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Abstract—One source of accidents when driving a vehicle is
the presence of homogeneous and heterogeneous fog. Fog fades
the colors and reduces the contrast of the observed objects
with respect to their distances. Various camera-based Advanced
Driver Assistance Systems (ADAS) can be improved if efficient
algorithms are designed for visibility enhancement of road
images. The visibility enhancement algorithm proposed in [1] is
not dedicated to road images and thus it leads to limited quality
results on images of this kind. In this paper, we interpret the
algorithm in [1] as the inference of the local atmospheric veil
subject to two constraints. From this interpretation, we propose
an extended algorithm which better handles road images by
taking into account that a large part of the image can be
assumed to be a planar road. The advantages of the proposed
local algorithm are its speed, the possibility to handle both
color images or gray-level images, and its small number of
parameters. A comparative study and quantitative evaluation
with other state-of-the-art algorithms is proposed on synthetic
images with several types of generated fog. This evaluation
demonstrates that the new algorithm produces similar quality
results with homogeneous fog and that it is able to better deal
with the presence of heterogeneous fog.

I. INTRODUCTION

A cause of vehicle accidents is reduced visibility due to

bad weather conditions such as fog. This suggests that an

algorithm able to improve visibility and contrast in foggy

images will be useful for various camera-based Advanced

Driver Assistance Systems (ADAS). One may think of an

alarm when the distance to the previous vehicle which is

observed within the image is too short with respect to the

driver’s speed. Another possibility is to combine visibil-

ity enhancement with pedestrian and two-wheeled vehicles

recognition algorithms to deliver adequate alarms. For this

kind of ADAS based on the use of a single camera in the

vehicle, the contrast enhancement algorithm must be able to

process each image in a sequence robustly in real time. The

key problem is that, from a single foggy image, contrast

enhancement is an ill-posed problem. Indeed, due to the

physics of fog, visibility restoration requires to estimate both

the scene luminance without fog and the scene depth-map.

This implies estimating two unknown parameters per pixel

from a single image. Such a problem requires regularization.

The first approach proposed to tackle the visibility restora-

tion problem from a single image is described in [2].

The main idea is to provide interactively an approximate

depth-map of the scene geometry allowing to deduce an

approximate luminance map without fog. The drawback of

this approach for camera-based ADAS is clear: it is not easy

to provide the approximate depth-map of the scene geometry

from the point of view of the driver all along its road path.

In [3], this idea of approximate depth-map was refined by

proposing several simple parametric geometric models dedi-

cated to road scenes seen in front of a vehicle. For each type

of model, the parameters are fit on each view by maximizing

the scene depths globally without producing black pixels in

the enhanced image. The limit of this approach is the lack

of flexibility of the proposed geometric models.

During the same period of time, another approach to

tackle this problem was proposed in [4] based on the use

of color images with pixels having a hue different from

gray. A difficulty with this kind of approach, for applications

we focus on, is that a large part of the image corresponds

to the road which is gray and white. Moreover, in our

opinion, Intelligent Vehicle applications require visibility

enhancement algorithms to be able to process gray-level

images.

More recently and for the first time in [5], [6], [1], three

visibility enhancement algorithms were proposed working

from a single gray-level or color image without using any

other extra source of information. These three algorithms rely

on a local spatial regularization to solve the problem. The

main drawback of [5] and [6] algorithms is their processing

time: 5 to 7 minutes and 10 to 20 seconds on a 600× 400

image, respectively. The algorithm proposed in [1] is much

faster with a processing time of 0.2 second on a Dual-Core

PC on similar image size. The disadvantage of these three

visibility enhancement methods is that they are not dedicated

to road images and thus the road part of the image which

is gray is over-enhanced due to the ambiguity between light

colored objects and the presence of fog, as it is illustrated

on two images in Fig. 1.

The important property of a road image is that a large part

of the image corresponds to the road which can be reasonably

assumed to be planar. Visibility enhancement dedicated to

planar surface was first proposed in [7], but this algorithm

is not able to correctly enhance visibility for the objects

out of the road plane. Recently, a visibility enhancement

algorithm [8] dedicated to road images was proposed which



Fig. 1. From left to right, the original image with fog, the results obtain with visibility enhancement using [5], [6] and [1] algorithms. Notice how the
road close to the vehicle is over-contrasted or too dark.

was also able to enhance contrast for objects out of the road

plane. This algorithm makes good use of the planar road

assumption but relies on an homogeneous fog assumption.

