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ABSTRACT

This paper develops an improved algorithm for estimating velocity from single loop detector data.

Unlike preceding works, the algorithm is simple enough that it can be implemented using existing

controller hardware.  The discussion shows how the benefits of this work extend to automated

tests of detector data quality at dual loop speed traps.  Finally, this paper refutes an earlier study

that found conventional single loop velocity estimates are biased.
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INTRODUCTION

Loop detectors are the preeminent vehicle detector for freeway traffic surveillance.  They are

frequently deployed as single detectors, i.e., one loop per lane per detector station.  Although

single loops have been used for decades, debate continues on how to interpret the measurements

and how to calibrate the detectors.  In conventional practice, the single loop measurements are very

noisy and many researchers have sought sophisticated filtering methods, e.g., Mikhalkin et al

(1972), Pushkar et al (1994), and Dailey (1999).  Unfortunately, most of the preceding efforts

focused on complicated models without explicitly identifying the sources of error.  The earlier

works also lose sight of the end goal: to produce an algorithm that can be deployed on a simple

processor, such as a Model 170 controller.

This paper provides a new perspective by clarifying the source of several errors and suggesting

ways to reduce the impacts.  The body of this work emphasizes velocity estimation, but it has

implications for tests of detector data quality as well.  The first section reviews the state of the

practice for parameter measurement and estimation from single loop detectors.  The next section

illustrates how conventional practice may be susceptible to changes in the vehicle population

throughout the day as well as errors due to sample size.  The paper continues by developing an

algorithm to overcome these problems.  Finally, the discussion shows how the work has

implications for tests of detector data quality and elucidates the findings of an earlier study that

concluded that single loop velocity estimates are biased.

PARAMETER MEASUREMENT AND ESTIMATION

Conventional single loop detectors are capable of measuring flow, the number of vehicles that pass

the detector during a fixed sample period, and occupancy, the percentage of the given sample

period that the detector is "occupied" by vehicles.  For each lane, these two parameters are defined

as:

q
n

Tk
k= (1A)

θk

j
j J

t

T
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∑
(1B)

where the subscript "k" indicates the given sample, subscript "j" indicates vehicle specific

parameters and
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qk  = flow during sample k

θk  = occupancy during sample k

nk  = number of vehicles that pass the detector during sample k

T  = sampling period

Jk  = set of all vehicles that pass the detector during sample k

t j  = vehicle j's on time.

Two interdependent vehicle parameters are of interest for estimating mean sample velocity: vehicle

velocity and vehicle length.  The relationship between these two parameters for a vehicle passing

over a loop detector is simply:

L L L v tj j
v

j
s

j j= + = ⋅ (2)

where

Lj  = vehicle j's effective length as "seen" by the detector

Lj
v  = vehicle j's true length

Lj
s  = length of detector's sensitivity region for vehicle j

vj  = vehicle j's velocity

The length of the detector's sensitivity region typically depends on many variables such as the

vehicle's position in the lane, height of the vehicle's underframe, and the amount of ferrous metal

in the vehicle.  It is difficult to separate this length from the vehicle's true length using loop

detector data, so for the rest of this paper "length" will refer to the sum of these two lengths, often

referred to as the effective vehicle length.

From equations 1 and 2,
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assuming that individual vehicle lengths and velocities are uncorrelated,

θk
k k

k
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≈ ⋅

(3B)

where
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Lk  = arithmetic mean vehicle length for sample k

vk  = harmonic mean vehicle velocity for sample k, often referred to as the space mean

speed.

In other words,

v
q L

k
k k

k

≈ ⋅
θ

(4)

Equation 4 shows the relationship between mean velocity and mean length, but these two

parameters can not be measured independently at a single loop.  Typically, an operating agency

will use one of two approaches to address this problem.  In the first case, Lk  is simply set to a

constant value, L̂ , and Equation 5 is used to estimate vk :

ˆ
ˆ

v
q L

k
k

k

= ⋅
θ

(5)

There are many site specific variables that can influence the mean vehicle length, such as the

percentage of long vehicles in the lane and the detector's sensitivity.  So, other operating agencies

assume a fixed free flow velocity and reversing the assignment in Equation 5, estimate L̂  each day

during periods when traffic over the detector is almost certain to be free flowing.  Then, L̂  is held

fixed during the remainder of the day and the velocity estimation progresses using Equation 5

directly.

