SCISPACE
 formerly Typeset

〇 Open access • Posted Content • DOI:10.1101/006726
Improved vectors and genome-wide libraries for CRISPR screening - Source link
Neville E. Sanjana, Ophir Shalem, Feng Zhang
Institutions: Broad Institute
Published on: 28 Jun 2014 - bioRxiv (Cold Spring Harbor Labs Journals)
Topics: CRISPR and Cas9

Related papers:

- Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells
- Multiplex Genome Engineering Using CRISPR/Cas Systems
- Identification and characterization of essential genes in the human genome
- Genome engineering using the CRISPR-Cas9 system
- RNA-Guided Human Genome Engineering via Cas9

Share this paper: 9 in \square
View more about this paper here: https://typeset.io/papers/improved-vectors-and-genome-wide-libraries-for-crispr1t926isiz7

Improved vectors and genome-wide libraries for CRISPR screening

Neville E. Sanjana ${ }^{1,2,3,4,5}$, Ophir Shalem ${ }^{1,2,3,4,5}$ and Feng Zhang ${ }^{1,2,3,4}$

${ }^{1}$ Broad Institute of MIT and Harvard
7 Cambridge Center
Cambridge, MA 02142, USA
${ }^{2}$ McGovern Institute for Brain Research
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
${ }^{3}$ Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
${ }^{4}$ Department of Biological Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139 , USA
${ }^{5}$ These authors contributed equally to this work. email: zhang@broadinstitute.org

Genome-wide, targeted loss-of-function pooled screens using the CRISPR (clustered regularly interspaced short palindrome repeats)-associated nuclease Cas9 in human and mouse cells provide an alternative screening system to RNA interference (RNAi) and have been used to reveal new mechanisms in diverse biological models ${ }^{1-4}$. Previously, we used a Genome-scale CRISPR Knock-Out (GeCKO) library to identify loss-of-function mutations conferring vemurafenib resistance in a melanoma model ${ }^{1}$. However, initial lentiviral delivery systems for CRISPR screening had low viral titer or required a cell line already expressing Cas9, limiting the range of biological systems amenable to screening.

Here, we sought to improve both the lentiviral packaging and choice of guide sequences in our original GeCKO library ${ }^{1}$, where a pooled library of synthesized oligonucleotides was cloned into a lentiviral backbone containing both the Streptococcus pyogenes Cas 9 nuclease and the single guide RNA (sgRNA) scaffold. To create a new vector capable of producing higher-titer virus (lentiCRISPRv2), we made several modifications, including removal of one of the nuclear localization signals (NLS), human codon-optimization of the remaining NLS and P2A bicistronic linker sequences, and repositioning of the U6driven sgRNA cassette (Fig. 1a). These changes resulted in a ~ 10-fold increase in functional viral titer over lentiCRISPRv1 ${ }^{1}$ (Fig. 1b).

To further increase viral titer, we also cloned a two-vector system, in which Cas9 (lentiCas9-Blast) and sgRNA (lentiGuide-Puro) are delivered using separate viral vectors with distinct antibiotic selection markers (Fig. 1a). LentiGuide-Puro has a ~ 100-fold increase in functional viral titer over the original lentiCRISPRv1 (Fig. 1b). Both single and dual-vector systems mediate efficient knock-out of a genomically-integrated copy of EGFP in human cells (Supplementary Fig. 1). Whereas the dual vector system enables generation of Cas9-expressing cell lines which can be subsequently used for screens using lentiGuide-Puro, the single vector lentiCRISPRv2 may be better suited for in vivo or primary cell screening applications.

In addition to the vector improvements, we designed and synthesized new human and mouse GeCKOv2 sgRNA libraries (Supplementary Methods) with several improvements (Table 1): First, for both human and mouse libraries, to target all genes with a uniform number of sgRNAs, we selected 6 sgRNAs per gene distributed over 3-4 constitutively expressed exons. Second, to further minimize off-target genome modification, we improved the calculation of off-target scores based on specificity analysis ${ }^{5}$. Third, to inactivate microRNAs (miRNAs) which play a key role in transcriptional regulation, we added sgRNAs to direct mutations to the pre-miRNA hairpin structure ${ }^{6}$. Finally, we targeted ~ 1000 additional genes not included in the original GeCKO library.

Both libraries, mouse and human, are divided into 2 sub-libraries - containing 3 sgRNAs targeting each gene in the genome, as well as 1000 non-targeting control sgRNAs. Screens can be performed by combining both sub-libraries, yielding 6 sgRNAs per gene, for higher coverage. Alternatively, individual sub-libraries can be used in situations where cell numbers are limiting (eg. primary cells, in vivo screens). The human and mouse libraries have been cloned into lentiCRISPRv2 and into lentiGuide-Puro and deep sequenced to ensure uniform representation (Supplementary Fig. 2, 3). These new lentiCRISPR vectors and human and mouse libraries further improve the GeCKO reagents for diverse screening applications. Reagents are available to the academic community through Addgene and associated protocols, support forums, and computational tools are available via the Zhang lab website (www.genomeengineering.org).

Acknowledgements: We also would like to thank the entire Zhang Lab for support and helpful advice. N.S. is supported by a postdoctoral fellowship from the Simons Center for the Social Brain at MIT. O.S. is a Klarman Fellow of the Broad-Israel Partnership. F.Z. is supported by the NIH and NIMH through a Director's Pioneer Award (5DP1MH100706), a Transformative R01 grant (5R01-DK097768), the Keck, Merkin, Vallee,

Damon Runyon, Searle Scholars, Klingenstein, and Simons Foundations, Bob Metcalfe, and Jane Pauley.

Author Contributions

N.S., O.S., and F.Z. conceived and designed the experiments. N.S. and O.S. performed the experiments and analyzed the data. N.S., O.S., and F.Z. wrote the manuscript.

Competing Financial Interests

A patent application has been filed relating to this work, and the authors plan on making the reagents widely available to the academic community through Addgene and to provide software tools via the Zhang lab website (http://www.genome-engineering.org/). F.Z. is a scientific advisor for Editas Medicine.

References

1. Shalem, O. et al. Science 343, 84-87 (2014).
2. Wang, T., Wei, J. J., Sabatini, D. M. \& Lander, E. S. Science 343, $80-84$ (2014).
3. Koike-Yusa, H., Li, Y., Tan, E.-P., Velasco-Herrera, M. D. C. \& Yusa, K. Nat Biotechnol 32, 267-273 (2013).
4. Zhou, Y. et al. Nature 509, 487-491 (2014).
5. Hsu, P. D. et al. Nat Biotechnol 31, 827-832 (2013).
6. Zhao, Y. et al. Sci Rep 4, 3943 (2014).

Figure 1 | New lentiviral CRISPR designs produce viruses with higher functional titer.

(a) Lentiviral expression vector for Streptococcus pyogenes Cas 9 and sgRNA in the improved one vector system (lentiCRISPR v2) and the two vector system (lentiCas9Blast, lentiGuide-Puro). Psi packaging signal (psi+), rev response element (RRE), central polypurine tract (cPPT), elongation factor-1 α short promoter (EFS), FLAG octapeptide tag (FLAG), 2A self-cleaving peptide (P2A), puromycin selection marker (puro), posttranscriptional regulatory element (WPRE), blasticidin selection marker (blast), and elongation factor- 1α promoter (EF1a). (b) Relative functional viral titer of viruses made from lentiCRISPR v1 ${ }^{1}$, lentiCRISPR v2, and lentiGuide-Puro vector with a EGFPtargeting $\operatorname{sgRNA}(n=3$ independently-transfected virus batches with 3 replicate transductions per construct). HEK293FT cells were transduced with serial dilutions of virus and, after 24 hours, selected using puromycin ($1 \mathrm{ug} / \mathrm{ml}$). Puromycin-resistant cells were measured after 4 days from the start of selection using the CellTiter-Glo (Promega) luciferase assay. Relative titers were calculated using viral volumes that yielded less than 20% puromycin-resistant cells in order to minimize the number of cells with multiple infections. Numbers above each bar indicate the size of the packaged virus for each construct.

