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Abstract

Recent work on generative text modeling has

found that variational autoencoders (VAE) with

LSTM decoders perform worse than simpler

LSTM language models (Bowman et al., 2015).

This negative result is so far poorly understood,

but has been attributed to the propensity of

LSTM decoders to ignore conditioning informa-

tion from the encoder. In this paper, we ex-

periment with a new type of decoder for VAE:

a dilated CNN. By changing the decoder’s di-

lation architecture, we control the size of con-

text from previously generated words. In ex-

periments, we find that there is a trade-off be-

tween contextual capacity of the decoder and ef-

fective use of encoding information. We show

that when carefully managed, VAEs can outper-

form LSTM language models. We demonstrate

perplexity gains on two datasets, representing the

first positive language modeling result with VAE.

Further, we conduct an in-depth investigation of

the use of VAE (with our new decoding archi-

tecture) for semi-supervised and unsupervised la-

beling tasks, demonstrating gains over several

strong baselines.

1. Introduction

Generative models play an important role in NLP, both in

their use as language models and because of their ability

to effectively learn from unlabeled data. By parameterz-

ing generative models using neural nets, recent work has

proposed model classes that are particularly expressive and

can pontentially model a wide range of phenomena in lan-

guage and other modalities. We focus on a specific instance

1Carnegie Mellon University. Correspondence to: Zichao
Yang <zichaoy@cs.cmu.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

of this class: the variational autoencoder1 (VAE) (Kingma

& Welling, 2013).

The generative story behind the VAE (to be described in

detail in the next section) is simple: First, a continuous la-

tent representation is sampled from a multivariate Gaus-

sian. Then, an output is sampled from a distribution pa-

rameterized by a neural decoder, conditioned on the latent

representation. The latent representation (treated as a latent

variable during training) is intended to give the model more

expressive capacity when compared with simpler neural

generative models–for example, conditional language mod-

els. The choice of decoding architecture and final output

distribution, which connect the latent representation to out-

put, depends on the kind of data being modeled. The VAE

owes its name to an accompanying variational technique

(Kingma & Welling, 2013) that has been successfully used

to train such models on image data (Gregor et al., 2015;

Salimans et al., 2015; Yan et al., 2016).

The application of VAEs to text data has been far less suc-

cessful (Bowman et al., 2015; Miao et al., 2016). The ob-

vious choice for decoding architecture for a textual VAE

is an LSTM, a typical workhorse in NLP. However, Bow-

man et al. (2015) found that using an LSTM-VAE for text

modeling yields higher perplexity on held-out data than us-

ing an LSTM language model. In particular, they observe

that the LSTM decoder in VAE does not make effective

use of the latent representation during training and, as a re-

sult, VAE collapses into a simple language model. Related

work (Miao et al., 2016; Larochelle & Lauly, 2012; Mnih

& Gregor, 2014) has used simpler decoders that model text

as a bag of words. Their results indicate better use of la-

tent representations, but their decoders cannot effectively

model longer-range dependencies in text and thus under-

perform in terms of final perplexity.

Motivated by these observations, we hypothesize that the

contextual capacity of the decoder plays an important role

in whether VAEs effectively condition on the latent repre-

sentation when trained on text data. We propose the use

of a dilated CNN as a decoder in VAE, inspired by the re-

cent success of using CNNs for audio, image and language

1The name VAE is often used to refer to both a model class
and an associated inference procedure.
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modeling (van den Oord et al., 2016a; Kalchbrenner et al.,

2016a; van den Oord et al., 2016b). In contrast with prior

work where extremely large CNNs are used, we exploit the

dilated CNN for its flexibility in varying the amount of con-

ditioning context. In the two extremes, depending on the

choice of dilation, the CNN decoder can reproduce a sim-

ple MLP using a bags of words representation of text, or

can reproduce the long-range dependence of recurrent ar-

chitectures (like an LSTM) by conditioning on the entire

history. Thus, by choosing a dilated CNN as the decoder,

we are able to conduct experiments where we vary contex-

tual capacity, finding a sweet spot where the decoder can

accurately model text but does not yet overpower the latent

representation.

We demonstrate that when this trade-off is correctly man-

aged, textual VAEs can perform substantially better than

simple LSTM language models, a finding consistent with

recent image modeling experiments using variational lossy

autoencoders (Chen et al., 2016). We go on to show that

VAEs with carefully selected CNN decoders can be quite

effective for semi-supervised classification and unsuper-

vised clustering, outperforming several strong baselines

(from (Dai & Le, 2015)) on both text categorization and

sentiment analysis.