ANALYSIS

Some of the site specific variables are corrected with a daily estimate of L̂ , but other factors are not

addressed, such as the possibility that the percentage of long vehicles may change during the day

or the simple fact that a sample with few vehicles (i.e., low flow) may not have a representative

sample of vehicle lengths.  For this study, we examine 24 hours of detector actuations, sampled at

60 Hz, for each lane at a detector station on Interstate-80 in Berkeley, California.  The data come

from dual loop speed traps, where a speed trap consists of two closely spaced loop detectors in the

same lane.  In this configuration, it is possible to measure true vehicle velocities by dividing the

loop separation by the difference in arrival times at each loop.  Finally, Lk  is calculated using

Equation 4 by assuming absolute equality.
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Figure 1A illustrates the time series evolution of Lk  for the eastbound traffic with T = 15min .

Following Caltrans convention, lanes are numbered starting at the inside and increasing outward.

The legend indicates the total number of vehicles in each lane during the day.  Including the

westbound data (not shown), the observed values of Lk  range from 19 feet to 51 feet and almost

all lanes exhibit a strong temporal dependency.  Figure 1B-C show the corresponding nk  and vk ,

respectively.

When an operating agency estimates L̂ , they typically sample the value during early morning

hours.  As one would expect, these hours are free flowing for this example; however, they also

correspond to the highest values of Lk  and lowest values of qk .  Thus, if L̂  were estimated strictly

during the early morning, estimates of velocity from Equation 5 would be too high throughout the

remainder of the day.  Since the phenomena depend on site specific factors, the figures indicate the

need for an improved method of estimating L̂  on-line.

Figure 2 shows the cumulative distribution of Lk  for the eastbound lanes using four different

sampling periods.  Although Lane 1 shows little variance due to a truck restriction, the other lanes

exhibit a large variance.  So no single value of L̂  will be representative of all samples and a value

of L̂  estimated using one value of T  might not be valid for another value of T .

The primary source of this variance comes from the fact that the vehicles observed during a given

sample may not be "typical".  Figure 3 shows the observed distribution of individual vehicle

lengths for the eastbound traffic.  Approximately 85 percent of the vehicles are between 15 and 22

feet, but some are as long as 80 feet or roughly four times the median length.  When nk  is small,

i.e., low flow, a long vehicle can skew θk  simply because it takes more time for the long vehicle to

pass the detector.

In accordance with the law of large numbers, the sample distribution should become more

representative of the entire population as nk  increases, which in turn, increases with qk  and T .

Figure 4 illustrates this phenomena using the eastbound data from all lanes for three values ofT .

The top half of the figure shows Lk  during free flow conditions, vk  > 50 mph, while the lower

half shows Lk  during congestion, vk  < 50 mph.  In parts A and D, where T = 30sec, the

maximum number of vehicles per sample is so small that the observations fall into distinct

columns, i.e., the first column contains observations with only one vehicle, the second column

contains observations with only two vehicles, and so on.  Notice that for each T , the range of Lk
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decreases as qk  increases; also note that in this data set, the lowest flows are only observed during

free flow conditions.

Improving the Length Estimates

As previously noted, a single loop detector can not measure vk  directly and estimates of L̂  may be

biased by the time of day.  To overcome these problems, L̂  is estimated during periods when the

traffic should be free flowing.  Rather than choosing a period of the day a priori, the data are used

to make the distinction.  Empirically, free flow conditions correspond to low occupancies and

Equation 3B explicitly shows that θk  is inversely proportional to vk .  For this study, a sample is

considered free flowing if

θ θk threshold< (6)

where θthreshold  was set to 10 percent.  The value was chosen so that most free flow samples would

be selected, but low enough to ensure that very few (if any) congested samples are selected.  In

practice, this threshold could be set from a plot of flow versus occupancy.  To account for samples

with high θk  due to free flowing trucks, for T = 30sec, a sample is also considered free flowing if

at least half of the 10 preceding samples satisfy Equation 6.  Next,

L̂ v mean
qff

k

k

= ⋅






θ ∀ ∈k K (7)

where

vff  = assumed fixed free flow velocity, set to 60 mph for this study

K  = set of all free flow samples with qk > 0 and θk > 0  in the given lane during the 24

hour study.