Table $1 \mid$ Comparison of new GeCKO v2 human and mouse sgRNA libraries with existing CRISPR libraries.

	Wang et al. (2014) library	Shalem et al. (2014) GeCKO v1 library	Yusa et al. (2014) library	GeCKO v2 human library	GeCKO v2 mouse library
Species	human	human	mouse	muman	

New GeCKO libraries target an increased number of genes with uniform coverage (6 sgRNAs per gene divided into sub-libraries with 3 sgRNAs per gene). The GeCKO v2 libraries also contain sgRNAs that target microRNAs and control sgRNAs that do not target in the genome. The libraries have been cloned into lentiCRISPR v2 (which includes Cas9 in the same vector) and lentiGuide-Puro ($s g$ RNA-only vector) and are available in either format.

Improved vectors and genome-wide libraries for CRISPR screening

Neville E. Sanjana ${ }^{1,2,3,4,5}$, Ophir Shalem ${ }^{1,2,3,4,5}$ and Feng Zhang ${ }^{1,2,3,4}$

${ }^{1}$ Broad Institute of MIT and Harvard
7 Cambridge Center
Cambridge, MA 02142, USA
${ }^{2}$ McGovern Institute for Brain Research
${ }^{3}$ Department of Brain and Cognitive Sciences
${ }^{4}$ Department of Biological Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
${ }^{5}$ These authors contributed equally to this work.
email: zhang@broadinstitute.org.

Supplementary Figure 1 | EGFP expression in HEK293T-EGFP cells after transduction with different lentiviral CRISPR constructs.

(a) Representative histograms of EGFP fluorescence from single transductions of HEK293TEGFP cells with lentiCRISPR v1, lentiCRISPR v2, lentiGuide-Puro or no virus. For lentiGuidePuro, HEK293T-EGFP cells had previously been transduced with lentiCas9-Blast and selected for 4 days with blasticidin. Twenty-four hours after transduction, cells were selected in puromycin and then analyzed by flow cytometry at 7 days after infection. (b) Percentage of EGFP positive cells (as given by gate drawn in a) per viral construct (error bars indicate s.e.m, $n=3$ biological replicate transductions).

Supplementary Figure 2 | Sequencing of human GeCKOv2 libraries cloned into lentiCRISPRv2 and lentiGuide-Puro.
a

b

Histograms of sgRNA representation after cloning each half-library into sgRNA vectors. Inset: Cumulative distribution of sequencing reads. The number of sequencing reads for the $10^{\text {th }}$ and $90^{\text {th }}$ sgRNA percentile is indicated by the dashed red lines and text labels. All library sequencing was performed with PCR replicates; only one replicate is shown for each half-library. (a,b) Human GeCKOv2 library A (a) and library B (b) in lentiCRISPRv2. (c,d) Human GeCKOv2 library $\mathrm{A}(\mathbf{c})$ and $\mathrm{B}(\mathbf{d})$ in lentiGuide-Puro.

Supplementary Figure 3 | Sequencing of mouse GeCKOv2 libraries cloned into lentiCRISPRv2 and lentiGuide-Puro.

Histograms of sgRNA representation after cloning each half-library into sgRNA vectors. Inset: Cumulative distribution of sequencing reads. The number of sequencing reads for the $10^{\text {th }}$ and $90^{\text {th }}$ sgRNA percentile is indicated by the dashed red lines and text labels. All library sequencing was performed with PCR replicates; only one replicate is shown for each half-library. (a,b) Mouse GeCKOv2 library A (a) and library B (b) in lentiCRISPRv2. (c,d) Mouse GeCKOv2 library $\mathrm{A}(\mathbf{c})$ and $\mathrm{B}(\mathbf{d})$ in lentiGuide-Puro.

Supplementary Methods

Lentiviral cloning and production. For determination of lentiCRISPR v1, lentiCRISPR v2, and lentiGuide-Puro viral titers, the following sgRNA targeting EGFP (with no known targets in the human genome) was cloned into all 3 lentiviral transfer vectors:
EGFP sgRNA GGGCGAGGAGCTGTTCACCG

To clone the sgRNA guide sequence, plasmids were cut and dephosporylated with FastDigest BsmBI and FastAP (Fermentas) at $37^{\circ} \mathrm{C}$ for 2 hours. Oligonucleotides for the EGFP sgRNA guide sequence (Integrated DNA Technologies) were phosphorylated using polynucleotide kinase (Fermentas) at $37{ }^{\circ} \mathrm{C}$ for 30 minutes and then annealed by heating to $95^{\circ} \mathrm{C}$ for 5 minutes and cooling to $25{ }^{\circ} \mathrm{C}$ at $1.5^{\circ} \mathrm{C} /$ minute. Using T 7 ligase (Enzymatics), annealed oligos were ligated into gel purified vectors (Qiagen) at $25^{\circ} \mathrm{C}$ for 5 minutes. Cloned transfer plasmids were amplified using a endotoxin-free midi-prep kit (Qiagen).

To make lentivirus, the transfer plasmids were co-transfected with packaging plasmids pMD2.G and psPAX2 (Addgene plasmids 12259 and 12260), as described previously ${ }^{1}$. Briefly, for each virus, a T-75 flask of 80 \% confluent HEK293T cells (ATCC CRL-3216) was transfected in OptiMEM (Life Technologies) using 10 ug of the transfer plasmid, 5 ug pMD2.G, 7.5 ug psPAX2, 100 ul of Plus Reagent (Life Technologies), and 50 ul of Lipofectamine 2000 (Life Technologies). After 6 hours, media was changed to D10 media, DMEM (Life Technologies) with 10 \% fetal bovine serum (Hyclone), with 1% bovine serum albumin (Sigma) added to improve virus stability. After 60 hours, viral supernatants were harvested and centrifuged at $3,000 \mathrm{rpm}$ at $4^{\circ} \mathrm{C}$ for 10 min to pellet cell debris. The supernatant was filtered through a 0.45 um low protein binding membrane (Millipore) and used immediately.

Lentiviral functional titration. Lentiviruses were titered in a functional assay by measuring puromycin resistance after transduction. All lentiviruses were produced in triplicate transfections. Relative titer measurements from separate viral production transfections performed weeks apart resulted in similar relative titers.

For each viral construct, 2.5×10^{4} HEK293T-EGFP cells were transduced in suspension (i.e. during plating) with 10,100 , or 1000 ul of viral supernatant in wells of a 24 -well plate. For lentiGuide-Puro transduction the HEK293T-EGFP cells also had a genomically-integrated copy of Cas9 from previous transduction with lentiCas9-Blast. Each transduction condition (construct and virus volume) was performed in triplicate. In each well, D10 culture media was added to make the final volume 1.5 ml . Cell without any virus added were also plated in six wells (3 wells for puromycin treatment, 3 wells as control).

At 24 hours post-transduction, media was changed to D10 with $1 \mathrm{ug} / \mathrm{ml}$ puromycin (Sigma) for all wells except the uninfected controls without puromycin. At 3 days post-transduction, cells in all wells were split 1:5 to prevent any well from reaching confluence. Except for the uninfected controls without puromycin, new D10 media was supplemented with $1 \mathrm{ug} / \mathrm{ul}$ puromycin. At 5 days post-transduction, all cells in the uninfected control wells treated with puromycin were floating/dead, which was verified using Trypan Blue exclusion (Sigma).

For the remaining wells, adherent cells were present and cell viability was measured using CellTiter Glo (Promega) following the manufacturer's protocol. After allowing cells to reach room temperature, media was aspirated from the cells and CellTiter Glo (diluted 1:1 in phosphate-buffered saline) was added. Plates were covered with foil, placed on an orbital shaker for 2 min , and then incubated for 10 minutes at room temperature. Luminescence was measured on an Synergy H4 plate imager (Biotek) using a 1 second integration time and auto-gain to utilize the full dynamic range of the detector. Positive controls (untranduced cells without puromycin) and negative controls (empty wells) were included in the assay.