Our contributions are as follows: First, we propose the use

of a dilated CNN as a new decoder for VAE. We then empir-

ically evaluate several dilation architectures with different

capacities, finding that reduced contextual capacity leads

to stronger reliance on latent representations. By picking a

decoder with suitable contextual capacity, we find our VAE

performs better than LSTM language models on two data

sets. We also explore the use of dilated CNN VAEs for

semi-supervised classification and find they perform better

than strong baselines from (Dai & Le, 2015). Finally, we

verify that the same framework can be used effectively for

unsupervised clustering.

2. Model

In this section, we begin by providing background on the

use of variational autoencoders for language modeling.

Then we introduce the dilated CNN architecture that we

will use as a new decoder for VAE in experiments. Finally,

we describe the generalization of VAE that we will use to

conduct experiments on semi-supervised classification.

2.1. Background on Variational Autoencoders

Neural language models (Mikolov et al., 2010) typically

generate each token xt conditioned on the entire history of

previously generated tokens:

p(x) =
∏
t

p(xt|x1, x2, ..., xt−1). (1)

State-of-the-art language models often parametrize these

conditional probabilities using RNNs, which compute an

evolving hidden state over the text which is used to predict

each xt. This approach, though effective in modeling text,

does not explicitly model variance in higher-level proper-

ties of entire utterances (e.g. topic or style) and thus can

have difficulty with heterogeneous datasets.

Bowman et al. (2015) propose a different approach to gen-

erative text modeling inspired by related work on vision

(Kingma & Welling, 2013). Instead of directly modeling

the joint probability p(x) as in Equation 1, we specify a

generative process for which p(x) is a marginal distribu-

tion. Specifically, we first generate a continuous latent

vector representation z from a multivariate Gaussian prior

pθ(z), and then generate the text sequence x from a con-

ditional distribution pθ(x|z) parameterized using a neural

net (often called the generation model or decoder). Because

this model incorporates a latent variable that modulates the

entire generation of each whole utterance, it may be better

able to capture high-level sources of variation in the data.

Specifically, in contrast with Equation 1, this generating

distribution conditions on latent vector representation z:

pθ(x|z) =
∏
t

pθ(xt|x1, x2, ..., xt−1, z). (2)

To estimate model parameters θ we would ideally

like to maximize the marginal probability pθ(x) =∫
pθ(z)pθ(x|z)dz. However, computing this marginal is

intractable for many decoder choices. Thus, the follow-

ing variational lower bound is often used as an objective

(Kingma & Welling, 2013):

log pθ(x) = − log

∫
pθ(z)pθ(x|z)dz

≥ Eqφ(z|x)[log pθ(x|z)]− KL(qφ(z|x)||pθ(z)).

Here, qφ(z|x) is an approximation to the true posterior (of-

ten called the recognition model or encoder) and is param-

eterized by φ. Like the decoder, we have a choice of neu-

ral architecture to parameterize the encoder. However, un-

like the decoder, the choice of encoder does not change the

model class – it only changes the variational approximation

used in training, which is a function of both the model pa-

rameters θ and the approximation parameters φ. Training

seeks to optimize these parameters jointly using stochastic

gradient ascent. A final wrinkle of the training procedure

involves a stochastic approximation to the gradients of the

variational objective (which is itself intractable). We omit

details here, noting only that the final distribution of the

posterior approximation qφ(z|x) is typically assumed to be

Gaussian so that a re-parametrization trick can be used, and

refer readers to (Kingma & Welling, 2013).
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2.2. Training Collapse with Textual VAEs

Together, this combination of generative model and varia-

tional inference procedure are often referred to as a vari-

ational autoencoder (VAE). We can also view the VAE

as a regularized version of the autoencoder. Note, how-

ever, that while VAEs are valid probabilistic models whose

likelihood can be evaluated on held-out data, autoen-

coders are not valid models. If only the first term of

the VAE variational bound Eqφ(z|x)[log pθ(x|z)] is used

as an objective, the variance of the posterior probability

qφ(z|x) will become small and the training procedure re-

duces to an autoencoder. It is the KL-divergence term,

KL(qφ(z|x)||pθ(z)), that discourages the VAE memoriz-

ing each x as a single latent point.