The resulting L̂  for the eastbound traffic are shown in Table 1.  Using these values and Equation 5

to calculate v̂k , Figure 5 shows v̂k  versus vk  over entire 24 hour study.  The solid line in each plot

indicates where the estimated values equal the measured values.  Note that v̂k  ranges between 20

mph and 120 mph for samples with vk  > 50 mph.  In other words, the estimate is very noisy when

the traffic is free flowing.  The noise is primarily due to the variance in Lk  at low flow (recall from

Equations 4-5, ˆ ˆv v L Lk k k≈ ⋅ ).  Finally, consider the congested observations, vk  < 50 mph.  In
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each lane the observations are roughly collinear and the guess of vff  serves as a scaling factor,

increasing or decreasing the slope of the congested data.  In lane 1, the guess of vff  was too low

and the estimated velocities are lower than the measured velocities, while in lanes 3 and 4, the

opposite is true.  This error is included in the plots because it can not be eliminated from single

loop detector data without additional detectors.

The analysis is repeated with T = 5min  to reduce the estimate noise.  Now, however, a sample is

only considered free flowing if it satisfies Equation 6 or the preceding sample satisfied Equation 6.

Once more the resulting L̂  are shown in Table 1, while Figure 6 shows v̂k  versus vk  for

T = 5min .  Even with the longer sampling period, the estimates are still noisy when the traffic is

free flowing.

To illustrate the effects of different values of vff  or L̂ , consider the percent error in v̂k  relative to

vk  over the entire day for various fixed values of L̂ .  Figure 7 shows contour plots of the percent

error as L̂  ranges between 16 and 32 feet for two different lanes when T = 30sec and T = 5min .

For example, when L̂  = 19 feet in Figure 7A, approximately 70 percent of the estimated velocities

are within 5 percent of the measured values.  Comparing the top plot to the bottom plot in either

lane, the longer sampling period increases nk  and thus, reduces the error.  Notice that the optimal

value of L̂  appears to depend on T  in the right-hand plots (lane 5 westbound), reaffirming the fact

that L̂  estimated at one value of T  may not be valid for another value of T .  The figure also shows

that performance is relatively stable for length estimates within a few feet of the optimal value.

Improving the Velocity Estimates

Free flow velocity estimates are poor during low flow, but from an operational standpoint, it is

sufficient to know that traffic is free flowing during these conditions.  This supposition is implicit

with on-line estimation of L̂ .  Once more, exploiting the fact that free flow, low flow samples are

characterized by low occupancy, the estimated velocity can be set to a constant value, v̂ vk ff=

when θ θk threshold< .  Rewriting Equation 5 to include this constraint:

ˆ

ˆ
,

,
v

q L

v
k

k

k
k threshold

ff k threshold

=
⋅ ≥

<






θ

θ θ

θ θ
(8)
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To illustrate the benefits of this constraint, return to the data in Figure 6.  Recalculating v̂k  using

Equation 8 with θthreshold = 10%, the new relationships are shown in Figure 8.  Notice that almost

all of the noise has been eliminated from the estimates corresponding to samples with vk  > 50

mph.  Figure 9 compares the time series v̂k  from Equation 5, v̂k  from Equation 8, and vk .  In this

figure, one can see that Equation 8 removed many erroneous velocity estimates, particularly during

the early morning.  Applying Equation 8 to the 30 second data yields similar results, as shown in

Figure 10.

IMPLEMENTATION

The analysis for T = 30sec used a moving average to identify free flow periods with high θk , but

a moving average is memory intensive.  In contrast, exponential filtering can accomplish the same

goal with almost no data storage.  The following pseudo-code can be used to implement the

method presented above:

if θk > 0  and qk > 0

if θk < 10% or u > 0 1.