Fold differences in titer between viral constructs were calculated using luminescence values. Specifically, comparisons were made between pairs of viruses for the same volume of supernatant. Only viral volumes for which cell survival was greater than 1% and less than 20% of control (untransduced) cells were directly compared. Assuming Poisson statistics, 20% cell survival implies that approximately 90% of cells surviving puromycin selection were infected by only a single virus.

Flow cytometry data was collected from the same set of infections using a BD Accuri C6 flow cytometer. Using FlowJo (TreeStar), single cells were distinguished from debris and doublets by gating in forward and side scatter area plots. EGFP fluorescence was measured in the gated
population from transduced and uninfected HEK293T-EGFP cells. For transductions with lentiGuide-Puro, HEK293T-EGFP cells had been transduced with lentiCas9-Blast and selected for 6 days with $5 \mathrm{ug} / \mathrm{ml}$ blasticidin (Life Technologies). For all antibiotic selections (puromycin and blasticidin), uninfected control cells were also exposed to the same concentration and duration of antibiotic selection to verify complete elimination of untransduced cells.

Design of GeCKOv2 libraries. Genome-wide sgRNA libraries for the human and mouse genomes were designed using the following steps:
(1) Identification of constitutive exons: For the human library, RNA sequencing data from the Illumina Human Body Map 2.0 (GEO accession number: GSE30611) was mapped to the reference human genome (hg19) using TopHat v1.0.14 ${ }^{2}$ and transcripts were reconstructed with Cufflinks v1.0.2 ${ }^{3}$, as previously described ${ }^{4}$. Exons expressed in all tissues in the Human Body Map dataset were termed constitutive and chosen for sgRNA targeting. For the mouse library, we selected exons that are included in all of the NCBI RefSeq (http://www.ncbi.nlm.nih.gov/refseq/) transcripts for the same gene.

In both species, for each gene, we excluded the first and last exons and any exon that contained an alternative splicing site. Using these procedures, we chose 4 constitutive exons for each gene. For genes where there were less than 4 constitutive exons, we added exons starting from the second coding exon towards the end of the gene. The coding boundaries for each exon were identified using the NCBI Consensus CoDing Sequence (CCDS) database (http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi).
(2) Choice of sgRNA sequences: For each gene, all S. pyogenes Cas 9 sgRNA sequences of the form $(\mathrm{N})_{20} \mathrm{NGG}$ in all constitutive exons (from the procedure in (1) above) were selected as candidate targets. Each 20mer candidate target sgRNA was mapped to a precompiled index containing all 20 mer sequences in the human genome followed by either NGG or NAG. This mapping was done using the Bowtie short read aligner ${ }^{5}$, allowing up to 3 base mismatches (with parameters -a --best $-v 3$). For each potential off-target identified by the mapping, the following score was calculated ${ }^{6}$:

$$
S_{\text {off-targct }}=\prod_{e \in \mathcal{M}}(1-W[e]) \times \frac{1}{\left(\frac{(19-\bar{d})}{19} \times 4+1\right)} \times \frac{1}{n_{m m}^{2}}
$$

Within the first term, M is the set of mismatches between the potential off-target and the candidate target sgRNA. For each mismatch in M, e denotes the position of the mismatch relative to the protospacer-adjacent motif (PAM). The values of e range between 1 (for the most PAM-distal base in the sgRNA) to 20 (for the most PAM-proximal base in the $\operatorname{sgRNA})$. Using e as the index, a value from the look-up table W denotes the empiricallydetermined weight (relative to the other terms in the $S_{\text {off-target }}$ metric) that penalizes mismatches based on their position in the sgRNA sequence ${ }^{6}$:

e	1	2	3	4	5	6	7	8	9	10
$\mathrm{~W}[e]$	0	0	0.014	0	0	0.395	0.317	0	0.389	0.079
e	11	12	13	14	15	16	17	18	19	20
$\mathrm{~W}[e]$	0.445	.508	0.613	0.851	0.732	0.828	0.615	0.804	0.685	0.583

\bar{d} is the mean pairwise distance between all pairs of elements in M and $n_{m m}$ is the number of elements in M.

Each of the individual off-targets ($S_{\text {off-target }}$) for one candidate target sgRNA were integrated into an aggregate off-target score as follows:

$$
S_{\text {guide }}=\frac{100}{1+\sum_{i=1}^{n} S_{\text {off-target }}(i)}
$$

$S_{\text {off-target }}$ is the score for a single potential off-target and $S_{\text {guide }}$ is a score ($0-100$ scale) that provides a rating of how well a candidate sgRNA uniquely targets within the genome. Candidate sgRNAs with higher values of $S_{\text {guide }}$ are predicted to have less off-target activity.

For each gene, we chose 6 sgRNAs with the highest values of $S_{\text {guide }}$ across all 4 constitutive exons (from step (1)) subject to constraint that no more than 2 sgRNAs could target a single exon. This procedure resulted in extremely uniform coverage of genes: For 99.4% of genes in the GeCKOv2 human library and 99.8% of genes in the GeCKOv2 mouse library, each gene was targeted with exactly 6 sgRNAs.
(3) Targeting of mature miRNAs: For the design of miRNA targeting guides, we used the pre-miRNA sequence coordinates from the mirBASE database (www.mirbase.org) ${ }^{7}$. For each pre-miRNA, we listed all the possible $(\mathrm{N})_{20} \mathrm{NGG}$ sequences. In total, we chose up to 4 sgRNAs per miRNA or less if there were not 4 sgRNAs present in the pre-miRNA sequence.

GeCKO library pooled synthesis and cloning. DNA oligonucleotide library synthesis was completed on a programmable microarray using a B3 Synthesizer (CustomArray) and SAFC Proligo reagents (Sigma), as recommended by the manufacturer. The synthesis products were cleaved from the microarray and deprotected by overnight incubation in $28-30 \%$ ammonium hydroxide at $65^{\circ} \mathrm{C}$, dried, resuspended in 30 ul TE buffer and then purified using a QIAquick spin column (Qiagen). Full-length oligonucleotides (74 nt) were amplified by PCR using Phusion HS Flex (NEB). For the PCR reaction, the manufacturer's protocol was followed using 0.1 ul of synthesized oligonucleotide template, primers Array F and ArrayR (see below), an annealing temperature of $63^{\circ} \mathrm{C}$, an extension time of 15 s , and 20 cycles. After PCR, the 140 bp amplicon was size-selected using a 2% agarose E-Gel EX (Life Technologies, Qiagen).

ArrayF TAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGAC GAAACACCG
 ArrayR ACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCT AGCTCTAAAAC

The vector backbone (lentiCRISPR v2 or lentiGuide-Puro) was digested with BsmBI (Fermentas) and treated with FastAP (Fermentas) at $37^{\circ} \mathrm{C}$ for 2 hours and gel-purified on a 1% E-Gel EX (Life Technologies, Qiagen). A 20 ul Gibson ligation reaction (NEB) was performed using 10 ng of the gel-purified inserts and 25 ng of the vector (for lentiCRISPR v2) and using 5 ng of the gel-purified inserts and 25 ng of the vector (for lentiGuide-Puro). From the ligation, 0.5 ul of the reaction was transformed into 25 ul of electrocompetent cells (Lucigen) according to the manufacturer's protocol using a GenePulser (BioRad). To ensure no loss of representation, sufficient parallel transformations were performed using the same ligation reaction and plated onto $245 \mathrm{~mm} \times 245 \mathrm{~mm}$ plates (Corning) with carbenicillin selection ($50 \mathrm{ug} / \mathrm{ml}$), which yielded

30-200 X library coverage. Colonies were scraped off plates and combined before plasmid DNA extraction using Endotoxin-Free Plasmid Maxiprep (Qiagen).

