY is defined as

multiplication of product yield and biomass flux [16].

Assessment of in silico predictions

Simulations were performed using OptGene [16] for

predicting up to six reaction knockout targets. Improved

VG production was not predicted when using maximiza-

tion of biomass production as biological objective, while

the use of MOMA [24] suggested interesting targets

even after a single reaction deletion. The targets sug-

gested by OptGene were verified for optimality by using

OptKnock [15]. Among a variety of possible target reac-

tions (Figure 2A), biomass and VG yield are generally

related with an inverted trend, so when predicted bio-

mass yield is high, predicted product yield tends to be

modest and vice-versa. Target selection for experimental

validation must strike a good balance between improved

VG production and a reasonable prediction for biomass

yield (Figure 2A). Metabolic adjustment (as defined by

Segrè et al., 2002 [24]) was used as an additional factor

to rank each of the candidate target sets. Briefly, meta-

bolic adjustment of a mutant is defined as the Euclidean

distance between the reference and the mutant flux dis-

tribution vectors. Our hypothesis is that smaller meta-

bolic adjustments are more likely to be achieved in vivo

than large adjustments. This was taken into account by

introducing a new metric for ranking in silico predicted

mutants, viz., the Reward-Risk-Ratio (R3), defined as the

ratio between BPCY (reward) and metabolic adjustment

(risk). The most interesting targets obtained following

ranking of each prediction according to the R3 score are

presented in Figure 2 (B, C and D).

Depending on the reference flux distribution used in

MOMA, different targets were suggested for knockout.
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Some of the targets, for example GDH1, were identified

in more than one physiological growth condition. How-

ever, their positions following the R3 ranking are very

different, demonstrating that the best targets in one

physiological scenario are not necessarily the best tar-

gets in another. The results of the prediction analysis

imply that VG production is favoured at those physiolo-

gical conditions which lead to respiro-fermentative

metabolism as compared to physiological conditions

resulting exclusively in respiratory metabolism. The out-

come of minimal metabolic adjustment is to divert the

ethanol flux towards formation of VG rather than

diverting the flux from biomass constituents. Indeed,

several of the candidates suggested in Figure 2 are pre-

dicted to have lower ethanol formation than the refer-

ence. Likewise, the biomass yield predicted for all the

suggested mutants (with VG0 flux distribution as a

reference) is slightly higher than for the reference, again

at the expense of ethanol formation. Among the targets

depicted in Figure 2, pyruvate seems to embrace a rele-

vant stoichiometric bottleneck since several reactions

from pyruvate metabolism were suggested as targets for

deletion while considering different reference flux distri-

butions. Furthermore, genes related to the metabolism

of ammonium, the pentose phosphate pathway and cen-

tral carbon metabolism in general, were also identified.

Target selection

The targets for in vivo implementation were selected by

giving strong emphasis to the R3 score of different targets

under different simulation conditions, in combination

with a manual evaluation of the suitability of the putative

gene targets based on available data in the literature. The

literature and database search included the possible exis-

tence of iso-enzymes, experimentally observed single gene

deletion phenotypes and the assessment of the importance

of regulatory links to other processes [29]. Based on this

analysis, two gene candidates, PDC1 (Pyruvate decarboxy-

lase) and GDH1 (Glutamate dehydrogenase), were selected

as the candidates for strain construction and characteriza-

tion. The Gdh1 catalyzed reaction was predicted as a

prime target for knockout when using respiratory or

respiro-fermentative metabolism, and in both cases, rela-

tively large metabolic adjustment was predicted. GDH1

encodes an NADPH-dependent glutamate dehydrogenase

involved in ammonium metabolism through glutamate

biosynthesis, which is reported to provide 85% of the cel-

lular nitrogen sources [30]. Ammonium metabolism has

been extensively studied in S. cerevisiae and in particular,

deletion of GDH1 was previously used as a metabolic

engineering strategy for improving ethanol and sesquiter-

penes production [6,8,31]. The engineered strains were

reported to have an increased NADPH pool, a kinetic/

Figure 2 Comparison of targets predicted by OptGene for improved VG productivity. A - Biomass versus VG yield is represented for each

knockout mutant phenotype obtained after OptGene simulation using three different reference flux distributions for MOMA. Experimental yields

observed for VG0 are represented by the red empty triangle and bar. B/C/D - The predicted VG yield (mol/molglc) obtained for each knockout

mutant after OptGene simulation using Reference 1/2/3 is given by the length of the coloured bars. For each reference flux distribution, the R3

score was estimated for each of the mutants was calculated and normalized to the mutant presenting the highest value: MAmut/MAmax*100.

100% represents the mutant with highest R3 score for a given flux distribution. Candidate 80%PDC is not a knockout in silico mutant, rather its

PDC reaction is constrained to 80% of the upper bound.
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thermodynamic feature which was not considered in our

modelling strategy. Therefore, even though the deletion of

this gene was not suggested when the network was con-

strained with experimental results (VG0), we expect the

deletion of this gene to thermodynamically favour the con-

version of PAC to PAL by ACAR.