While the KL term is critical for training VAEs, histor-

ically, instability on text has been evidenced by the KL

term becoming vanishingly small during training, as ob-

served by Bowman et al. (2015). When the training proce-

dure collapses in this way, the result is an encoder that has

duplicated the Gaussian prior (instead of a more interest-

ing posterior), a decoder that completely ignores the latent

variable z, and a learned model that reduces to a simpler

language model. We hypothesize that this collapse con-

dition is related to the contextual capacity of the decoder

architecture. The choice encoder and decoder depends on

the type of data. For images, these are typically MLPs or

CNNs. LSTMs have been used for text, but have resulted in

training collapse as discussed above (Bowman et al., 2015).

Here, we propose to use a dilated CNN as the decoder in-

stead. In one extreme, when the effective contextual width

of a CNN is very large, it resembles the behavior of LSTM.

When the width is very small, it behaves like a bag-of-

words model. The architectural flexibility of dilated CNNs

allows us to change the contextual capacity and conduct

experiments to validate our hypothesis: decoder contextual

capacity and effective use of encoding information are di-

rectly related. We next describe the details of our decoder.

2.3. Dilated Convolutional Decoders

The typical approach to using CNNs used for text genera-

tion (Kalchbrenner et al., 2016a) is similar to that used for

images (Krizhevsky et al., 2012; He et al., 2016), but with

the convolution applied in one dimension. We take this

approach here in defining our decoder.

One dimensional convolution: For a CNN to serve as

a decoder for text, generation of xt must only condition

on past tokens x<t. Applying the traditional convolution

will break this assumption and use tokens x≥t as inputs

to predict xt. In our decoder, we avoid this by simply

shifting the input by several slots (van den Oord et al.,

2016b). With a convolution with filter size of k and using

n layers, our effective filter size (the number of past tokens

LSTM zLSTM LSTM

tastes really great

LSTM
encoder

CNN

Decoder

tastes really great

(a) VAE training graph using a dilated CNN decoder.
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tastes really great

input
embedding

dilation=1
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z

(b) Digram of dilated CNN decoder.

Figure 1: Our training and model architectures for textual

VAE using a dilated CNN decoder.

to condition to in predicting xt) would be (k− 1)× n+ 1.

Hence, the filter size would grow linearly with the depth of

the network.

Dilation: Dilated convolution (Yu & Koltun, 2015) was

introduced to greatly increase the effective receptive field

size without increasing the computational cost. With

dilation d, the convolution is applied so that d − 1 inputs

are skipped each step. Causal convolution can be seen

a special case with d = 1. With dilation, the effective

receptive size grows exponentially with network depth. In

Figure 1b, we show dilation of sizes of 1 and 2 in the first

and second layer, respectively. Suppose the dilation size in

the i-th layer is di and we use the same filter size k in all

layers, then the effective filter size is (k − 1)
∑

i di + 1.

The dilations are typically set to double every layer

di+1 = 2di, so the effective receptive field size can grow

exponentially. Hence, the contextual capacity of a CNN

can be controlled across a greater range by manipulating

the filter size, dilation size and network depth. We use this

approach in experiments.

Residual connection: We use residual con-

nection (He et al., 2016) in the decoder

ReLU 1x1, 512

ReLU 1xk, 512

conv

ReLU 1x1, 1024

+

conv

conv

to speed up convergence and enable

training of deeper models. We use

a residual block (shown to the right)

similar to that of (Kalchbrenner et al.,

2016a). We use three convolutional

layers with filter size 1×1, 1×k, 1×1,

respectively, and ReLU activation be-
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tween convolutional layers.

Overall architecture: Our VAE architecture is shown in

Figure 1a. We use LSTM as the encoder to get the pos-

terior probability q(z|x), which we assume to be diagonal

Gaussian. We parametrize the mean µ and variance σ with

LSTM output. We sample z from q(z|x), the decoder is

conditioned on the sample by concatenating z with every

word embedding of the decoder input.