Library sequencing and validation. To check library representation, synthesis fidelity, and bias, libraries were amplified and then deep sequenced. First, libraries were PCR amplified for 16 cycles using Phusion Flash High-Fidelity (Thermo) with primers to add adaptors for Illumina sequencing. For all libraries, PCR reactions were performed in duplicate and barcoded to allow quantification of bias introduced by PCR. Samples were sequenced on a MiSeq following the manufacturer's protocol using a v3 150 cycle kit with 10% PhiX (Illumina).

PCR replicates were demultiplexed using FASTX-Toolkit (Hannon Lab, CSHL) and adaptors were trimmed using cutadapt to leave only the sgRNA guide sequence ${ }^{8}$. Alignment of the guide sequence to the appropriate GeCKO library index was done using Bowtie with parameters to tolerate up to a single nucleotide mismatch ${ }^{5}$. The Bowtie alignment was then read into Matlab for further analysis (Mathworks). For all libraries, greater than 90% of sgRNAs were represented with at least one sequencing read and the difference in representation between the $90^{\text {th }}$ and $10^{\text {th }}$ percentile sgRNAs was always less than 15 -fold. Histograms of sgRNA distributions and cumulative sgRNA read counts for libraries in both lentiCRISPRv2 and lentiGuide-Puro are shown in Supplementary Figure 2 (human) and Supplementary Figure 3 (mouse).

Vector maps, library sequences and reagent distribution. All lentiCRISPR plasmids and GeCKO libraries are available on Addgene. Please see http://genome-engineering.org/gecko/ for downloadable vector maps. See labeled sequences in Supplementary Data for more details.

The sgRNAs in the human and mouse v2 GeCKO libraries are available for download on the GeCKO website or from Addgene.

Supplementary Data

LentiCRISPR v2
Pink BsmBI TypeIIs sites for cloning in 20bp sgRNA guide sequence after removing 1.8 kb spacer sequence

Green	+85 chRNA sequence for sgRNA
Gray	EFS promoter sequence
Yellow	Human codon-optimized SpCas9 coding seq
Italics	FLAG peptide tag
Red	P2A bicistronic linker/self-cleaving peptide
Blue	Puromycin resistance coding sequence

GTCGACGGATCGGGAGATCTCCCGATCCCCTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGC CAGTATCTGCTCCCTGCTTGTGTGTTGGAGGTCGCTGAGTAGTGCGCGAGCAAAATTTAAGCTACAACAAGGCAAGG CTTGACCGACAATTGCATGAAGAATCTGCTTAGGGTTAGGCGTTTTGCGCTGCTTCGCGATGTACGGGCCAGATATA CGCGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAG TTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAAT GACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCC ACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGG CATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCAT GGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCA TTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTG ACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGCGCGTTTTGCCTGTACTGGGTCTCTCTGGT TAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGA GTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTG GAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGAC TCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAG GCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGG TTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGT TAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGAT CAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACC AAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGCACAGCAAGCGGCCGCTGATCTTCA GACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTA GGAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCT TGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGT CTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGG GGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGG TTGCTCTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTT GGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAATACACTCCTTAATTGAAGAA TCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGGCAAGTTTGTGGAATTGGTTTAA CATAACAAATTGGCTGTGGTATATAAAATTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTTG CTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGG GGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGG ATCGGCACTGCGTGCGCCAATTCTGCAGACAAATGGCAGTATTCATCCACAATTTTAAAAGAAAAGGGGGGATTGGG GGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTAC AAAAATTCAAAATTTTCGGGTTTATTACAGGGACAGCAGAGATCCAGTTTGGTTAATTAAGGTACCGAGGGCCTATT TCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGTAAACA CAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTT AAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACG AAACACCGGAGACGGTTGTAAATGAGCACACAAAATACACATGCTAAAATATTATATTCTATGACCTTTATAAAATC AACCAAAATCTTCTTTTTAATAACTTTAGTATCAATAATTAGAATTTTTATGTTCCTTTTTGCAAACTTTTAATAAA AATGAGCAAAATAAAAAAACGCTAGTTTTAGTAACTCGCGTTGTTTTCTTCACCTTTAATAATAGCTACTCCACCAC TTGTTCCTAAGCGGTCAGCTCCTGCTTCAATCATTTTTTGAGCATCTTCAAATGTTCTAACTCCACCAGCTGCTTTA ACTAAAGCATTGTCTTTAACAACTGACTTCATTAGTTTAACATCTTCAAATGTTGCACCTGATTTTGAAAATCCTGT

TGATGTTTTAACAAATTCTAATCCAGCTTCAACAGCTATTTCACAAGCTTTCATGATTTCTTCTTTTGTTAATAAAC AATTTTCCATAATACATTTAACAACATGTGATCCAGCTGCTTTTTTTACAGCTTTCATGTCTTCTAAAACTAATTCA TAATTTTTGTCTTTTAATGCACCAATATTTAATACCATATCAATTTCTGTTGCACCATCTTTAATTGCTTCAGAAAC TTCGAATGCTTTTGTAGCTGTTGTGCATGCACCTAGAGGAAAACCTACAACATTTGTTATTCCTACATTTGTGCCTT TTAATAATTCTTTACAATAGCTTGTTCAATATGAATTAACACAAACTGTTGCAAAATCAAATTCAATTGCTTCATCA CATAATTGTTTAATTTCAGCTTTCGTAGCATCTTGTTTTAATAATGTGTGATCTATATATTTGTTTAGTTTCATTTT TTCTCCTATATATTCATTTTTAATTTTAATTCTTTAATAATTTCGTCTACTTTAACTTTAGCGTTTTGAACAGATTC ACCAACACCTATAAAATAAATTTTTAGTTTAGGTTCAGTTCCACTTGGGCGAACAGCAAATCATGACTTATCTTCTA AATAAAATTTTAGTAAGTCTTGTCCTGGCATATTATACATTCCATCGATGTAGTCTTCAACATTAACAACTTTAAGT CCAGCAATTTGAGTTAAGGGTGTTGCTCTCAATGATTTCATTAATGGTTCAATTTTTAATTTCTTTTCTTCTGGTTT AAAATTCAAGTTTAAAGTGAAAGTGTAATATGCACCCATTTCTTTAAATAAATCTTCTAAATAGTCTACTAATGTTT TATTTTGTTTTTTATAAAATCAAGCAGCCTCTGCTATTAATATAGAAGCTTGTATTCCATCTTTATCTCTAGCTGAG TCATCAATTACATATCCATAACTTTCTTCATAAGCAAAAACAAAATTTAATCCGTTATCTTCTTCTTTAGCAATTTC TCTACCCATTCATTTAAATCCAGTTAAAGTTTTTACAATATTAACTCCATATTTTTCATGAGCGATTCTATCACCCA AATCACTTGTTACAAAACTTGAATATAGAGCCGGATTTTTTGGAATGCTATTTAAGCGTTTTAGATTTGATAATTTT CAATCAATTAAAATTGGTCCTGTTTGATTTCCATCTAATCTTACAAAATGACCATCATGTTTTATTGCCATTCCAAA TCTGTCAGCATCTGGGTCATTCATAATAATAATATCTGCATCATGTTTAATACCATATTCAAGCGGTATTTTTCATG CAGGATCAAATTCTGGATTTGGATTTACAACATTTTTAAATGTTTCATCTTCAAATGCATGCTCTTCAACCTCAATA ACGTTATATCCTGATTCACGTAATATTTTTGGGGTAAATTTAGTTCCTGTTCCATTAACTGCGCTAAAAATAATTTT TAAATCTTTTTTAGCTTCTTGCTCTTTTTTGTACGTCTCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTA GTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTGAATTCGCTAGCTAGGTCTTGAAAGGAGTGGG AATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCA ATTGATCCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCC GAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAAC ACAGGACCGGTTCTAGAGCGCTGCCACCATGGACAAGAAGTACAGCATCGGCCTGGACATCGGCACCAACTCTGTGG GCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAAATTCAAGGTGCTGGGCAACACCGACCGGCACAGC ATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGAGAACCGC CAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGATGGCCAAGGTGG ACGACAGCTTCTTCCACAGACTGGAAGAGTCCTTCCTGGTGGAAGAGGATAAGAAGCACGAGCGGCACCCCATCTTC GGCAACATCGTGGACGAGGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGAGAAAGAAACTGGTGGACAG CACCGACAAGGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATCAAGTTCCGGGGCCACTTCCTGATCG AGGGCGACCTGAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCAGCTGTTC GAGGAAAACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTGAGCAAGAGCAGACGGCT GGAAAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAATGGCCTGTTCGGAAACCTGATTGCCCTGAGCCTGGGCC TGACCCCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACCTACGACGAC GACCTGGACAACCTGCTGGCCCAGATCGGCGACCAGTACGCCGACCTGTTTCTGGCCGCCAAGAACCTGTCCGACGC CATCCTGCTGAGCGACATCCTGAGAGTGAACACCGAGATCACCAAGGCCCCCCTGAGCGCCTCTATGATCAAGAGAT ACGACGAGCACCACCAGGACCTGACCCTGCTGAAAGCTCTCGTGCGGCAGCAGCTGCCTGAGAAGTACAAAGAGATT TTCTTCGACCAGAGCAAGAACGGCTACGCCGGCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCAT CAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAAGCTGAACAGAGAGGACCTGCTGCGGAAGC AGCGGACCTTCGACAACGGCAGCATCCCCCACCAGATCCACCTGGGAGAGCTGCACGCCATTCTGCGGCGGCAGGAA GATTTTTACCCATTCCTGAAGGACAACCGGGAAAAGATCGAGAAGATCCTGACCTTCCGCATCCCCTACTACGTGGG CCCTCTGGCCAGGGGAAACAGCAGATTCGCCTGGATGACCAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTTCG AGGAAGTGGTGGACAAGGGCGCTTCCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCCCAAC GAGAAGGTGCTGCCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACGAGCTGACCAAAGTGAAATACGT GACCGAGGGAATGAGAAAGCCCGCCTTCCTGAGCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGTTCAAGACCA ACCGGAAAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACTCCGTGGAAATCTCC GGCGTGGAAGATCGGTTCAACGCCTCCCTGGGCACATACCACGATCTGCTGAAAATTATCAAGGACAAGGACTTCCT GGACAATGAGGAAAACGAGGACATTCTGGAAGATATCGTGCTGACCCTGACACTGTTTGAGGACAGAGAGATGATCG AGGAACGGCTGAAAACCTATGCCCACCTGTTCGACGACAAAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGC TGGGGCAGGCTGAGCCGGAAGCTGATCAACGGCATCCGGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAA GTCCGACGGCTTCGCCAACAGAAACTTCATGCAGCTGATCCACGACGACAGCCTGACCTTTAAAGAGGACATCCAGA AAGCCCAGGTGTCCGGCCAGGGCGATAGCCTGCACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAG GGCATCCTGCAGACAGTGAAGGTGGTGGACGAGCTCGTGAAAGTGATGGGCCGGCACAAGCCCGAGAACATCGTGAT CGAAATGGCCAGAGAGAACCAGACCACCCAGAAGGGACAGAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGG GCATCAAAGAGCTGGGCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAGAAGCTGTAC CTGTACTACCTGCAGAATGGGCGGGATATGTACGTGGACCAGGAACTGGACATCAACCGGCTGTCCGACTACGATGT