Pyruvate is a key metabolite in S. cerevisiae metabolism

and the branch point between respiratory and fermenta-

tive metabolism. Pyruvate decarboxylases (PDCs) have a

crucial significance for fermentation, since this decarbox-

ylation reaction converts pyruvate to acetaldehyde, an

intermediate towards ethanol formation [32]. The S. cere-

visiae genome harbours three PDC structural genes

(PDC1, 5 and 6), one regulatory gene (PDC2) and two

other genes with potential contribution towards PDC

activity (PDC3 and 4) [32,33]. Complete suppression of

pyruvate decarboxylase activity (pdc1∆, pdc5∆ & pdc6∆)

creates a mutant that is unable to grow on glucose as

sole carbon source [33,34]. By in silico analysis, PDC was

found as a target to increase the formation of VG consid-

ering both respiratory and respiro-fermentative reference

flux distributions for MOMA, but not when VG0 data

was used to constrain the network. Furthermore, com-

plete absence of pyruvate decarboxylase activity under a

highly fermentative mode was predicted to result in zero

growth, as lack of PDC activity would require a very large

metabolic adjustment. This observation, in combination

with the experimental data available in the literature for

the mutant without PDC activity [33,34], raise an inter-

esting question - what would be the effect of only partial

reduction of PDC activity, e.g. by deletion of one of the

structural genes? In order to simulate this situation, PDC

flux was constrained to 80% of the flux observed in the

reference strain. This simulation predicted positive

growth as well as higher VG production in comparison

to other targets such as GDH1 (Figure 2). Of the three

PDC structural genes, PDC1 was selected as a target for

deletion in vivo as there is experimental evidence that its

removal results in ~30% reduction of total pyruvate dec-

arboxylase activity [34].

Strain construction and characterization

Following the selection of the two target genes, two sin-

gle gene deletion mutants, gdh1∆ and pdc1∆, were con-

structed in the VG0 background resulting in VG1 and

VG2, respectively. To test whether simultaneous dele-

tion of PDC1 and GDH1 would have a positive synergis-

tic effect on VG accumulation, a mutant with both

deletions was obtained (VG3). The strains were initially

characterized in batch cultures in 2L well-controlled

bioreactors, using minimal medium and an initial glu-

cose concentration of 20 g/l (Table 1). The mutant VG2

(pdc1∆) showed an overall increased fitness compared

to the reference strain as documented by a 43% higher

maximum specific growth rate (μmax, (h
-1) a doubling

time-1) in comparison to VG0. Likewise the yield of bio-

mass on glucose (YS X, gDW/g) is 40% higher than

observed for VG0. On the other hand, the mutant VG1

(gdh1∆) showed reduced strain fitness, illustrated by

poor μmax and reduced YS X. These adverse effects on

VG1 fitness were partially relieved by deletion of PDC1,

as documented by slightly improved μmax and YS X

values for the strain VG3 (pdc1∆gdh1∆). The decreased

fitness of the strains in which GDH1 was deleted, is due

to a reduced nitrogen assimilation rate [35]. In the

absence of GDH1, the GS-GOGAT system (coaction of

two enzymes, a glutamate synthase, GLT1, and a gluta-

mine synthetase, GLN1) [36,37] and the glutamate dehy-

drogenase, coded by GDH2 [38], are responsible for

ammonia assimilation. Both alternatives use NADH

instead of NADPH, thus explaining the high metabolic

adjustment predicted for the GDH1 in silico mutants

(Figure 2B and 2C). In comparison with Gdh1, lower

activity has been reported for both of the alternative sys-

tems. Consequently, overexpression of the enzymes

involved in the alternative pathways is a required step in

order to recover the cellular fitness [39]. We proceeded

experimentally with GDH2 overexpression as the use of

the GS-GOGAT system has the disadvantage of using

an important cellular resource - ATP.

The resulting strain VG4 (pdc1∆gdh1∆ ↑GDH2)

showed a significantly improved cellular fitness compared

to VG3 with μmax and YS X values similar to those

observed for VG2 and better than those obtained with

VG0. At these experimental conditions (batch cultiva-

tion), none of the introduced mutations seem to affect

ethanol production to any significant extent except that

the strains harbouring the GDH1 deletion tend to show a

slight increase in the substrate specific yield of ethanol.

Accumulation of several intermediates in the vanillin

pathway was observed following growth of all four dif-

ferent mutants. In combination, protocatechuic acid

Table 1 Physiological parameters for the reference and

metabolically engineered strains in batch cultivation

Strains Engineered Genotype μmax
a YS X

b YS EtOh
c YS gly

d

VG0 0.14 0.10 0.23 0.05

VG1 gdh1∆ 0.10 0.07 0.25 0.03

VG2 pdc1∆ 0.20 0.14 0.23 0.07

VG3 pdc1 ∆gdh1∆ 0.11 0.10 0.27 0.05

VG4 pdc1 ∆gdh1∆ ↑GDH2 0.17 0.17 0.25 0.07

aMaximum specific growth rate, h-1.
bOverall yield of biomass on substrate, gDW.gglc

-1.
cOverall yield of ethanol on substrate, geth.gglc

-1.
dOverall yield of glycerol on substrate, gGly.gglc

-1.

The biomass overall yield in glucose (YS X) was calculated based on all the

biomass obtained after glucose and ethanol consumption. Ethanol and

glycerol yields were calculated based on production only in the glucose

consumption phase.
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(PAC) and protocatechuic aldehyde (PAL) accounted for

more than 50% of the total products formed. Vanillin,

other intermediates and by-products such as vanillic

acid and vanillyl alcohol were found in very low

amounts and were not taken into account for further

analysis. The strain VG1 showed the lowest total yield

of compounds related to the vanillin biosynthetic path-

way (Figure 3), which might be related to the general

decreased fitness observed in this strain. The other three

engineered strains displayed better performance than

VG0 concerning VG production. Single deletion of

PDC1 in the strain VG2 resulted in an increase of 52%

in VG yield and a 30% increase in the overall yield of

the compounds from the de novo vanillin pathway.