2.4. Semi-supervised VAE

In addition to conducting language modeling experiments,

we will also conduct experiments on semi-supervised clas-

sification of text using our proposed decoder. In this sec-

tion, we briefly review semi-supervised VAEs of (Kingma

et al., 2014) that incorporate discrete labels as additional

variables. Given the labeled set (x, y) ∼ DL and the unla-

beled set x ∼ DU , (Kingma et al., 2014) proposed a model

whose latent representation contains continuous vector z

and discrete label y:

p(x,y, z) = p(y)p(z)p(x|y, z). (3)

The semi-supervised VAE fits a discriminative network

q(y|x), an inference network q(z|x,y) and a generative

network p(x|y, z) jointly as part of optimizing a variational

lower bound similar that of basic VAE. For labeled data

(x,y), this bound is:

log p(x,y) ≥Eq(z|x,y)[log p(x|y, z)]

− KL(q(z|x,y)||p(z)) + log p(y)

=L(x,y) + log p(y).

For unlabeled data x, the label is treated as a latent variable,
yielding:

log p(x) ≥U(x)

=Eq(y|x)

[

Eq(z|x,y)[log p(x|y, z)]

− KL(q(z|x,y)||p(z)) + log p(y)− log q(y|x)
]

=
∑

y

q(y|x)L(x,y)− KL(q(y|x)||p(y)).

Combining the labeled and unlabeled data terms, we have

the overall objective as:

J =E(x,y)∼DL
[L(x,y)] + Ex∼DU

[U(x)]

+ αE(x,y)∼DL
[log q(y|x)],

where α controls the trade off between generative and dis-

criminative terms.

Gumbel-softmax: Jang et al. (2016); Maddison et al.

(2016) propose a continuous approximation to sampling

from a categorical distribution. Let u be a categorical dis-

tribution with probabilities π1, π2, ..., πc. Samples from u

can be approximated using:

yi =
exp((log(πi) + gi)/τ)∑c

j=1 exp((log(πj) + gj)/τ)
, (4)

where gi follows Gumbel(0, 1). The approximation is accu-

rate when τ → 0 and smooth when τ > 0. In experiments,

we use Gumbel-Softmax to approximate the samples from

p(y|x) to reduce the computational cost. As a result, we

can directly back propagate the gradients of U(x) to the

discriminator network. We anneal τ so that sample vari-

ance is small when training starts and then gradually de-

crease τ .

Unsupervised clustering: In this section we adapt the

same framework for unsupervised clustering. We directly

minimize the objective U(x), which is consisted of two

parts: reconstruction loss and KL regularization on q(y|x).
The first part encourages the model to assign x to label y

such that the reconstruction loss is low. We find that the

model can easily get stuck in two local optimum: the KL

term is very small and q(y|x) is close to uniform distribu-

tion or the KL term is very large and all samples collapse

to one class. In order to make the model more robust, we

modify the KL term by:

KLy = max(γ,KL(q(y|x)|p(y)). (5)

That is, we only minimize the KL term when it is large

enough.

3. Experiments

3.1. Data sets

Since we would like to investigate VAEs for language

modeling and semi-supervised classification, the data sets

should be suitable for both purposes. We use two large

scale document classification data sets: Yahoo Answer and

Yelp15 review, representing topic classification and senti-

ment classification data sets respectively (Tang et al., 2015;

Yang et al., 2016; Zhang et al., 2015). The original data sets

contain millions of samples, of which we sample 100k as

training and 10k as validation and test from the respective

partitions. The detailed statistics of both data sets are in Ta-

ble 1. Yahoo Answer contains 10 topics including Society

& Culture, Science & Mathematics etc. Yelp15 contains 5

level of rating, with higher rating better.

Data classes documents average #w vocabulary

Yahoo 10 100k 78 200k
Yelp15 5 100k 96 90k

Table 1: Data statistics
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Model Size NLL (KL) PPL

LSTM-LM < i 334.9 66.2
LSTM-VAE∗∗ < i 342.1 (0.0) 72.5
LSTM-VAE∗∗ + init < i 339.2 (0.0) 69.9

SCNN-LM 15 345.3 75.5
SCNN-VAE 15 337.8 (13.3) 68.7
SCNN-VAE + init 15 335.9 (13.9) 67.0

MCNN-LM 63 338.3 69.1
MCNN-VAE 63 336.2 (11.8) 67.3
MCNN-VAE + init 63 334.6 (12.6) 66.0

LCNN-LM 125 335.4 66.6
LCNN-VAE 125 333.9 (6.7) 65.4
LCNN-VAE + init 125 332.1 (10.0) 63.9

VLCNN-LM 187 336.5 67.6
VLCNN-VAE 187 336.5 (0.7) 67.6
VLCNN-VAE + init 187 335.8 (3.8) 67.0

(a) Yahoo

Model Size NLL (KL) PPL

LSTM-LM < i 362.7 42.6
LSTM-VAE∗∗ < i 372.2 (0.3) 47.0
LSTM-VAE∗∗ + init < i 368.9 (4.7) 46.4