GGACCATATCGTGCCTCAGAGCTTTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAAGCGACAAGAACC GGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTCGTGAAGAAGATGAAGAACTACTGGCGGCAGCTGCTGAACGCC AAGCTGATTACCCAGAGAAAGTTCGACAATCTGACCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGATAAGGCCGG CTTCATCAAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCCGGATGAACA CTAAGTACGACGAGAATGACAAGCTGATCCGGGAAGTGAAAGTGATCACCCTGAAGTCCAAGCTGGTGTCCGATTTC CGGAAGGATTTCCAGTTTTACAAAGTGCGCGAGATCAACAACTACCACCACGCCCACGACGCCTACCTGAACGCCGT CGTGGGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAAGCGAGTTCGTGTACGGCGACTACAAGGTGTACGACG TGCGGAAGATGATCGCCAAGAGCGAGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTCTACAGCAACATCATG AACTTTTTCAAGACCGAGATTACCCTGGCCAACGGCGAGATCCGGAAGCGGCCTCTGATCGAGACAAACGGCGAAAC CGGGGAGATCGTGTGGGATAAGGGCCGGGATTTTGCCACCGTGCGGAAAGTGCTGAGCATGCCCCAAGTGAATATCG TGAAAAAGACCGAGGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAGAGGAACAGCGATAAGCTGATC GCCAGAAAGAAGGACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGT GGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGGATCACCATCATGGAAAGAA GCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGCTACAAAGAAGTGAAAAAGGACCTGATCATCAAG CTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACGGCCGGAAGAGAATGCTGGCCTCTGCCGGCGAACTGCAGAAGGG AAACGAACTGGCCCTGCCCTCCAAATATGTGAACTTCCTGTACCTGGCCAGCCACTATGAGAAGCTGAAGGGCTCCC CCGAGGATAATGAGCAGAAACAGCTGTTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAGCAGATCAGC GAGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTCCGCCTACAACAAGCACCGGGATAA GCCCATCAGAGAGCAGGCCGAGAATATCATCCACCTGTTTACCCTGACCAATCTGGGAGCCCCTGCCGCCTTCAAGT ACTTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGGTGCTGGACGCCACCCTGATCCACCAGAGC ATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGCGACAAGCGACCTGCCGCCACAAAGAAGGC tGGACAGGCTAAGAAGAAGAAAGATTACAAAGACGATGACGATAAGG
AACAAGCCGGAGATGTCGAAGAGAATCCTGGACCGACCGAGTACAAGCCCACGGTGCGCCTCGCCACCCGCGACGAC GTCCCCAGGGCCGTACGCACCCTCGCCGCCGCGTTCGCCGACTACCCCGCCACGCGCCACACCGTCGATCCGGACCG CCACATCGAGCGGGTCACCGAGCTGCAAGAACTCTTCCTCACGCGCGTCGGGCTCGACATCGGCAAGGTGTGGGTCG CGGACGACGGCGCCGCGGTGGCGGTCTGGACCACGCCGGAGAGCGTCGAAGCGGGGGCGGTGTTCGCCGAGATCGGC CCGCGCATGGCCGAGTTGAGCGGTTCCCGGCTGGCCGCGCAGCAACAGATGGAAGGCCTCCTGGCGCCGCACCGGCC CAAGGAGCCCGCGTGGTTCCTGGCCACCGTCGGAGTCTCGCCCGACCACCAGGGCAAGGGTCTGGGCAGCGCCGTCG TGCTCCCCGGAGTGGAGGCGGCCGAGCGCGCCGGGGTGCCCGCCTTCCTGGAGACCTCCGCGCCCCGCAACCTCCCC TTCTACGAGCGGCTCGGCTTCACCGTCACCGCCGACGTCGAGGTGCCCGAAGGACCGCGCACCTGGTGCATGACCCG CAAGCCCGGTGCCTGAACGCGTTAAGTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTC TTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATG GCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACG TGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCG GGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCT CGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTGTGTTGC CACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCC TGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCC CCGCGTCGACTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAGAAAAGGGGGGACTG GAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCTCTCTGGTTAGACCAGATCTG AGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAG TGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGC AGGGCCCGGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCG TGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTG AGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCA TGCTGGGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCACGCGC CCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCG CCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCT CCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTG GGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAA ACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTT AAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTAATTCTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTC CCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAG GCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCC ATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGC CGAGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGC TCCCGGGAGCTTGTATATCCATTTTCGGATCTGATCAGCACGTGTTGACAATTAATCATCGGCATAGTATATCGGCA