Despite the adverse effect of the GDH1 deletion, double

deletion of PDC1 and GDH1 in VG3 resulted in 15%

increase in VG production compared to VG0. In con-

trast to strain VG0, the yield of VG increased by over

55% in the strain VG4. In all of the strains, increase in

VG was accompanied by accumulation of PAC and PAL

in different relative amounts (Figure 3). The most desir-

able distribution among these metabolites was observed

in the case of VG2, where 50% of the total products

formed was VG. Overall, the strain engineering carried

out during this study led us from a strain producing 9.8

mgVG/gglc to a strain producing 15.3 mgVG/gglc in batch

cultivation.

The extent to which VG production is affected by the

presence or absence of alcoholic fermentation is still

unknown. Above a critical threshold for glucose uptake

rate, co-existence of respiration and fermentation takes

place and the biomass yield is significantly lower due to

carbon channelling towards ethanol, known as the Crab-

tree effect [28]. This phenomenon, also termed overflow

metabolism, is typically observed in batch cultivation

where the initial glucose concentration is usually above

the critical threshold for mixed metabolism. In chemo-

stat cultivation, glucose concentration is kept at very

low levels and below the critical dilution rate (strain-

specific), the glucose uptake rate is low enough to

ensure exclusive respiratory metabolism [27,40,41].

Respiratory vs fermentative metabolism for VG production

In an attempt to test whether reduced fermentation

would lead to increased biomass and/or VG production,

the VG0 reference strain and the best performing

mutants in batch cultivations (VG2 and VG4) were

selected for further characterization in glucose-limited

chemostat cultures at a dilution rate of 0.1 h-1and 20 g/l

feed glucose concentration. VG2 showed increased fit-

ness as demonstrated by a higher biomass yield (YS X)

accompanied by slightly increased ethanol and a slightly

decreased glycerol yields, as compared to VG0 (Table

2). Under these conditions, VG2 shows 5.6 mgVG/gglc,

40% higher VG yield than VG0. In contrast, VG4 dis-

played a large decrease in YS X, while ethanol and gly-

cerol production were significantly increased (Table 2).,

At the same time, the VG production observed for this

strain remains very similar to that of the reference strain

(Table 2).

The strain VG0 showed a glucose uptake rate (rS) of

3.9 ± 0.2 mmolglcggw
-1.h-1, whereas VG2 has an uptake

rate of 3.5 ± 0.2 mmolglcggw
-1.h-1. The lower glucose

uptake decreases the overflow metabolism in the strain,

leading to decreased rates of ethanol, glycerol and acet-

ate formation. At the same time, VG2 exhibits a higher

conversion of PAC into the products of the later steps

in the vanillin pathway (Figure 4A). The strain VG4 dis-

plays a lower biomass yield on glucose and a

Figure 3 Vanillin b-D-glucoside yield observed for the reference strain (VG0) and metabolically engineered mutants (VG1-4) in batch

cultivations. Substrate overall yield for vanillin b-D-glucoside (YS VG, mgVG/gglc), protocatechuic acid (YS PAC, mgPAC/gglc) and protocatechuic

aldehyde (YS PAL, mgPAL/gglc) obtained for the reference and engineered strains in batch culture. Pie charts are presented to illustrate relative

distribution of PAC, PAL and VG for each strain.
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corresponding higher rS value suggesting an increased

overflow metabolism (Table 2). Accordingly, a signifi-

cantly increased production of ethanol (1.5-fold) and

glycerol (4-fold) was observed. Despite the severe impact

of the overflow metabolism on the biomass yield of the

VG4 strain in the conditions tested, better conversion of

PAC into downstream metabolites was observed, espe-

cially to PAL (Figure 4A). A possible interpretation of

this result is that the VG4 strain has higher availability

of NADPH, due to the engineered reduced demand for

this cofactor for ammonium metabolism. This most

likely affords a thermodynamically more favoured con-

version of PAC into PAL, as hypothesised during target

selection.

The predominantly respiro-fermentative metabolism

observed for all engineered strains (VG0, VG2 and VG4)

implies that the critical dilution rate (indicative of respira-

tory capacity) of the strains is very low. By gradually

decreasing the dilution rate in a glucose-limited chemo-

stat, we verified that the critical dilution rate for both

VG2 and VG0 was below 0.015. Such a low respiratory

capacity could be the result of combined effects of pro-

duct/by-products toxicity and due to the background of

the strain. Employing this experimental setup made it

possible to lower the ethanol production rate to 0.130

mmolethggw
-1.h-1 for VG0 and to 0.065 mmolethggw

-1.h-1

for VG2, while the rate of glucose uptake was 0.37 and

Figure 4 Vanillin b-D-glucoside yield observed for the reference strain (VG0) and metabolically engineered mutants (VG1-4) in

continuous cultivations. A - Biomass specific production rate (mgmetab.gdw
-1.h-1) for protocatechuic acid (PAC), protocatechuic aldehyde (PAL)

and VG in glucose limited chemostat cultivation at dilution rate of 0.1 h-1. B - Substrate specific yield (YS Metab, mgmetab/gglc) for PAC, PAL and

VG for strains VG0 and VG2 in glucose limited chemostat cultivation at different dilution rates - 0.1 h-1(Top) and 0.015 h-1(*, Bottom).