ˆ ˆL v mean
q

r L rff
k

k

= ⋅






⋅ + ⋅ −( )θ
1

v̂ vk ff=

u p u p= ⋅ + ⋅ −( )1 1

else

ˆ
ˆ

v
q L

k
k

k

= ⋅
θ

u p u p= ⋅ + ⋅ −( )0 1

end

end

where
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r  = filtering factor with a time constant on the order of a week (to minimize the time of day

dependency illustrated in Figure 1A), e.g., r = 1 20000 for T = 30sec and

r = 1 2000 for T = 5min .

p  = filtering factor with a time constant on the order of 5 minutes, e.g., p = 0 2.  for

T = 30sec and p = 1 for T = 5min .

u  = an indicator variable used in conjunction with p to determine whether preceding

samples were free flowing.

Rather than using a static assignment of L̂ , as in Equation 7, the algorithm uses an exponential

filter to dynamically update L̂ .  This pseudo-code is presented to show that the method can be

implemented easily, but it is left to future research to determine the optimal implementation.

DISCUSSION

Implications Beyond Single Loop Velocity Estimates

The impact of this work to single loop detectors is straightforward, but this work has implications

for dual loop speed traps as well.  Earlier studies have developed automated tests of detector data

quality, e.g., Jacobson et al (1990), Cleghorn et al (1991), and Nihan (1997).  Their goal is to

eliminate erroneous measurements due to transient problems or component failures.  Similar

systems often go undocumented in the literature because they are either designed in-house by an

operating agency or a consulting firm (see Chen and May, 1987, for examples).  Most of these

data quality tests can be expressed using the following constraint to bound good speed trap data:

v
q L q v q L q v

k
k k k k

k

k k k k

k

∈
⋅ ( ) ⋅ ( )









min max, ,
,

, ,θ
θ

θ
θ

(9A)

where Lmin  and Lmax  are lower and upper bounds, respectively, that may depend on qk , vk  or θk .

Naturally, this constraint reduces to the following for single loop detector data:

ˆ
,

,
,min maxv

q L q q L q
k

k k k

k

k k k

k

∈
⋅ ( ) ⋅ ( )









θ
θ

θ
θ

(9B)

Some of these tests fail to accommodate the fact that the variance in Lk  increases as qk  decreases.

The author recently identified such a system currently in use by a large operating agency.  In

particular, the agency applied Equation 9A, using fixed values of Lmin  and Lmax , to speed trap data.
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The test discarded almost all early morning observations from the agency's 400 detector stations

simply because the constraint is too restrictive during low occupancy conditions.

Previous Research in the Context of the new Analysis

There has been some confusion in the discipline since Hall and Persaud (1989) concluded that, for

a fixed value of L̂ , Equation 5 does not hold over an extended range of occupancies.  Their paper

examined the "g-factor" which is simply the inverse of L̂ , and the analysis used,

g
Lk

= 1
(9)

Roughly summarizing their plots of g versus occupancy: g decreases by a factor of two from one

percent to five percent occupancy, remains constant over the range of five percent to 40 percent

occupancy, and then drops by an order of magnitude from 40 percent to 80 percent occupancy.  To

reduce errors due to vehicle lengths, they selected lanes with truck restrictions.  In an attempt to

reproduce these results, Figure 11A shows the g-factor versus occupancy for lane 1 eastbound.

The g-factor does not exhibit the predicted occupancy dependence.  There is one difference,

however, the earlier study used occupancy expressed in integer percent.  After truncating percent

occupancy to integer values and recalculating g, Figure 11B shows the new g-factor versus integer

percent occupancy.  This plot exhibits the non-linearity at low occupancies predicted by Hall and

Persaud, but it does not show the drop in g at high occupancy.  Finally, using time mean speed1

rather than space mean speed and the truncated occupancy to calculate g, Figure 11C follows the

predictions from the earlier study.  Figure 12 compares the various methods of calculating the g-

factor.  It shows mean g-factor over one percent ranges up to 35 percent occupancy and then over

five percent ranges through 50 percent occupancy.  Note that by using time mean speed without

truncating occupancy, the g-factor follows the predictions for high occupancy but it does not

follow the predictions for low occupancy.