TAGTATAATACGACAAGGTGAGGAACTAAACCATGGCCAAGTTGACCAGTGCCGTTCCGGTGCTCACCGCGCGCGAC GTCGCCGGAGCGGTCGAGTTCTGGACCGACCGGCTCGGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGT GGTCCGGGACGACGTGACCCTGTTCATCAGCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGT GGGTGCGCGGCCTGGACGAGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCG GCCATGACCGAGATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTT CGTGGCCGAGGAGCAGGACTGACACGTGCTACGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCG GAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAAC TTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACT GCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGTATACCGTCGACCTCTAGCTAGAGCT TGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGA AGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTT CCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGC GCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAG GCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAG GAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCT CAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCT CCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTC ACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCG ACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCC ACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTA CACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGAT CCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCT CAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCAT GAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATG AGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCC ATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGAT ACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTG GTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAAT AGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTC CGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGA TCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATG CCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAG TTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAAC GTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAAC TGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGG AATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATT GTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAA GTGCCACCTGAC

lentiCas9-Blast

Gray EFS promoter sequence
Yellow Human codon-optimized SpCas9 coding sequence
Italics FLAG peptide tag P2A bicistronic linker/self-cleaving peptide
Blue Blast resistance coding sequence

GTCGACGGATCGGGAGATCTCCCGATCCCCTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGC CAGTATCTGCTCCCTGCTTGTGTGTTGGAGGTCGCTGAGTAGTGCGCGAGCAAAATTTAAGCTACAACAAGGCAAGG CTTGACCGACAATTGCATGAAGAATCTGCTTAGGGTTAGGCGTTTTGCGCTGCTTCGCGATGTACGGGCCAGATATA CGCGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAG TTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAAT GACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCC ACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGG CATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCAT GGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCCCA TTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTG ACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGCGCGTTTTGCCTGTACTGGGTCTCTCTGGT TAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGA GTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTG GAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGAC TCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAG GCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGG TTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGT TAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGAT CAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACC AAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGCACAGCAAGCGGCCGCTGATCTTCA GACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTA GGAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCT TGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGT CTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGG GGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGG TTGCTCTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTT GGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAATACACTCCTTAATTGAAGAA TCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGGCAAGTTTGTGGAATTGGTTTAA CATAACAAATTGGCTGTGGTATATAAAATTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTTG CTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGG GGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGG ATCGGCACTGCGTGCGCCAATTCTGCAGACAAATGGCAGTATTCATCCACAATTTTAAAAGAAAAGGGGGGATTGGG GGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTAC AAAAATTCAAAATTTTCGGGTTTATTACAGGGACAGCAGAGATCCAGTTTGGTTAATTAAGCTAGCTAGGTCTTGAA AGGAGTGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAG GGGTCGGCAATTGATCCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGC CTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGC CGCCAGAACACAGGACCGGTTCTAGAGCGCTGCCACCATGGACAAGAAGTACAGCATCGGCCTGGACATCGGCACCA ACTCTGTGGGCTGGGCCGTGATCACCGACGAGTACAAGGTGCCCAGCAAGAAATTCAAGGTGCTGGGCAACACCGAC CGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTCGACAGCGGCGAAACAGCCGAGGCCACCCGGCTGAA GAGAACCGCCAGAAGAAGATACACCAGACGGAAGAACCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGATGG CCAAGGTGGACGACAGCTTCTTCCACAGACTGGAAGAGTCCTTCCTGGTGGAAGAGGATAAGAAGCACGAGCGGCAC CCCATCTTCGGCAACATCGTGGACGAGGTGGCCTACCACGAGAAGTACCCCACCATCTACCACCTGAGAAAGAAACT GGTGGACAGCACCGACAAGGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATCAAGTTCCGGGGCCACT TCCTGATCGAGGGCGACCTGAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAAC CAGCTGTTCGAGGAAAACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTGAGCAAGAG CAGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAATGGCCTGTTCGGAAACCTGATTGCCCTGA GCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGATGCCAAACTGCAGCTGAGCAAGGACACC TACGACGACGACCTGGACAACCTGCTGGCCCAGATCGGCGACCAGTACGCCGACCTGTTTCTGGCCGCCAAGAACCT

GTCCGACGCCATCCTGCTGAGCGACATCCTGAGAGTGAACACCGAGATCACCAAGGCCCCCCTGAGCGCCTCTATGA TCAAGAGATACGACGAGCACCACCAGGACCTGACCCTGCTGAAAGCTCTCGTGCGGCAGCAGCTGCCTGAGAAGTAC AAAGAGATTTTCTTCGACCAGAGCAAGAACGGCTACGCCGGCTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTA CAAGTTCATCAAGCCCATCCTGGAAAAGATGGACGGCACCGAGGAACTGCTCGTGAAGCTGAACAGAGAGGACCTGC TGCGGAAGCAGCGGACCTTCGACAACGGCAGCATCCCCCACCAGATCCACCTGGGAGAGCTGCACGCCATTCTGCGG CGGCAGGAAGATTTTTACCCATTCCTGAAGGACAACCGGGAAAAGATCGAGAAGATCCTGACCTTCCGCATCCCCTA CTACGTGGGCCCTCTGGCCAGGGGAAACAGCAGATTCGCCTGGATGACCAGAAAGAGCGAGGAAACCATCACCCCCT GGAACTTCGAGGAAGTGGTGGACAAGGGCGCTTCCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAAC CTGCCCAACGAGAAGGTGCTGCCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACGAGCTGACCAAAGT GAAATACGTGACCGAGGGAATGAGAAAGCCCGCCTTCCTGAGCGGCGAGCAGAAAAAGGCCATCGTGGACCTGCTGT TCAAGACCAACCGGAAAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTGCTTCGACTCCGTG GAAATCTCCGGCGTGGAAGATCGGTTCAACGCCTCCCTGGGCACATACCACGATCTGCTGAAAATTATCAAGGACAA GGACTTCCTGGACAATGAGGAAAACGAGGACATTCTGGAAGATATCGTGCTGACCCTGACACTGTTTGAGGACAGAG AGATGATCGAGGAACGGCTGAAAACCTATGCCCACCTGTTCGACGACAAAGTGATGAAGCAGCTGAAGCGGCGGAGA TACACCGGCTGGGGCAGGCTGAGCCGGAAGCTGATCAACGGCATCCGGGACAAGCAGTCCGGCAAGACAATCCTGGA TTTCCTGAAGTCCGACGGCTTCGCCAACAGAAACTTCATGCAGCTGATCCACGACGACAGCCTGACCTTTAAAGAGG ACATCCAGAAAGCCCAGGTGTCCGGCCAGGGCGATAGCCTGCACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCC ATTAAGAAGGGCATCCTGCAGACAGTGAAGGTGGTGGACGAGCTCGTGAAAGTGATGGGCCGGCACAAGCCCGAGAA CATCGTGATCGAAATGGCCAGAGAGAACCAGACCACCCAGAAGGGACAGAAGAACAGCCGCGAGAGAATGAAGCGGA TCGAAGAGGGCATCAAAGAGCTGGGCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCAGCTGCAGAACGAG AAGCTGTACCTGTACTACCTGCAGAATGGGCGGGATATGTACGTGGACCAGGAACTGGACATCAACCGGCTGTCCGA CTACGATGTGGACCATATCGTGCCTCAGAGCTTTCTGAAGGACGACTCCATCGACAACAAGGTGCTGACCAGAAGCG ACAAGAACCGGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTCGTGAAGAAGATGAAGAACTACTGGCGGCAGCTG CTGAACGCCAAGCTGATTACCCAGAGAAAGTTCGACAATCTGACCAAGGCCGAGAGAGGCGGCCTGAGCGAACTGGA TAAGGCCGGCTTCATCAAGAGACAGCTGGTGGAAACCCGGCAGATCACAAAGCACGTGGCACAGATCCTGGACTCCC GGATGAACACTAAGTACGACGAGAATGACAAGCTGATCCGGGAAGTGAAAGTGATCACCCTGAAGTCCAAGCTGGTG TCCGATTTCCGGAAGGATTTCCAGTTTTACAAAGTGCGCGAGATCAACAACTACCACCACGCCCACGACGCCTACCT GAACGCCGTCGTGGGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAAGCGAGTTCGTGTACGGCGACTACAAGG TGTACGACGTGCGGAAGATGATCGCCAAGAGCGAGCAGGAAATCGGCAAGGCTACCGCCAAGTACTTCTTCTACAGC AACATCATGAACTTTTTCAAGACCGAGATTACCCTGGCCAACGGCGAGATCCGGAAGCGGCCTCTGATCGAGACAAA CGGCGAAACCGGGGAGATCGTGTGGGATAAGGGCCGGGATTTTGCCACCGTGCGGAAAGTGCTGAGCATGCCCCAAG TGAATATCGTGAAAAAGACCGAGGTGCAGACAGGCGGCTTCAGCAAAGAGTCTATCCTGCCCAAGAGGAACAGCGAT AAGCTGATCGCCAGAAAGAAGGACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGT GCTGGTGGTGGCCAAAGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGGATCACCATCA TGGAAAGAAGCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGCTACAAAGAAGTGAAAAAGGACCTG ATCATCAAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACGGCCGGAAGAGAATGCTGGCCTCTGCCGGCGAACT GCAGAAGGGAAACGAACTGGCCCTGCCCTCCAAATATGTGAACTTCCTGTACCTGGCCAGCCACTATGAGAAGCTGA AGGGCTCCCCCGAGGATAATGAGCAGAAACAGCTGTTTGTGGAACAGCACAAGCACTACCTGGACGAGATCATCGAG CAGATCAGCGAGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGTGCTGTCCGCCTACAACAAGCA CCGGGATAAGCCCATCAGAGAGCAGGCCGAGAATATCATCCACCTGTTTACCCTGACCAATCTGGGAGCCCCTGCCG CCTTCAAGTACTTTGACACCACCATCGACCGGAAGAGGTACACCAGCACCAAAGAGGTGCTGGACGCCACCCTGATC CACCAGAGCATCACCGGCCTGTACGAGACACGGATCGACCTGTCTCAGCTGGGAGGCGACAAGCGACCTGCCGCCAC AAAGAAGGCTGGACAGGCTAAGAAGAAGAAAGATTACAAAGACGATGACGATAAGGGATCCGGCGCAACAAACTTCT CTCTGCTGAAACAAGCCGGAGATGTCGAAGAGAATCCTGGACCGATGGCCAAGCCTTTGTCTCAAGAAGAATCCACC CTCATTGAAAGAGCAACGGCTACAATCAACAGCATCCCCATCTCTGAAGACTACAGCGTCGCCAGCGCAGCTCTCTC TAGCGACGGCCGCATCTTCACTGGTGTCAATGTATATCATTTTACTGGGGGACCTTGTGCAGAACTCGTGGTGCTGG GCACTGCTGCTGCTGCGGCAGCTGGCAACCTGACTTGTATCGTCGCGATCGGAAATGAGAACAGGGGCATCTTGAGC CCCTGCGGACGGTGCCGACAGGTGCTTCTCGATCTGCATCCTGGGATCAAAGCCATAGTGAAGGACAGTGATGGACA GCCGACGGCAGTTGGGATTCGTGAATTGCTGCCCTCTGGTTATGTGTGGGAGGGCTAAGAATTCGATATCAAGCTTA TCGATAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTA TGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAA ATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTG ACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATT GCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGT GGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCT TCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCG CGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCATCGATACCGTCGACCTCGAGA

CCTAGAAAAACATGGAGCAATCACAAGTAGCAATACAGCAGCTACCAATGCTGATTGTGCCTGGCTAGAAGCACAAG AGGAGGAGGAGGTGGGTTTTCCAGTCACACCTCAGGTACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTT AGCCACTTTTTAAAAGAAAAGGGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATATCCTTGATCTGTG GATCTACCACACACAAGGCTACTTCCCTGATTGGCAGAACTACACACCAGGGCCAGGGATCAGATATCCACTGACCT TTGGATGGTGCTACAAGCTAGTACCAGTTGAGCAAGAGAAGGTAGAAGAAGCCAATGAAGGAGAGAACACCCGCTTG TTACACCCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGAGAAGTATTAGAGTGGAGGTTTGACAGCCGCCTAGC ATTTCATCACATGGCCCGAGAGCTGCATCCGGACTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGC TCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGT CTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGGGCCCGTTT AAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTG ACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCA TTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGATG CGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCAGCTGGGGCTCTAGGGGGTATCCCCACGCGCCCTGTAGCGGC GCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTT CGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGT TCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCC TGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAAC ACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGC TGATTTAACAAAAATTTAACGCGAATTAATTCTGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCC CAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCA GGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCT AACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCT CTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTCCCGGGAGCT TGTATATCCATTTTCGGATCTGATCAGCACGTGTTGACAATTAATCATCGGCATAGTATATCGGCATAGTATAATAC GACAAGGTGAGGAACTAAACCATGGCCAAGTTGACCAGTGCCGTTCCGGTGCTCACCGCGCGCGACGTCGCCGGAGC GGTCGAGTTCTGGACCGACCGGCTCGGGTTCTCCCGGGACTTCGTGGAGGACGACTTCGCCGGTGTGGTCCGGGACG ACGTGACCCTGTTCATCAGCGCGGTCCAGGACCAGGTGGTGCCGGACAACACCCTGGCCTGGGTGTGGGTGCGCGGC CTGGACGAGCTGTACGCCGAGTGGTCGGAGGTCGTGTCCACGAACTTCCGGGACGCCTCCGGGCCGGCCATGACCGA GATCGGCGAGCAGCCGTGGGGGCGGGAGTTCGCCCTGCGCGACCCGGCCGGCAACTGCGTGCACTTCGTGGCCGAGG AGCAGGACTGACACGTGCTACGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTC CGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTTTATTGC AGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTT GTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGTATACCGTCGACCTCTAGCTAGAGCTTGGCGTAATCA TGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTG TAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAA ACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCT TCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACG GTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAA AGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGG TGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGAC CCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGT ATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCC TTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAG GATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAA CAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAA ACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCC TTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAA AAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGG TCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTG ACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACC CACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACT TTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAA CGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAAC GATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGA AGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAG ATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCC CGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGG

CGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGC ATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGA CACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGC GGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGA C
lentiGuide-Puro

Pink	BsmBI TypeIIs sites for cloning in 20bp sgRNA guide sequence after removing 1.8 kb spacer sequence
Green	+85 chRNA sequence for sgRNA
Gray	EF1a promoter sequence
Blue	Puromycin resistance coding sequence