Table 2 Physiological parameters for the reference and

metabolically engineered strains in chemostat cultivation

at dilution rate 0.1 h-1

Strain VG0 VG2 VG4

Engineered Genotype pdc1∆ pdc1 ∆gdh1∆
↑GDH2

YS X (gDW.gglc
-1) 0.151 ± 0.008 0.159 ± 0.003 0.115 ± 0.005

YS eth (geth.gglc
-1) 0.283 ± 0.005 0.290 ± 0.008 0.32 ± 0.01

YS gly (mggly.gglc
-1) 3.4 ± 0.3 2.1 ± 0.4 11 ± 9

YS acet (mgacet.gglc
-1) 7.3 ± 0.3 7.6 ± 0.3 4 ± 2

YS PAC (mgPAC.gglc
-1) 27 ± 2 23.5 ± 0.3 15.5 ± 0.3

YS PAL (mgPAL.gglc
-1) 7 ± 2 9 ± 2 7.2 ± 0.2

YS VG (mgVG.gglc
-1) 4 ± 1 5.6 ± 1 4.16 ± 0.07

rs(mmolglc.gDW
-1.h-1) 3.9 ± 0.2 3.5 ± 0.3 4.8 ± 0.2

reth(mmoleth.gDW
-1.h-1) 4.3 ± 0.3 3.9 ± 0.3 6.1 ± 0.4

rgly(mmolgly.gDW
-1.h-1) 0.026 ± 0.003 0.014 ± 0.004 0.10 ± 0.08

racet(mmolacet.gDW
-1.h-1) 0.086 ± 0.006 0.079 ± 0.006 0.05 ± 0.003

rPAC(mmnolPAC.gDW
-1.h-1) 0.12 ± 0.01 0.10 ± 0.01 0.087 ± 0.03

rPAL(mmolPAL.gDW
-1.h-1) 0.036 ± 0.008 0.040 ± 0.007 0.045 ± 0.003

rVG(mmolVG.gDW
-1.h-1) 0.009 ± 0.003 0.011 ± 0.002 0.012 ± 0.001

Substrate yields for biomass (X), ethanol (eth), glycerol (Gly), atetate (Ace),

protocathechuic acid (PAC), protocathechuic adehyde (PAL) and vanillin b-D-

glucoside (VG) on glucose (glc) are represented by YS X (or metabolite). Specific

glucose uptake rate is represented by rS. Specific production rate for ethanol,

glycerol, acetate, PAC, PAL and VG are represented by rmetabolite.

Triplicates of all chemostats were performed.
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0.30 mmolglcggw
-1.h-1, respectively. With VG2, the VG

concentration in the broth was 500 mg/l, (32 mgVG/gglc),

a two-fold increase compared to that of VG0, which pro-

duced 250 mg/l (15 mgVG/gglc) (Figure 4B). These results

confirm that VG2 has better respiratory capacity than

that of the reference strain VG0 and that lowering the

overflow metabolism results in higher VG yield. The fact

that higher yields of the intermediates PAC and PAL as

well as of the final product, VG, are obtained at low dilu-

tion rates, suggests a significantly increased flux through

the vanillin biosynthetic pathway. In both strains, the

observed conversion of PAL into VG is more efficient at

low dilution rates. This confirms that low overflow meta-

bolism is linked to an increased precursor and/or cofac-

tors supply, enabling higher VG productivity.

Analysis of the experimental results

In an attempt to better understand the metabolic flux

changes at the whole network level and, therefore, the

basis for the observed improved VG production, the

flux phenotypes of VG0, VG2 and VG4 were simulated

by using FBA [17]. The experimental results obtained

from the chemostat cultures, i.e. glucose uptake rate

and biomass yield, ethanol, acetate, glycerol and CO2

production rates, were added as constraints to the meta-

bolic model. The bounds for the deleted genes were set

to zero, as in the case of GDH1 deletion in VG4. How-

ever the choice of constraints for the PDC1 deletion is

not straightforward, as deleting PDC1 does not mean

that pyruvate decarboxylase activity will be zero. To cir-

cumvent this issue, and to account for different glucose

uptake rates of the mutants, the upper bound for PDC

flux was identified in each condition. Subsequently, the

phenotypes were simulated with upper bound for PDC

constrained to 80% of the previously found upper

bound.

Flux variability analysis

The flux distributions obtained with FBA are guaranteed

to be optimal, but not necessarily unique due to the

existence of a large number of alternative routes. This

renders the transformation of the experimentally deter-

mined levels of the products obtained into intracellular

fluxes, a difficult task. Nevertheless, stoichiometric simu-

lations provide an estimate of the possible range of flux

values for every reaction in the network. Fluxes which

are unique will have the same maximum and minimum

possible values. The flux ranges of all reactions of VG2

and VG4 were calculated and compared with those of

VG0, resulting in different categories as illustrated in

Figure 5. The first category consists of those reactions

for which flux is infeasible at steady-state, i.e. blocked

reactions. Among the remaining reactions (~570), only

50 have unique flux values for the reference strain and

for the mutants (VG2 and VG4). Almost all of these

reactions belong to category a, i.e. with no change

between the VG0 reference strain and the tested

mutants. The chemostat experiments were carried out

at the same dilution rate for all the strains, and as a

consequence, the simulation of reactions directly

coupled to biomass biosynthesis all fall within this cate-

gory. Examples include reactions from lipid, nucleotide

and amino acid metabolism.

The categories b and c contain the majority of the

reactions (~70%) for the VG2 and VG4 strains, yet the

distribution among the two categories is not alike for

the two mutant strains. In the case of VG2, 226 reac-

tions exhibit a larger range than observed for the refer-

ence strain (category b) and a similar number of

reactions exhibit a smaller range than observed in the

VG0 (category c). For the VG4 strain, most of the reac-

tions fall in category b, as expected due to its higher

glucose uptake rate. The VG2 strain exhibits a decreased

glucose uptake rate and the same biomass formation

rate as compared with VG0. Nevertheless, several reac-

tions from the central carbon metabolism show an

increased flux range (category b). These reactions

mainly belong to the tricarboxylic acid (TCA) cycle, the

pentose phosphate pathway and gluconeogenesis,

reflecting that this strain has decreased overflow meta-

bolism and ethanol production. A more active respira-

tion in this strain is further confirmed by the in silico

predicted increased oxygen uptake rate. Even though

this reaction is found in category c (with decreased flux

range), its lower bound is higher in VG2 than in VG0.