These figures clearly show that subtle differences in aggregation can lead to significant differences

in parameter relationships.  The tools and data necessary for this detailed analysis were not

available to researchers when Hall and Persaud published their work.  Although their diagnosis

seems to be incorrect, Hall and Persaud correctly identified a significant problem with conventional

velocity estimation.  An operating agency should expect to encounter similar round-off errors at

                                                

1 The arithmetic mean of each samples' vehicle velocities.
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low occupancy if they use truncated occupancy to estimate L̂  and this error will propagate to all

subsequent velocity estimates.  In the course of their analysis, Hall and Persaud assumed the

operating agency was measuring space mean speed when in fact it appears that the agency was

measuring time mean speed.  This measurement error would explain their results at high

occupancy.  To prevent such oversights in the future, researchers should learn the subtle details of

the data measurement and aggregation procedures underlying their detector data.  One must

remember that loop detectors, as well as most other vehicle detectors, are not precision

instruments.  To keep the detectors affordable, they are typically designed to meet existing

operational needs with minimal excess performance.  Finally, recall that the results in Figure 12

represent a lane with a truck restriction.  As shown earlier in this paper, when trucks are present,

the large range of possible vehicle lengths will reduce the accuracy of velocity estimates from

single loops.

CONCLUSIONS

The significance of this work to single loop detectors is straightforward.  Figure 7 shows that no

single estimate of L̂  is appropriate for all samples; but fortunately, for most samples, it is

sufficient for the estimate to be within a few feet of the optimal value.  Significant errors occur at

low flows, however, since the variance in Lk  increases as qk  decreases.  This variance degrades

the velocity estimation because Lk  is less likely to be average, as shown in Figure 4.  Exploiting

the fact that the low flow free flow samples are characterized by low occupancy, the paper has

shown that it is possible to identify these conditions and simply report that traffic is free flowing

(Figures 9-10).  This paper has presented improved methods for estimating L̂  and v̂k

incorporating these findings.  Unlike many preceding works, the approach is simple enough that it

can be implemented on existing traffic controllers that have limited processing power, such as a

Model 170 controller.  Although the implementation is fairly simple, this work has wide ranging

implications for practitioners and researchers.  For example, the discussion shows how the work is

applicable to automated tests of detector data quality, both from dual and single loop detectors.

Then, the paper closes by refuting an earlier study, showing that in the presence of a truck

restriction, the use of a single estimate L̂  in Equation 5 is indeed valid over an extended range of

occupancies provided care is taken to measure the right parameters and prevent round-off errors.
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Figure 6, Estimated velocity versus measured velocity, eastbound traffic, T = 5 min, (A) lane 1, (B) 
lane 2, (C) lane 3, (D) lane 4.
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Figure 7, Contour plot showing the cumulative distribution of percent error in estimated velocity as a function of M, 
(A)-(B) T = 30 sec, (C)-(D) T = 5 min, for (A) & (C) lane 1 eastbound, (B) & (D) lane 5 westbound.
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Figure 8, Estimated velocity after identifying low occupancy samples versus measured velocity, 
eastbound traffic, T = 5 min, (A) lane 1, (B) lane 2, (C) lane 3, (D) lane 4.
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Figure 9, (A) Estimated velocity before identifying low occupancy samples, U, eastbound traffic, T = 
5 min and the corresponding (B) estimates after identifying low occupancy samples,  (C) 
measured velocities, V.
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Figure 10,(A) Estimated velocity before identifying low occupancy samples, U, westbound lane 3, T = 
30 sec and the corresponding (B) estimates after identifying low occupancy samples,  (C) 
measured velocities, V.
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Figure 11, (A) The g-factor versus occupancy, T = 30 seconds, lane 1 eastbound, (B) with occupancy 
rounded down to integer values, (C) using time mean speed and rounded occupancy.
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Figure 12,Mean g-factor calculated various ways versus occupancy, T = 30 seconds, for 
eastbound lane 1. (A) The aggregation method used by Hall and Persaud shown with 
"X"'s contrasted against the method advocated by this work, (B) the results from two 
additional aggregation methods.
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Table 1, The resulting estimates of L̂  for the eastbound traffic

Lane
L̂  (feet)

T = 30 sec
L̂  (feet)

T = 5 min

1 16.8 16.9
2 19.6 19.9
3 21.3 22.0
4 21.8 22.8
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