SCNN-LM 15 371.2 46.6
SCNN-VAE 15 365.6 (9.4) 43.9
SCNN-VAE + init 15 363.7 (10.3) 43.1

MCNN-LM 63 366.5 44.3
MCNN-VAE 63 363.0 (6.9) 42.8
MCNN-VAE + init 63 360.7 (9.1) 41.8

LCNN-LM 125 363.5 43.0
LCNN-VAE 125 361.9 (6.4) 42.3
LCNN-VAE + init 125 359.1 (7.6) 41.1

VLCNN-LM 187 364.8 43.7
VLCNN-VAE 187 364.3 (2.7) 43.4
VLCNN-VAE + init 187 364.7 (2.2) 43.5

(b) Yelp

Table 2: Language modeling results on the test set. ∗∗ is from (Bowman et al., 2015). We report negative log likelihood

(NLL) and perplexity (PPL) on the test set. The KL component of NLL is given in parentheses. Size indicates the effective

filter size. VAE + init indicates pretraining of only the encoder using an LSTM LM.

3.2. Model configurations and Training details

We use an LSTM as an encoder for VAE and explore

LSTMs and CNNs as decoders. For CNNs, we explore sev-

eral different configurations. We set the convolution filter

size to be 3 and gradually increase the depth and dilation

from [1, 2, 4], [1, 2, 4, 8, 16] to [1, 2, 4, 8, 16, 1, 2, 4, 8,

16]. They represent small, medium and large model and we

name them as SCNN, MCNN and LCNN. We also explore

a very large model with dilations [1, 2, 4, 8, 16, 1, 2, 4, 8,

16, 1, 2, 4, 8, 16] and name it as VLCNN. The effective

filter size are 15, 63, 125 and 187 respectively. We use the

last hidden state of the encoder LSTM and feed it though an

MLP to get the mean and variance of q(z|x), from which

we sample z and then feed it through an MLP to get the

starting state of decoder. For the LSTM decoder, we fol-

low (Bowman et al., 2015) to use it as the initial state of

LSTM and feed it to every step of LSTM. For the CNN de-

coder, we concatenate it with the word embedding of every

decoder input.

The architecture of the Semi-supervised VAE basically fol-

lows that of the VAE. We feed the last hidden state of the

encoder LSTM through a two layer MLP then a softmax

to get q(y|x). We use Gumbel-softmax to sample y from

q(y|x). We then concatenate y with the last hidden state of

encoder LSTM and feed them throught an MLP to get the

mean and variance of q(z|y,x). y and z together are used

as the starting state of the decoder.

We use a vocabulary size of 20k for both data sets and set

the word embedding dimension to be 512. The LSTM di-

mension is 1024. The number of channels for convolutions

in CNN decoders is 512 internally and 1024 externally, as

shown in Section 2.3. We select the dimension of z from

[32, 64]. We find our model is not sensitive to this parame-

ter.

We use Adam (Kingma & Ba, 2014) to optimize all models

and the learning rate is selected from [2e-3, 1e-3, 7.5e-4]

and β1 is selected from [0.5, 0.9]. Empirically, we find

learning rate 1e-3 and β1 = 0.5 to perform the best. We

select drop out ratio of LSTMs (both encoder and decoder)

from [0.3, 0.5]. Following (Bowman et al., 2015), we also

use drop word for the LSTM decoder, the drop word ratio

is selected from [0, 0.3, 0.5, 0.7]. For the CNN decoder,

we use a drop out ratio of 0.1 at each layer. We do not

use drop word for CNN decoders. We use batch size of

32 and all model are trained for 40 epochs. We start to

half the learning rate every 2 epochs after epoch 30. Fol-

lowing (Bowman et al., 2015), we use KL cost annealing

strategy. We set the initial weight of KL cost term to be

0.01 and increase it linearly until a given iteration T . We

treat T as a hyper parameter and select it from [10k, 40k,

80k].

3.3. Language modeling results

The results for language modeling are shown in Table 2.