The remaining reactions present flux variability ranges

with partial or no overlap between the reference strain

and the mutants. These reactions were grouped in cate-

gory d, where the mutant flux upper bound is higher

than the reference flux upper bound, and category e

where the mutant flux lower bound is lower than the

reference flux lower bound. Together, categories d and e

comprise the reactions with the clearest differences

between the mutants and the reference. These include

reactions related to product formation (e.g. biosynthesis

of S-adenosylmethionine - the methyl-group donor in

the vanillin pathway) and glucose uptake (which was

experimentally determined), as well as reactions from

the ammonia metabolism.

Despite the increased VG production, the VG2 strain

exhibits a decreased flux through the aromatic amino

acid biosynthesis pathway from which the vanillin pre-

cursor is derived. Likewise, this strain shows a reduced

total flux through the VG pathway. The same trend was

found for the VG4 strain, implying that the metabolic

network is being adjusted for increased PAL and VG

production at the expense of a reduction of the total

carbon flow into aromatic amino acids until the VG bio-

synthesis branch. In actual fact, the reaction after which
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the production is increased is the conversion from PAC

to PAL. This reaction uses NADPH and ATP, two of

the most highly connected metabolites and cofactors

that are competed for by growth requirement.

Metabolite-centric analysis

To systematically explore the usage of cofactors and

other metabolites in the engineered strains, the turnover

of these metabolites can be calculated by summing all

the fluxes which are producing (or consuming) them

[42]. As the unique values of all the fluxes are unknown

due to alternative optima inherent to FBA of metabolic

networks, the minimum metabolite turnover was calcu-

lated by solving a linear programming problem (LPP)

for the minimization of metabolite turnover (see materi-

als and methods for details). This LPP formulation guar-

antees to find the minimum turnover of a given

metabolite that ensures the observed phenotype. The

direction of optimization, i.e. minimization, not only

avoids the unbound cyclic fluxes around the metabolite

under question, but also confers with the biological

hypothesis of minimal resource allocation by the cell in

terms of enzyme expression. Minimum metabolite turn-

over denotes how much flux needs to pass through a

given metabolite, although the distribution of this flux

among possible reactions may not be unique in all

cases. Nevertheless, the turnover calculated in this way

provides a lower bound on the flux through a metabo-

lite that can be used in complementation with flux

variability analysis.

Besides NADPH and ATP, the minimum turnover of

some other relevant metabolites was also calculated

(Figure 6). The minimum turnover for PAC is lower in

the strains VG2 and VG4 than for VG0; while for PAL

and VG the opposite trend is verified, in agreement with

the flux variability analysis. An increase in the glucose

uptake rate will result in an increase in glycolysis and

pentose phosphate pathway, which is reflected in the

increased minimum turnover of pyruvate and erythrose-

4-phosphate in the VG4 strain. On the other hand, the

VG2 strain exhibits a decreased glucose uptake rate and

Figure 5 Flux variability analysis. Reactions were classified based on the comparison of their flux variability range between the reference VG0

and the mutants VG2 and VG4. A- The scheme on the left-hand side illustrates the flux variability ranges defining the six different categories

(Blocked and a to e). Flux variability range for the reference strain (VG0) is represented in gray, and the mutant in black. The distribution of VG2

and VG4 reactios among different categories are presented in the bar chart, yellow and red, respectively. B- The reactions from mutant VG2

belonging to categories b and c are further classified accordingly to their metabolic function.
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consequently less flux through glycolysis and pentose

phosphate pathway. The same trends apply to ATP,

implying that most ATP available in the cell is being

produced from glycolysis. NADPH, S-adenosylmethio-

nine and UDP-glucose minimum turnovers are

increased for both simulated phenotypes, reflecting the

increased flux through ACAR, hsOMT and UGT leading

to PAL and VG. The analysis above provides insight

into the intracellular flux changes and pinpoints meta-

bolites that play a role in the engineered strains.

Three VG overproducing strains were successfully

designed and constructed during this study. Systems

biology tools, such as the yeast genome-scale model,

were used throughout the study, from the strain design

to the analysis of the physiological data resulting from

the fermentation studies of the constructed mutants.

The in silico predicted increase in the product yield was

above 2-fold (Figure 2A). Indeed, 2-fold improvement in

the yield was observed for one of the mutants, albeit at

low dilution rate. On the other hand, the observed

improvement in batch cultivation was close to a 1.5-fold

increase. The limited kinetic and regulatory information,

as well as the lack of tools to integrate such information

within genome-scale metabolic models, are the main

likely reasons for the discrepancy between the predicted

and the experimentally determined yields. The need for

accounting of the regulatory information is even more

apparent when considering the fact that an isoenzyme

was chosen as a target. Effects of deletion of a gene cod-

ing for an isoenzyme on the flux re-routing are hard to

predict. In reality, quantitative prediction of flux distri-

butions following down-regulation or overexpression of

a gene (or corresponding enzyme activity) is still in its

infancy. Advances within this area would require more

experimental data on the regulation of metabolic net-

works as well as flux simulation tools that can integrate

such information. Regulation at both the hierarchical

and metabolic level is of particular relevance for vanillin

production as the shikimate pathway for aromatic

amino acids biosynthesis is tightly regulated in yeast

[43]. As an example, Luttik and co-workers were able to

increase the total flux through this pathway by 4.5-fold

Figure 6 Minimum turnover of selected metabolites from the central carbon metabolism and from the VG biosynthetic pathway

(including cofactors). Metabolites from the central carbon metabolism: glucose-6-phosphate, erythrose-4-phosphate, pyruvate and ethanol;

Metabolites from the VG biosynthetic pathway (ATP, NADPH, SAM and UDP-glucose). Metabolites for which minimum turnover was calculated

are represented by filled circles, metabolites for which no minimum turnover was calculated are represented by open rings. Reactions are

represented as arrows. Qualitative variation of the minimum turnovers relatively to the reference (VG0) is shown by the arrows next to each

metabolite; yellow corresponds to VG2 while red corresponds to VG4.
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in S. cerevisiae through alleviation of the DAHP

synthase feed-back inhibition mechanisms [44].