In this work, we extend the algorithm described in [1]

to take into account that a large part of the image is the

planar road. Like [8], the new algorithm makes good use of

the planar road assumption and thus can also be seen as the

combination of the local visibility enhancement algorithm [1]

with the road-specific enhancement algorithm [7]. The pro-

posed algorithm is obtained thanks to our interpretation of [1]

as a visibility enhancement algorithm which enforces two

constraints, and in particular the no-black-pixel constraint

which is not used in [5] and [6]. The main idea in the new

algorithm is to take into account the road plane in front of the

vehicle, as another third constraint. The obtained algorithm

is suitable for camera-based ADAS uses since it is able to

process gray-level as well as color images and runs close to

real time.

To compare the proposed algorithm to previously pre-

sented algorithms, we build up a set of 90 synthetic images

with and without fog. The algorithms are applied on foggy

images and results are compared with the images without

fog.

The article is structured as follows. Section II presents

the fog model we use. In section III, the multiscale retinex

algorithm (MSR) [9] is summarized. In section IV, different

approaches of visibility enhancement are described: based

on the planar assumption (PA) [7], based on a free-space

segmentation (FSS) [8], based on no-black-pixel constraint

(NBPC) [1], and finally the new combined algorithm named

NBPC+PA. In section V is provided a comparison between

MSR, FSS, NBPC and NBPC+PA algorithms based on a

quantitative evaluation on 18× 4 color images, illustrating

the properties of each algorithm.

II. EFFECT OF FOG

Assuming an object of intrinsic luminance L0(u,v), its

apparent luminance L(u,v) in presence of a fog of extinction

coefficient k is modeled by Koschmieder’s law [10]:

L(u,v) = L0(u,v)e
−kd(u,v) +Ls(1− e−kd(u,v)) (1)

where d(u,v) is the distance of the object at pixel (u,v) and

Ls is the luminance of the sky. As described by (1), fog

has two effects: first an exponential decay e−kd(u,v) of the

intrinsic luminance L0(u,v), and second the addition of the

luminance of the atmospheric veil Ls(1−e−kd(u,v)) which is

an increasing function of the object distance d(u,v).
From now on, we assume that camera response is linear,

and thus image intensity I is substituted to luminance L.

III. MULTISCALE RETINEX (MSR)

We now recall the retinex algorithm. The retinex is not

a Visibility enhancement algorithm since it is not based on

Koschmieder’s law (1), but it is able to remove a constant

intensity on the image. However, we found interesting to

include it in our comparison to quantify the gain visibility

enhancement algorithms are able to achieve.

The multiscale retinex (MSR) is a non-linear image en-

hancement algorithm proposed by [9]. The overall impact is

to brighten up areas of poor contrast/brightness but not at

the expense of saturating areas of good contrast/brightness.

The MSR output is simply the weighted sum of the outputs

of several single scale retinex (SSR) at different scales. Each

SSR is capable of enhancing some particular characteristic

of the input image. For instance, narrow surrounds highlight

the fine features but almost all tonal rendition is lost. Wide

surrounds retain all the tonal information but do not enhance

the small fine features. Hence, multiple surrounds are needed

to achieve a graceful balance between dynamic range com-

pression and tonal rendition.

Each color component being processed independently, the

basic form of the SSR for on input image I(u,v) is:

Rk(u,v) = log I(u,v)− log[Fk(u,v)∗ I(u,v)] (2)

where Rk(u,v) is the SSR output, Fk represents the kth

surround function, and ∗ is the convolution operator. The



surround functions, Fk are given as normalized Gaussians:

Fk(u,v) = κke
−(u2+v2)/σ2

k (3)

where σk is the scale controlling the extent of the surround

and κk is for unit normalization. Finally the MSR output is:

R(u,v) =
k=K

∑
k=1

WkRk(u,v)) (4)

where Wk is the weight associated to Fk.

The number of scales used for the MSR is, of course,

application dependent. We have tested different sets of

parameters, and we did not found a better parametrization

than the one proposed by [11]. It consists of three scales

representing narrow, medium, and wide surrounds that are

sufficient to provide both dynamic range compression and

tonal rendition: K = 3, σ1 = 15 , σ2 = 80, σ3 = 250, and

Wk = 1/3 for k = 1,2,3.

Results obtained using the multiple retinex on three foggy

images are presented in column two of Fig. 2.