We report the negative log likelihood (NLL) and perplexity

(PPL) of the test set. For the NLL of VAEs, we decompose

it into reconstruction loss and KL divergence and report the

KL divergence in the parenthesis. To better visualize these

results, we plot the results of Yahoo data set (Table 2a) in

Figure 2.
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N
L
L

LSTM SCNN MCNN LCNN VLCNN

LM VAE VAE + init KL

Figure 2: NLL decomposition of Table 2a. Each group con-

sists of three bars, representing LM, VAE and VAE+init.

For VAE, we decompose the loss into reconstruction loss

and KL divergence, shown in blue and red respectively. We

subtract all loss values with 300 for better visualization.

We first look at the LM results for Yahoo data set. As

we gradually increase the effective filter size of CNN from

SCNN, MCNN to LCNN, the NLL decreases from 345.3,

338.3 to 335.4. The NLL of LCNN-LM is very close to

the NLL of LSTM-LM 334.9. But VLCNN-LM is a lit-

tle bit worse than LCNN-LM, this indicates a little bit of

over-fitting.

We can see that LSTM-VAE is worse than LSTM-LM in

terms of NLL and the KL term is nearly zero, which verifies

the finding of (Bowman et al., 2015). When we use CNNs

as the decoders for VAEs, we can see improvement over

pure CNN LMs. For SCNN, MCNN and LCNN, the VAE

results improve over LM results from 345.3 to 337.8, 338.3

to 336.2, and 335.4 to 333.9 respectively. The improve-

ment is big for small models and gradually decreases as we

increase the decoder model contextual capacity. When the

model is as large as VLCNN, the improvement diminishes

and the VAE result is almost the same with LM result. This

is also reflected in the KL term, SCNN-VAE has the largest

KL of 13.3 and VLCNN-VAE has the smallest KL of 0.7.

When LCNN is used as the decoder, we obtain an opti-

mal trade off between using contextual information and la-

tent representation. LCNN-VAE achieves a NLL of 333.9,

which improves over LSTM-LM with NLL of 334.9.

We find that if we initialize the parameters of LSTM en-

coder with parameters of LSTM language model, we can

improve the VAE results further. This indicates better

encoder model is also a key factor for VAEs to work

well. Combined with encoder initialization, LCNN-VAE

improves over LSTM-LM from 334.9 to 332.1 in NLL and

from 66.2 to 63.9 in PPL. Similar results for the sentiment

data set are shown in Table 2b. LCNN-VAE improves over

LSTM-LM from 362.7 to 359.1 in NLL and from 42.6 to

41.1 in PPL.

(a) Yahoo (b) Yelp

Figure 3: Visualizations of learned latent representations.

Latent representation visualization: In order to visual-

ize the latent representation, we set the dimension of z to

be 2 and plot the mean of posterior probability q(z|x), as

shown in Figure 3. We can see distinct different character-

istics of topic and sentiment representation. In Figure 3a,

we can see that documents of different topics fall into dif-

ferent clusters, while in Figure 3b, documents of different

ratings form a continuum, they lie continuously on the x-

axis as the review rating increases.

Model ACCU NLL (KL)

LSTM-VAE-Semi 51.9 345.5 (9.3)
SCNN-VAE-Semi 65.5 335.7 (10.4)
MCNN-VAE-Semi 64.6 332.8 (7.2)
LCNN-VAE-Semi 57.2 331.3 (2.7)

Table 3: Semi-supervised VAE ablation results on Yahoo.

We report both the NLL and classification accuracy of the

test data. Accuracy is in percentage. Number of labeled

samples is fixed to be 500.

3.4. Semi-supervised VAE results

Motivated by the success of VAEs for language modeling,

we continue to explore VAEs for semi-supervised learning.

Following that of (Kingma et al., 2014), we set the number

of labeled samples to be 100, 500, 1000 and 2000 respec-

tively.