CCCGGGTGCAAAGATGGATAAAGTTTTAAACAGAGAGGAATCTTTGCAGCTAATGGACCTTCTAGGTCTTGAAAGGA GTGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGT CGGCAATTGATCCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTT TTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCC AGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAAT TACTTCCACTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTG CGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCTGGT GGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTT TTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGGCCGCGGGCGG CGACGGGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGG GGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGG CTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAG GACGCGGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTT CATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTA GGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGGCCAGCTTGGCA CTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTC AAAGTTTTTTTCTTCCATTTCAGGTGTCGTGACGTACGGCCACCATGACCGAGTACAAGCCCACGGTGCGCCTCGCC ACCCGCGACGACGTCCCCAGGGCCGTACGCACCCTCGCCGCCGCGTTCGCCGACTACCCCGCCACGCGCCACACCGT CGATCCGGACCGCCACATCGAGCGGGTCACCGAGCTGCAAGAACTCTTCCTCACGCGCGTCGGGCTCGACATCGGCA AGGTGTGGGTCGCGGACGACGGCGCCGCCGTGGCGGTCTGGACCACGCCGGAGAGCGTCGAAGCGGGGGCGGTGTTC GCCGAGATCGGCCCGCGCATGGCCGAGTTGAGCGGTTCCCGGCTGGCCGCGCAGCAACAGATGGAAGGCCTCCTGGC GCCGCACCGGCCCAAGGAGCCCGCGTGGTTCCTGGCCACCGTCGGAGTCTCGCCCGACCACCAGGGCAAGGGTCTGG GCAGCGCCGTCGTGCTCCCCGGAGTGGAGGCGGCCGAGCGCGCCGGGGTGCCCGCCTTCCTGGAGACCTCCGCGCCC CGCAACCTCCCCTTCTACGAGCGGCTCGGCTTCACCGTCACCGCCGACGTCGAGGTGCCCGAAGGACCGCGCACCTG GTGCATGACCCGCAAGCCCGGTGCCTGAACGCGTTAAGTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGAT TGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATT GCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGT TGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTC AGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGC TGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCT CGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTC CTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTT TGGGCCGCCTCCCCGCGTCGACTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAGAA AAGGGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCTCTCTGGTT AGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAG TGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGG AAAATCTCTAGCAGTACGTATAGTAGTTCATGTCATCTTATTATTCAGTATTTATAACTTGCAAAGAAATGAATATC AGAGAGTGAGAGGAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATA AAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGCTCTAGCTA TCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATT TTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGG CCTAGGGACGTACCCAATTCGCCCTATAGTGAGTCGTATTACGCGCGCTCACTGGCCGTCGTTTTACAACGTCGTGA CTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAG AGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGACGCGCCCTGTAGCGGCGCATTA AGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTT CTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGAT TTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAG ACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAA CCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTT

AACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTAGGTGGCACTTTTCGGGGAAATGTGCGCG GAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTT CAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTG CCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTT ACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACT TTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTA TTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTAT GCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTA ACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACC AAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTA CTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTT CCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCC AGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGA TCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGAT TTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACG TGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCG TAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTT TTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCA CTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATA AGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCG TGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCAC GCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTC CAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGC TCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTT TGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCG CTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCT CTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAA CGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTG GAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCGCGCAATTAACCCTCAC TAAAGGGAACAAAAGCTGGAGCTGCAAGCTTAATGTAGTCTTATGCAATACTCTTGTAGTCTTGCAACATGGTAACG ATGAGTTAGCAACATGCCTTACAAGGAGAGAAAAAGCACCGTGCATGCCGATTGGTGGAAGTAAGGTGGTACGATCG TGCCTTATTAGGAAGGCAACAGACGGGTCTGACATGGATTGGACGAACCACTGAATTGCCGCATTGCAGAGATATTG TATTTAAGTGCCTAGCTCGATACATAAACGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAA CTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGA CTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTT GAAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGG GGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGT ATTAAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAA ACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTA GACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGCA ACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAA CAAAAGTAAGACCACCGCACAGCAAGCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGA AGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGT GCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCG CAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGG GCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGT GGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTGCACCACTGCTGTGC CTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTTGGAATCACACGACCTGGATGGAGTGGGACAGAGAA ATTAACAATTACACAAGCTTAATACACTCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATT ATTGGAATTAGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAATTATTCA TAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGA TATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCAGAGAGGGCCTATTTCCCATGATTCCTTC ATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGTAAACACAAAGATATTAGTAC AAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCAT ATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGGAGACGG TTGTAAATGAGCACACAAAATACACATGCTAAAATATTATATTCTATGACCTTTATAAAATCAACCAAAATCTTCTT TTTAATAACTTTAGTATCAATAATTAGAATTTTTATGTTCCTTTTTGCAAACTTTTAATAAAAATGAGCAAAATAAA

AAAACGCTAGTTTTAGTAACTCGCGTTGTTTTCTTCACCTTTAATAATAGCTACTCCACCACTTGTTCCTAAGCGGT CAGCTCCTGCTTCAATCATTTTTTGAGCATCTTCAAATGTTCTAACTCCACCAGCTGCTTTAACTAAAGCATTGTCT TTAACAACTGACTTCATTAGTTTAACATCTTCAAATGTTGCACCTGATTTTGAAAATCCTGTTGATGTTTTAACAAA TTCTAATCCAGCTTCAACAGCTATTTCACAAGCTTTCATGATTTCTTCTTTTGTTAATAAACAATTTTCCATAATAC ATTTAACAACATGTGATCCAGCTGCTTTTTTTACAGCTTTCATGTCTTCTAAAACTAATTCATAATTTTTGTCTTTT AATGCACCAATATTTAATACCATATCAATTTCTGTTGCACCATCTTTAATTGCTTCAGAAACTTCGAATGCTTTTGT AGCTGTTGTGCATGCACCTAGAGGAAAACCTACAACATTTGTTATTCCTACATTTGTGCCTTTTAATAATTCTTTAC AATAGCTTGTTCAATATGAATTAACACAAACTGTTGCAAAATCAAATTCAATTGCTTCATCACATAATTGTTTAATT TCAGCTTTCGTAGCATCTTGTTTTAATAATGTGTGATCTATATATTTGTTTAGTTTCATTTTTTCTCCTATATATTC ATTTTTAATTTTAATTCTTTAATAATTTCGTCTACTTTAACTTTAGCGTTTTGAACAGATTCACCAACACCTATAAA ATAAATTTTTAGTTTAGGTTCAGTTCCACTTGGGCGAACAGCAAATCATGACTTATCTTCTAAATAAAATTTTAGTA AGTCTTGTCCTGGCATATTATACATTCCATCGATGTAGTCTTCAACATTAACAACTTTAAGTCCAGCAATTTGAGTT AAGGGTGTTGCTCTCAATGATTTCATTAATGGTTCAATTTTTAATTTCTTTTCTTCTGGTTTAAAATTCAAGTTTAA AGTGAAAGTGTAATATGCACCCATTTCTTTAAATAAATCTTCTAAATAGTCTACTAATGTTTTATTTTGTTTTTTAT AAAATCAAGCAGCCTCTGCTATTAATATAGAAGCTTGTATTCCATCTTTATCTCTAGCTGAGTCATCAATTACATAT CCATAACTTTCTTCATAAGCAAAAACAAAATTTAATCCGTTATCTTCTTCTTTAGCAATTTCTCTACCCATTCATTT AAATCCAGTTAAAGTTTTTACAATATTAACTCCATATTTTTCATGAGCGATTCTATCACCCAAATCACTTGTTACAA AACTTGAATATAGAGCCGGATTTTTTGGAATGCTATTTAAGCGTTTTAGATTTGATAATTTTCAATCAATTAAAATT GGTCCTGTTTGATTTCCATCTAATCTTACAAAATGACCATCATGTTTTATTGCCATTCCAAATCTGTCAGCATCTGG GTCATTCATAATAATAATATCTGCATCATGTTTAATACCATATTCAAGCGGTATTTTTCATGCAGGATCAAATTCTG GATTTGGATTTACAACATTTTTAAATGTTTCATCTTCAAATGCATGCTCTTCAACCTCAATAACGTTATATCCTGAT TCACGTAATATTTTTGGGGTAAATTTAGTTCCTGTTCCATTAACTGCGCTAAAAATAATTTTTAAATCTTTTTTAGC TTCTTGCTCTTTTTTGTACGTCTCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTT GAAAAAGTGGCACCGAGTCGGTGCTTTTTTAAGCTTGGCGTAACTAGATCTTGAGACAAATGGCAGTATTCATCCAC AATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACA AACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTCGGGTTTATTACAGGGACAGCAGAGATCCACTTT GGCGCCGGCTCGAGGGGG

References

1. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84-87 (2014).
2. Trapnell, C., Pachter, L. \& Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111 (2009).
3. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562-578 (2012).
4. Merkin, J., Russell, C., Chen, P. \& Burge, C. B. Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science 338, 1593-1599 (2012).
5. Langmead, B., Trapnell, C., Pop, M. \& Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
6. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832 (2013).
7. Kozomara, A. \& Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42, D68-73 (2014).
8. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10-12 (2011).