IV. VISIBILITY ENHANCEMENT

Three visibility enhancement algorithms are now pre-

sented: enhancement assuming a planar scene assumption

(PA), enhancement with free-space segmentation (FSS) and

enhancement with no-black-pixel constraint (NBPC). The

advantages and limits of these three algorithms are discussed

and a new algorithm is proposed we named NBPC+PA algo-

rithm which tries to combine advantages of PA and NBPC

algorithms. The results obtained by the four algorithms are

presented in Fig. 2 on three images.

A. With the planar assumption (PA)

Dedicated to in-vehicle applications, the algorithm pro-

posed in [12], [10] is able to detect the presence of fog

and to estimate the visibility distance which is directly

related to k in Koschmieder’s law (1). This algorithm, also

known as the inflexion point algorithm, mainly relies on three

assumptions: homogeneous fog, the main part of the image

displays the road surface which is assumed to be a planar and

homogeneous surface. From the estimated fog parameters,

the contrast in the road part of the image can be restored as

explained in [7].

Using the planar road surface assumption and knowing the

approximate camera calibration with respect to the road, it

is possible to associate a distance d with each line v of the

image:

d =
λ

v− vh
if v > vh (5)

where vh is the vertical position of the horizon line in the

image and λ depends on intrinsic and extrinsic parameters

of the camera, see [10] for details.

Using the assumption of a road with homogeneous photo-

metric properties (I0 is constant), fog can be detected and the

extinction coefficient of the atmosphere k can be estimated

using Koschmieder’s law (1). After substitution of d given

by (5), (1) becomes:

I(v) = I0e
−k λ

v−vh + Is(1− e
−k λ

v−vh ) (6)

By twice taking the derivative of I with respect to v, the

following is obtained:

d2I

dv2
(v) = k

λ (I0− Is)

(v− vh)3
e
−k λ

v−vh

(

kλ

v− vh
−2

)

(7)

The equation d2I
dv2

= 0 has two solutions. The solution k = 0

is of no interest. The only useful solution is given by (8):

k =
2(vi− vh)

λ
(8)

where vi denotes the position of the inflection point of I(v).
The value of Is is obtained as the intensity of the sky, i.e

most of the time it corresponds to the maximum intensity in

the image. Having estimated the value of k and Is, the pixels

on the road plane can be restored as R(u,v) by reversing

Koschmieder’s law [7]:

R(u,v) = I(u,v)e
k λ
v−vh + Is(1− e

k λ
v−vh ) (9)

As in [3], the introduction of a clipping plane in the

equation of the distance (5) allows, still using the reverse

of Koschmieder’s law, to enhance visibility and contrast in

the whole image. More precisely, the used geometrical model

consists in the road plan (5) in the bottom part of the image,

and in a plan in front of the camera in the top part of

the image. The height of the line which separates the road

model and the clipping plane is denoted c. As a consequence

only large distances are clipped. In summary, the geometrical

model dc(u,v) of a pixel at position (u,v) is expressed as:

dc(u,v) =















λ

(v− vh)
if v > c

λ

(c− vh)
if v≤ c

(10)

Results obtained with the previous model where the clipping

plane is set at the visibility distance are shown on three

foggy images in column three of Fig. 2. From these results it

appears that the road part of the image is correctly restored.

B. With free-space segmentation (FSS)

To be able to enhance the visibility in the rest of the scene,

an estimate of the depth d(u,v) of each pixel is needed.

In [3], a parameterized 3D model of a road scene was

proposed with a reduced number of geometric parameters.

Even if the proposed models are relevant for most road

scenes and even if the parameters of the selected model are

optimized to achieve best enhancement without black pixel

in the resulting image, the proposed models are not generic

enough to handle all traffic configurations.

In [8], a different scheme is proposed which consists in

assuming once again that the road is planar with a clipping

plane, see (10). When geometric model (10) is assumed, the

contrast of objects belonging to the road plane is correctly



Fig. 2. From left to right, the original image with fog, the images enhanced using algorithms: retinex, planar assumption with clipping, free-space
segmentation, no-black-pixel constraint and no-black-pixel constraint combined with planar assumption.