Ablation Study: At first, we would like to explore the

effect of different decoders for semi-supervised classifica-

tion. We fix the number of labeled samples to be 500 and

report both classification accuracy and NLL of the test set

of Yahoo data set in Table. 5. We can see that SCNN-VAE-

Semi has the best classification accuracy of 65.5. The ac-

curacy decreases as we gradually increase the decoder con-

textual capacity. On the other hand, LCNN-VAE-Semi has

the best NLL result. This classification accuracy and NLL

trade off once again verifies our conjecture: with small con-

textual window size, the decoder is forced to use the en-

coder information, hence the latent representation is better
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Model 100 500 1000 2000

LSTM 10.7 11.9 14.3 23.1
LA-LSTM (Dai & Le, 2015) 20.8 42.2 50.4 54.7
LM-LSTM (Dai & Le, 2015) 46.9 61.3 63.9 65.6

SCNN-VAE-Semi 55.4 65.6 66.0 65.8
SCNN-VAE-Semi+init 63.8 65.4 66.6 67.4

(a) Yahoo

Model 100 500 1000 2000

LSTM 22.6 25.4 27.9 29.9
LA-LSTM (Dai & Le, 2015) 35.2 46.4 49.8 52.2
LM-LSTM (Dai & Le, 2015) 46.9 54.1 57.2 57.7

SCNN-VAE-Semi 51.4 53.5 55.3 57.4
SCNN-VAE-Semi+init 52.6 57.3 58.9 59.8

(b) Yelp

Table 4: Semi-supervised VAE results on the test set, in percentage. LA-LSTM and LM-LSTM come from (Dai & Le,

2015), they denotes the LSTM is initialized with a sequence autoencoder and a language model.

learned.

Comparing the NLL results of Table 5 with that of Ta-

ble 2a, we can see the NLL improves. The NLL of semi-

supervised VAE improves over simple VAE from 337.8 to

335.7 for SCNN, from 336.2 to 332.8 for MCNN, and from

333.9 to 332.8 for LCNN. The improvement mainly comes

from the KL divergence part, this indicates that better la-

tent representations decrease the KL divergence, further

improving the VAE results.

Comparison with related methods: We compare Semi-

supervised VAE with the methods from (Dai & Le, 2015),

which represent the previous state-of-the-art for semi-

supervised sequence learning. Dai & Le (2015) pre-trains

a classifier by initializing the parameters of a classifier with

that of a language model or a sequence autoencoder. They

find it improves the classification accuracy significantly.

Since SCNN-VAE-Semi performs the best according to Ta-

ble 5, we fix the decoder to be SCNN in this part. The

detailed comparison is in Table 4. We can see that semi-

supervised VAE performs better than LM-LSTM and LA-

LSTM from (Dai & Le, 2015). We also initialize the en-

coder of the VAE with parameters from LM and find classi-

fication accuracy further improves. We also see the advan-

tage of SCNN-VAE-Semi over LM-LSTM is greater when

the number of labeled samples is smaller. The advantage

decreases as we increase the number of labeled samples.

When we set the number of labeled samples to be 25k,

the SCNN-VAE-Semi achieves an accuracy of 70.4, which

is similar to LM-LSTM with an accuracy of 70.5. Also,

SCNN-VAE-Semi performs better on Yahoo data set than

Yelp data set. For Yelp, SCNN-VAE-Semi is a little bit

worse than LM-LSTM if the number of labeled samples is

greater than 100, but becomes better when we initialize the

encoder. Figure 3b explains this observation. It shows the

documents are coupled together and are harder to classify.

Also, the latent representation contains information other

than sentiment, which may not be useful for classification.

3.5. Unsupervised clustering results

We also explored using the same framework for unsuper-

vised clustering. We compare with the baselines that ex-

Model ACCU

LSTM + GMM 25.8

SCNN-VAE + GMM 56.6

SCNN-VAE + init + GMM 57.0

SCNN-VAE-Unsup + init 59.9

Table 5: Unsupervised clustering results for Yahoo data set.

We run each model 10 times and report the best results.

LSTM+GMM means we extract the features from LSTM

language model. SCNN-VAE + GMM means we use the

mean of q(z|x) as the feature. SCNN-VAE + init + GMM

means SCNN-VAE is trained with encoder initialization.

tract the feature with existing models and then run Gaussian

Mixture Model (GMM) on these features. We find empir-

ically that simply using the features does not perform well

since the features are high dimensional. We run a PCA on

these features, the dimension of PCA is selected from [8,

16, 32]. Since GMM can easily get stuck in poor local op-

timum, we run each model ten times and report the best

result. We find directly optimizing U(x) does not perform

well for unsupervised clustering and we need to initialize

the encoder with LSTM language model. The model only

works well for Yahoo data set. This is potentially because

Figure 3b shows that sentiment latent representations does

not fall into clusters. γ in Equation 5 is a sensitive param-

eter, we select it from the range between 0.5 and 1.5 with

an interval of 0.1. We use the following evaluation pro-

tocol (Makhzani et al., 2015): after we finish training, for

cluster i, we find out the validation sample xn from clus-

ter i that has the best q(yi|x) and assign the label of xn

to all samples in cluster i. We then compute the test ac-

curacy based on this assignment. The detailed results are

in Table 5. We can see SCNN-VAE-Unsup + init performs

better than other baselines. LSTM+GMM performs very

bad probably because the feature dimension is 1024 and is

too high for GMM, even though we already used PCA to

reduce the dimension.