Conclusions and Future Perspectives
The in silico strategy design revealed the sensitivity of

the target predictions towards the reference flux distri-

bution used for simulating the mutants. To this end, it

was crucial to use basic physiological knowledge for

simulating different relevant yeast phenotypes. On the

experimental front, three yeast strains with improved

vanillin b-D-glucoside production were designed based

on a model-guided metabolic engineering strategy.

Physiological characterization of these mutants in che-

mostat cultivation (and subsequent in silico flux analy-

sis) allowed us to conclude that they display increased

cofactor availability for VG production. Further

increase of cofactor availability would be of great inter-

est in attempting to decrease the accumulation of

intermediates (especially PAC and PAL) and to favour

their conversion into VG. Subsequently, identification

and overexpression of an eventual rate limiting enzyme

from the vanillin biosynthetic pathway may serve to

enhance conversion of pathway intermediates into the

final product, VG. Furthermore, all the strains, includ-

ing the reference, were found to have poor respiratory

capacity and thereby high ethanol yield. Improving

respiratory capacity of the selected overproducers will

be an essential feature for future work. In fact, low

dilution rate continuous cultivation (concurrent with

better respiration) of an overproducer strain resulted

in notably high titer of vanillin b-D-glucoside - 500

mg/l, 5-fold higher than the 45 mg/l reported by Han-

sen and co-workers [5].

In summary, the framework presented in this study

comprises of i) in silico target prediction that accounts

for the available physiological information; ii) systematic

ranking of the targets based on the predicted metabolic

adjustments; iii) in vivo verification through genetic

engineering and fermentation; and iv) reaction/metabo-

lite centric analysis of the experimental results. Our

results demonstrate the applicability of in silico model-

ling tools for overproduction of a product from a multi-

step heterologous pathway in a eukaryotic system.

Materials and methods
Model simulations

Five new reactions were introduced in the Saccharo-

myces cerevisiae stoichiometric model [22] to convert 3-

dehydroshikimate, a natural intermediate in aromatic

amino acids biosynthesis, into vanillin b-D-glucoside

(VG). Furthermore all the intermediates in the pathway

were allowed to be secreted, based on the experimental

evidence. FBA simulations were performed using linear

programming library GLPK ftp://ftp.gnu.org/gnu/glpk/,

while MOMA simulations were performed using quad-

ratic programming library OOQP [45].

Strategy design to improve VG production in S. cerevi-

siae was performed by using OptGene with Biomass-

Product Coupled Yield (BPCY) as design objective func-

tion [16].

Minimization of metabolite turnover

Metabolite turnover or flux-sum is the sum of all

incoming or outgoing fluxes around a particular meta-

bolite under pseudo-steady state conditions [42,46]. Let

Fi denote metabolite turnover of metabolite i and its

mathematical definition is given by Φ i
k

ik kS v= ∑1
2

| | ,

where Sik represents the stoichiometric coefficient of

metabolite i in reaction k and vk is the flux of reaction

k. By calculating the sum of all absolute flux values

through (in and out) a given metabolite eliminates

further concern about reactions reversibility. Further-

more, given the steady state assumption, the metabolite

turnover will be half of the calculated sum.

Due to existence of alternative optimal FBA solutions

within genome-scale models, minimum of metabolite

turnover was calculated, given predetermined exchange

fluxes (including growth), using a linear programming

formulation as follows:

min

. .

(

Φ i

j

ij j

j j j j j j j

s t

S v

v for

∑ =

≤ ≤ ∈ ℜ ≤

0

     and and Flux capacity constraint s, including uptake and secretion reaactions)

Plasmids and strains

The strain Saccharomyces cerevisiae VAN286 obtained

by Hansen et al. was used as the background strain in

this work. In order to produce vanillin, this strain must

be transformed with a plasmid containing the gene

EntD from Escherichia coli, coding for a PPTase. This

enzyme is indispensable for post-translational activation

by phosphopantetheinylation of ACAR in S. cerevisiae

[5]. All the strains constructed during this study

(Table 3) were transformed with the plasmid containing

EntD prior to cultivation in order to produce VG.

Cloning UGT72E2 in S. cerevisiae VAN286

The integrative plasmid pARB021 containing the gene

UGT72E2 from Arabidopsis thaliana coding for a

UDPG-glucosyltransferase was obtained by replacing the

URA3 marker by the HIS3 marker in plasmid pJH665

with the restriction enzyme XmaI. Restriction enzymes

and buffers from New England Biolabs were used and

the conditions for restriction followed manufacture

instructions. The HIS3 gene was PCR amplified using

the primers His3_Fw and His3_Rev (Additional file 1,

Table S1), the plasmid pWJ1213 [47] was used as
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template DNA and amplification was achieved using

Phusion™ Hot Start High-Fidelity DNA Polymerase

(Finnzymes Oy, Espoo, Finland). GFX™ PCR DNA and

Gel Band Purification Kit (GE Healthcare) were used for

DNA purifications and ligation was performed with T4

DNA ligase (New England Biolabs). The plasmid was

treated with Antarctic Phosphate (New England Biolabs)

in order to avoid recirculation. The ligation mixture was

deactivated and transformed into chemo-competent

DH5a E. coli cells. Ampicillin resistance was used as E.

coli selection marker and plasmid extraction was per-

formed using a GenElute HP Plamsid Miniprep Kit

(Sigma-Aldrich). The plasmid ARB021 was verified by

restriction analysis and sequencing of the PCR amplified

HIS3 marker with the primers MarkSeq_Fw and Mark-

Seq_Rev from Additional file 1, Table S1 (StarSEQ,

Mainz, Germany). The correct plasmid was then

restricted with SphI and transformed into the yeast TPI1

promoter locus of VAN286, thus creating the strain

VG0, producing VG from glucose. High efficiency yeast

transformation method was used to construct the yeast

strains [48].