Fig. 3. Steps of visibility enhancement with FSS algorithm: (a) original
image, (b) segmentation of vertical objects (in red) and free-space region
(in green), (c) rough estimate of the scene depthmap, (d) obtained visibility
enhancement.

restored, as seen in previous section. Conversely, the contrast

of vertical objects of the scene (vehicles, trees,...) is falsely

restored since their depth in the scene is largely overesti-

mated. Consequently, their restored intensity using (9) are

negative and thus are set to zero in the enhanced image.

These are named black pixels. The set of the black pixels

gives a segmentation of the image in the objects out and

in the road plane and this allows to deduce the free-space

region D, as illustrated in green and red in Fig. 3(b), see [13]

for details.

For each pixel in the free-space region D, the road plane

model (5) is correct. For pixels out of the road plane (red

region in Fig. 3(b)), it is proposed in [8] to use the geometric

model (10) and, for each pixel, to search for the smallest c

which leads to a positive intensity in the restored image.

The obtained values are denoted cmin(u,v). Indeed, when

c is close to the line of horizon, the clipping plane is far

from the camera and the visibility is only slightly enhanced.

The larger the value of c, the closer the clipping plane is

to the camera, and thus the stronger the enhancement. The

enhancement in (9) can be so strong that enhanced intensity

becomes negative.

Every cmin(u,v) value can be associated to a distance

dmin(u,v) using (10). The obtained depthmap on the foggy

image of Fig. 3(a) is displayed in Fig. 3(c). Then, a rough

estimate of the depthmap d(u,v) is obtained as a fixed

percentage p of depth map dmin(u,v). Percentage p specifies

the strength of the enhancement and is usually set to 90% for

this method. The obtained depthmap is used to enhance the

contrast on the whole image using reversed Koschmieder’s

law as illustrated in Fig. 3(d). The algorithm is detailed in [8],

[13] and other results are shown in the fourth column of

Fig. 2.

C. With no-black-pixel constraint (NBPC)

In [1], an algorithm which relies on a local regularization

is also proposed. As explained in [1], the distance d(u,v)
being unknown, the objective of the visibility enhancement

in a single image can be set as inferring the intensity of

the atmospheric veil V (u,v) = Is(1− e−kd(u,v)). Most of the

time, the intensity of the sky Is corresponds to the maximum

intensity in the image, and thus Is can be set to 1 without loss

of generality, assuming the input image normalized. After

substitution of V in (1) and with Is = 1, Koschmieder’s law

is rewritten as:

I(u,v) = I0(u,v)(1−V (u,v))+V (u,v) (11)

The foggy image I(u,v) is enhanced again as R(u,v)
simply by the reversing of (11):

R(u,v) =
I(u,v)−V (u,v)

1−V (u,v)
(12)

One may notice that the enhancement equation provided

by Koschmieder’s law is a linear transformation. Interest-

ingly, it gives us the exact link between its intercept and its

slope.



The atmospheric veil V (u,v) being unknown, let us enu-

merate the constraints V (u,v) is subject to. V (u,v) must be

higher or equal to zero and V (u,v) is lower than I(u,v):

0≤V (u,v) ≤ I(u,v) (13)

These are the photometric constraints as named in [5].

We now introduce a new constraint which focuses on the

reduction of the number of black pixels in the enhanced

image R. This constraint is named no-black-pixel constraint

and states that the local standard deviation of the enhanced

pixels around a given pixel position must be lower than its

local average:

std(R) ≤ R̄ (14)

In case of a Gaussian distribution of the intensities, this

criterion implies 15.8% of the intensities becoming black.

Using 2std(R) instead of std(R) leads to a stronger criterion

where only 2.2% of the intensities become black.

The difficulty with this last constraint is that it is set as

a function of the unknown result R. Thanks to the linearity

of (12), the no-black-pixel constraint can be turned into a

constraint involving V and I only. For this purpose, we now

enforce local spatial regularization by assuming that locally

around pixel position (u,v), the scene depth is constant and

the fog homogeneous, i.e equivalently, the atmospheric veil

locally equals V (u,v) at the central position. Under this

assumption, we derive using (12) that the local averages

Ī and R̄ are related by R̄ = Ī−V (u,v)
1−V (u,v) and that the standard

deviations std(I) and std(R) are related by std(R) = std(I)
1−V (u,v) .