Conditional text generation With the semi-supervised

VAE, we are able to generate text conditional on the la-

bel. Due to space limitation, we only show one example of
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1 star the food was good but the service was horrible . took forever to get our food . we had to ask
twice for our check after we got our food . will not return .

2 star the food was good , but the service was terrible . took forever to get someone to take our drink
order . had to ask 3 times to get the check . food was ok , nothing to write about .

3 star came here for the first time last night . food was good . service was a little slow . food was just
ok .

4 star food was good , service was a little slow , but the food was pretty good . i had the grilled chicken
sandwich and it was really good . will definitely be back !

5 star food was very good , service was fast and friendly . food was very good as well . will be back !

Table 6: Text generated by conditioning on sentiment label.

generated reviews conditioning on review rating in Table 6.

For each group of generated text, we fix z and vary the la-

bel y, while picking x via beam search with a beam size of

10.

4. Related work

Variational inference via the re-parameterization trick was

initially proposed by (Kingma & Welling, 2013; Rezende

et al., 2014) and since then, VAE has been widely adopted

as generative model for images (Gregor et al., 2015; Yan

et al., 2016; Salimans et al., 2015; Gregor et al., 2016; Hu

et al., 2017b).

Our work is in line with previous works on combining

variational inferences with text modeling (Bowman et al.,

2015; Miao et al., 2016; Serban et al., 2016; Zhang et al.,

2016; Hu et al., 2017a). (Bowman et al., 2015) is the first

work to combine VAE with language model and they use

LSTM as the decoder and find some negative results. On

the other hand, (Miao et al., 2016) models text as bag of

words, though improvement has been found, the model can

not be used to generate text. Our work fills the gaps be-

tween them. (Serban et al., 2016; Zhang et al., 2016) ap-

plies variational inference to dialogue modeling and ma-

chine translation and found some improvement in terms of

generated text quality, but no language modeling results are

reported. (Chung et al., 2015; Bayer & Osendorfer, 2014;

Fraccaro et al., 2016) embedded variational units in every

step of a RNN, which is different from our model in using

global latent variables to learn high level features.

Our use of CNN as decoder is inspired by recent success of

PixelCNN model for images (van den Oord et al., 2016b),

WaveNet for audios (van den Oord et al., 2016a), Video

Pixel Network for video modeling (Kalchbrenner et al.,

2016b) and ByteNet for machine translation (Kalchbrenner

et al., 2016a). But in contrast to those works showing using

a very deep architecture leads to better performance, CNN

as decoder is used in our model to control the contextual

capacity, leading to better performance.

Our work is closed related the recently proposed variational

lossy autoencoder (Chen et al., 2016) which is used to pre-

dict image pixels. They find that conditioning on a smaller

window of a pixels leads to better results with VAE, which

is similar to our finding. Much (Rezende & Mohamed,

2015; Kingma et al., 2016; Chen et al., 2016) has been done

to come up more powerful prior/posterior distribution rep-

resentations with techniques such as normalizing flows. We

treat this as one of our future works. This work is largely

orthogonal and could be potentially combined with a more

effective choice of decoder to yield additional gains.

There is much previous work exploring unsupervised sen-

tence encodings, for example skip-thought vectors (Kiros

et al., 2015), paragraph vectors (Le & Mikolov, 2014), and

sequence autoencoders (Dai & Le, 2015). (Dai & Le, 2015)

applies a pretrained model to semi-supervised classification

and find significant gains, we use this as the baseline for our

semi-supervised VAE.

5. Conclusion

We showed that by controlling the decoder’s contextual ca-

pacity in VAE, we can improve performance on both lan-

guage modeling and semi-supervised classification tasks by

preventing a degenerate collapse of the training procedure.

These results indicate that more carefully characterizing

decoder capacity and understanding how it relates to com-

mon variational training procedures may represent impor-

tant avenues for unlocking future unsupervised problems.
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