Model guided strain construction

PDC1 and GDH1 gene deletions, as well as GDH2 over-

expression were achieved by gene targeting through

homologous recombination of bipartite PCR fragments,

using URA3 gene from Kluyveromyces lactis as a marker

[49]. The marker was flanked by direct repeats that

allowed restoring of uracil auxotrophy by plating the

cells in agar medium containing 5-Fluoroorotic acid

(5-FOA) after each genetic manipulation [50].

The primers used for amplifying the up and down-

stream regions flanking the PDC1 and GDH1 gene

(approximately 500 bp each) are listed in Additional file

1, Table S1, as well as the primers used to amplify K. lac-

tis URA3 flanked by direct repeats from the plasmid

pWJ1042 [51]. Strain VG1 was obtained by deleting the

gene GDH1 in the strain VG0. Strain VG2 was obtained

by deleting the gene PDC1 also in the strain VG0. Strain

VG3 was obtained by deleting gene GDH1 in the strain

VG2. The deletions were verified by analytical PCR using

the primers PDC1_Ver_FW and PDC1_Ver_REV for

PDC1 deletion, and GDH1_Ver_FW and GDH1_Ver_-

REV for GDH1 deletion (Additional file 1, Table S1).

Strain VG4 was obtained from VG3 by swapping the

native GDH2 promoter by the strong constitutive promo-

ter of the gene PGK1, as previously reported by Nissen et

al. [8]. A 500 bp fragment upstream the GDH2 open

reading frame (ORF) used for homologous recombination

was obtained from VG3 genomic DNA with the primers

GDH2(UP)_Fw and GDH2(UP)_Rev (Additional file 1,

Table S1). The downstream fragment used for homolo-

gous recombination was amplified from the plasmid

pPGK1-GDH2 [8] with the primers PGK1_GDH2(Dw)

_Fw and PGK1_GDH2(Dw)_Rev listed in Additional file

1, Table S1. 1479 bp of the PGK1 promoter region were

used to substitute the GDH2 original promoter, while the

initial 500 bp of the GDH2 OFR were used to ensure

accurate targeting. The promoter swapping was verified

by analytical PCR with the primers PGK1verif and

Gdh2verif (Additional file 1, Table S1), amplifying 420 bp

of the PGK1 promoter to 1300 bp of GDH2.

Medium Composition

A defined minimal medium as described by Verduyn et

al. (1992) with 20 g/l glucose as sole carbon source was

Table 3 Yeast strains and plasmids used in this study

Yeast Strain Relevant genotype Reference

VAN286 MATa his3D1 leu2D0 met15D0 ura3D0 adh6::LEU2 bgl1::KanMX4 PTPI1::3DSD [AurC]::HsOMT [NatMX]::ACAR
[HphMX]

Hansen et al. 2009 [5]

VG0 MATa his3D1 leu2D0 met15D0 ura3D0 adh6::LEU2 bgl1::KanMX4 PTPI1::3DSD [AurC]::HsOMT [NatMX]::ACAR
[HphMX]::UGT72E2 [HIS3]

This study

VG1 MATa his3D1 leu2D0 met15D0 ura3D0 adh6::LEU2 bgl1::KanMX4 PTPI1::3DSD [AurC]::HsOMT [NatMX]::ACAR
[HphMX]::UGT72E2 [HIS3] gdh1

This study

VG2 MATa his3D1 leu2D0 met15D0 ura3D0 adh6::LEU2 bgl1::KanMX4 PTPI1::3DSD [AurC]::HsOMT [NatMX]::ACAR
[HphMX]::UGT72E2 [HIS3] pdc1

This study

VG3 MATa his3D1 leu2D0 met15D0 ura3D0 adh6::LEU2 bgl1::KanMX4 PTPI1::3DSD [AurC]::HsOMT [NatMX]::ACAR
[HphMX]::UGT72E2 [HIS3] pdc1 gdh11

This study

VG4 MATa his3D1 leu2D0 met15D0 ura3D0 adh6::LEU2 bgl1::KanMX4 PTPI1::3DSD [AurC]::HsOMT [NatMX]::ACAR
[HphMX]::UGT72E2 [HIS3] pdc1 gdh1 GDH2::PPGK1-GDH2

This study

Plasmid Gene content Plasmid type Selection marker Reference

pJH589 EndD (E. coli) CEN-ARS (S. cerevisiae) URA3 Hansen et al. [5]

pJH665 UGT72E2 (Arabidopsis thaliana) CEN-ARS (S. cerevisiae) URA3 Hansen et al. [5]

pARB021 UGT72E2 (Arabidopsis thaliana) Integration (S. cerevisiae) HIS3 This work

pWJ1042 Recyclable URA3 (Kluyveromyces lactis) CEN-ARS (S. cerevisiae) Reid et al. [51]

pPGK1-GDH2 PPGK1-GDH2 (S. cerevisiae) Integration (S. cerevisiae) KanMX3 Nissen et al. [8]
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used for cell cultivation [52]. The medium composition

used for batch and continuous cultivation in well con-

trolled bioreactors was as follows: 5.0 g/l (NH4)2SO4,

3.0 g/l KH2PO4, 0.5 g/l Mg2SO4, 2.0 ml/l trace metal

solution, 1.0 ml/l vitamins solution, 0.05 ml/l antifoam

204 (Sigma-Aldrich A-8311) and 80 mg/l L-methionine.