We therefore obtain, after substitution of the two previous

results in (14), the no-black-pixel constraint rewritten as a

function of V (u,v) and I:

V (u,v) ≤ Ī− std(I) (15)

The atmospheric veil V (u,v) is set as a percentage p of

the minimum over the two previous upper bounds:

V (u,v) = p min(I(u,v), Ī− std(I))

Percentage p specifies the strength of the enhancement and

is usually set to 95% for this method. The enhanced image

is obtained by applying (12) using the previous V . The

algorithm derived from the photometric and no-black-pixel

constraints turns out to be the one described in [1] where

Ī is obtained as the median of the local intensities and the

standard deviation as the median of the absolute differences

between the intensities and Ī.

This enhancement algorithm is presented with a gray-

level input image but can be extended easily to

color images (r(u,v),g(u,v),b(u,v)) by using I(u,v) =
min(r(u,v),g(u,v),b(u,v)) for the input gray-level im-

age, in the previous equations after adequate white

balance. The obtained V gives the amount of white

that must be subtracted to the three color channels.

The complete algorithm is available in MatlabTM at

perso.lcpc.fr/tarel.jean-philippe/visibility/.

Fig. 2 shows the visibility enhancement obtained by the

NBPC algorithm in the fifth column. One can notice that

the contrast on the road part of the resulting image is too

much enhanced. This is due to the fact that the atmospheric

veil V (u,v) in the road part of the image is over-estimated.

This is a consequence of the locality property of the NBPC

algorithm.

D. Combining the no-black-pixel constraint and the planar

assumption (NBPC+PA)

As explained in the previous section, the visibility en-

hancement with NBPC is a generic local method which is

not dedicated to road images and which is in difficulty in

presence of a large uniform region such as the road. In the

visibility enhancement with FSS, as explained in section IV-

B, a segmentation is performed to split the image into three

regions: the sky, the objects out of the road plane, and

the free-space in the road plane, and different enhancement

processes are performed depending on the region. The diffi-

culty with an approach based on segmentation is to manage

correctly the transition between the regions. An alternative to

the segmentation, when the problem is set as the inference of

the atmospheric veil V (u,v), is to introduce a third constraint

which prevents over-estimation in the bottom part of the

image. Indeed, the road being gray, the upper bound given

by the NBPC in the bottom part of the image is usually

large when the atmospheric veil cannot be large, due to the

reduced distance between the camera and the road.

In practice, it is very rare to observe fog with a meteoro-

logical visibility distance lower than 50m. The meteorologi-

cal visibility distance dm is related to extinction coefficient k

by dm =−
ln(0.05)

k
, see [10]. As a consequence, from dm ≥ 50,

we deduce k ≤−
ln(0.05)

50
. With the assumption that the road

is a plane until a certain distance, and that the camera

calibration is known with respect to the road, λ and vh are

known, and thus, using the last term of equation (6), we

define the third constraint the atmospheric veil is subject to:

V (u,v) ≤ Is(1− e
ln(0.05)λ

dmin(v−vh) ) (16)

where dmin = 50m as justified previously. We named (16) the

planar assumption constraint. Like in the NBPC algorithm,

the atmospheric veil V (u,v) is set as a percentage p of the

minimum over the now three upper bounds:

V (u,v) = p min(I(u,v), Ī− std(I), Is(1− e
ln(0.05)λ

dmin(v−vh) ))

The enhanced image results of the application of (12) using

the previous V . We named it visibility enhancement with

NBPC+PA.

In the presence of fog with a meteorological visibility

distance lower than dmin = 50m, this third constraint limits

the possibilities of enhancement which will be partial at

short distances even with p = 100%. An alternate approach,

not tested here, is to run the fog detection algorithm and

the k estimation as explained in section IV-A and to use

the estimated k in (16) instead of −
ln(0.05)

50
. This refinement

should lead to more accurate results compared the NBPC+PA

when the fog is uniform but it also may lead to a bias when

the fog is not homogeneous enough.



Fig. 4. First column is the original synthetic image. Second column is the depth map. Third to sixth columns are the original image with different types
of synthetic fog added, from left to right: uniform fog, heterogeneous k fog, heterogeneous Ls fog, and heterogeneous k and Ls fog.

V. EXPERIMENTS

To evaluate visibility enhancement algorithms, we need

images of the same scene with and without fog. However,

obtaining such kind of pairs of images is extremely difficult

in practice since it requires to check that the illumination

conditions are the same into the scene with and without

fog. As a consequence, for the evaluation of the proposed

visibility enhancement algorithm and its comparison with

existing algorithms, we build up a set of synthetic images

with and without fog.