Trace metal solution contained 3 g/L FeSO4.7H2O,

4.5 g/L ZnSO4.7H2O, 4.5 g/L CaCl2.6H2O, 0.84 g/L

MnCl2.2H2O, 0.3 g/L CoCl2.6H2O, 0.3 g/L

CuSO4.5H2O, 0.4 g/L NaMoO4.2H2O, 1 g/L H3BO3, 0.1

g/L KI and 15 g/L Na2EDTA.2H2O. Vitamins solution

included 50 mg/l d-biotin, 200 mg/l para-amino benzoic

acid, 1.0 g/l nicotinic acid, 1.0 g/l Ca-pantothenate, 1.0

g/l pyridoxine HCL, 1.0 g/l thiamine HCl and 25 mg/l

m-inositol.

The pH was adjusted to 5 by addition of 2N NaOH

prior to autoclavation, the glucose was autoclaved sepa-

rately and methionine and vitamins solutions were sterile

filtered (0.2 μm pore-size Ministart®-Plus Sartorius AG,

Geottingen, Germany) and added after autoclavation.

Batch cultivations

Batch cultivations were executed in well-controlled,

aerobic, 2.2 B Braun Biotech Biostat B fermentation sys-

tems with a working volume of 2 L (Sartorius AG, Geot-

tingen, Germany). Proper mixing conditions were

ensured by two disk-turbine impellers rotating at 800

RPM and 4 baffles. The pH was automatically controlled

at 5 by addition of 2N NaOH. The temperature was

kept constant at 30°C. The air flow rate was 1 vvm

(volume air per volume of broth per minute).

Prior to inoculation, 100 ml precultures were culti-

vated in 500 ml baffled shake-flasks at 30°C until OD600

nm 5 in an orbital shaker (150 RPM). Minimal medium

as described above was used to grow the precultures

with 20 g/l glucose. The bioreactors were inoculated to

an initial OD600 nm ranging from 0.5 to 0.7.

Continuous cultivations

Aerobic, carbon limited continuous cultivations were

carried out in 2.2 B Braun Biotech Biostat B fermenta-

tion systems (as described above for batch cultivations)

with a constant working volume of 1.5 L. The tempera-

ture was kept at 30°C, the pH was maintained at 5 by

addition of 2N NaOH, the stirring speed was 600 RPM

and the air flow was 1 vvm. Minimal medium with 20

g/l glucose was used to feed the bioreactors at a con-

stant dilution rate of 0.1 h-1. The volume was kept con-

stant at 1.5 l by controlling the level of broth inside the

vessel. Steady state conditions were assumed after at

least 5 residence times and CO2 and biomass concentra-

tions were constant.

Off-gas analysis

For both cultivation modes (batch and continuous), off-

gas passed through a condenser to minimize evaporation

loss during the fermentation and filter sterilized before

carbon dioxide and oxygen were quantified in a Brüel &

Kjær 1308 acoustic gas analyser (Brüel & Kjær, Nærum,

Denmark).

Biomass determination

Samples were maintained at 4°C post sampling and the

biomass concentration was monitored by optical density

at 600 nm (OD600 nm) and dry cell weight. OD600 nm

was measured throughout all the fermentation in a Shi-

madzu UV mini 1240 spectrophotometer (Shimadzu

Europe GmbH, Duidberg, Germany). The samples were

diluted with distilled water in order to obtain measure-

ments in the linear range of 0 to 0.6 OD600 nm. Dry cell

weight was determined by filtering a known volume of

fermentation broth with pre-dried 0.45 μm pore-size

nitrocellulose filters (Sartorius AG, Geottingen, Ger-

many), which were subsequently washed with a 3× sam-

ple volume 0.9% NaCl saline solution. The filters were

then dried for 20 minutes at 150 W in a microwave

oven and kept in a desiccator while cooling for at least

2 h. The filters where finally weighted using an analyti-

cal balance.

Glucose and external metabolites analysis

The fermentation samples were immediately filtered

using a 0.45 μm pore-size syringe-filter (Sartorius AG,

Geottingen, Germany) and stored at -20°C until further

analysis. Glucose, ethanol, glycerol, pyruvate, succinate

and acetate were determined by high performance liquid

chromatography (HPLC) analysis using an Aminex

HPX-87H ion-exclusion column (Bio-Rad Laboratories,

Hercules, CA). The column temperature was kept at 60°

C and the elution was performed using 5 mM H2SO4

with flow rate of 0.6 ml/min. Metabolites detection was

performed by a RI-101 differential refractometer detec-

tor (Shodex) and an UVD340U absorbance detector

(Dionex) set at 210 nm.

Extracellular vanillin, vanillin b-D-glucoside (VG), pro-

tocatechuic acid (PAC), protocatechuic aldehyde (PAL)

and vanillic acid were quantified by high performance

liquid chromatography (HPLC) using Agilent 1100 series

equipment with a Luna C18 column (Phenomenex). A

gradient of methanol (+ 1% tetra-fluoroacetic acid) and

water (+ 1% tetra-fluoroacetic acid) at a flow rate of 0.3

ml/min was used as mobile phase. The column was kept

at 300 bar and 30°C. Metabolite detection was per-

formed using a UV diode-array detector set at 280 and

310 nm.
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