A. Synthetic images

The software we used is named SiVICTM and allows to

build physically-based road environments, to generate a mov-

ing vehicle with a physically-driven model of its dynamic

behavior [14], and virtual embedded sensors (proprioceptive,

exteroceptive and communication). From a realistic complex

urban model, we produced images from a virtual camera

inboard a simulated vehicle moving on a road path. We have

generated a set of 18 images from various view points trying

to sample as many scene aspects as possible. Each image is

of size 640×480 and a subset of 6 images is shown in the

first column of Fig. 4. For each point of view, its associated

depthmap is also generated, as shown in the second column

of Fig. 4. Indeed, the depthmap is required to be able to add

fog consistently in the images. We generate 4 different types

of fog:

• Uniform fog: Koschmieder’s law (1) is applied on the

18 original images with a visibility distance of 85.6m
to generate 18 images with a uniform fog added.

• Heterogeneous k fog: fog being not always perfectly ho-

mogeneous, we introduce variability in Koschmieder’s

law (1) by weighting differently k with respect to the

pixel position. These spatial weights are obtained as a

Perlin’s noise between 0 and 1, i.e a noise spatially

correlated at different scales (2,4,8, · · · to the size of

the image in pixels) [15]. Perlin’s noise is obtained as

a linear combination over the spatially correlated noise

generated at different scales with weight log2(s)
2 for

scale s.

• Heterogeneous Ls fog: rather than having k heteroge-

neous and Ls constant, we also test the case where Ls is

heterogeneous thanks again to Perlin’s noise and where

k is constant.

• Heterogeneous k and Ls fog: in order to challenge

the algorithms, we also generate a fog based on

Koschmieder’s law (1) where k and Ls are both het-

erogeneous thanks to two independent Perlin’s noises.



Algorithm Uniform Variable k Variable Ls Variable k&Ls
Nothing 70.6±5.3 49.9±4.9 56.9±5.3 39.1±4.9
MSR 46.0±4.5 71.4±14.3 46.4±5.0 71.1±13.6
FSS 34.7±6.3 34.1±3.0 44.2±6.6 43.8±9.1
NBPC 48.8±5.8 35.5±6.4 42.9±5.9 35.5±6.2

NBPC+PA 31.9±4.6 29.0±4.3 40.2±4.3 37.2±4.4

TABLE I

AVERAGE ABSOLUTE DIFFERENCE ON 18 IMAGES BETWEEN ENHANCED

IMAGES AND TARGET IMAGES WITHOUT FOG, FOR THE 4 COMPARED

ALGORITHMS, AND FOR THE 4 TYPES OF SYNTHETIC FOG.

Finally the test image database contains 4 sets of 18

foggy images associated with the 18 original images. Ex-

amples of foggy images computed as previously described

are displayed in the last four columns of Fig. 4. Notice

the differences in complexity between the different types of

generated fog.

B. Comparison

We apply each algorithm on the 4 types of synthetic fog.

Used algorithms are: multiscale retinex (MSR), enhancement

with free-space segmentation (FSS), enhancement with no-

black-pixel constraint (NBPC) and enhancement with no-

black-pixel constraint combined with planar scene assump-

tion (NBPC+PA). The results on 6 images with a uniform fog

is presented in Figure 5. Notice the increase of the contrast

for the farther objects: some object that was barely visible

in foggy image appears clearly in enhanced images. A first

visual analysis confirms that MSR is not suited for foggy

images, that vertical objects appears too dark with FSS, that

roads look over-corrected by NBPC, and that NBPC+PA

comes as a nice trade-off.

The quantified comparison consists simply in computing

the absolute difference between the image without fog and

the image obtained after enhancement. Results, averaged

over the 18 images, the number of image pixels and the

number of image color components, are shown in Tab. I.

To qualify easily the improvement obtained by the differ-

ent algorithms, the average absolute difference between the

images with and without fog is also computed and shown in

column two of the table. One can notice that the proposed

algorithms are able, in the best case, to divide the average

difference by approximatively a factor of two.

The multiscale retinex (MSR) is not a visibility enhance-

ment algorithm dedicated to scene with various object depths.

The average difference is decreased for the uniform fog and

for fog with heterogeneous Ls. Interestingly, when the k is

heterogeneous, the multiscale retinex is worse than doing

nothing. This is explained by the fact that MSR increases

some contrasts corresponding to fog and not to the scene.

With uniform fog, enhancement with free-space segmen-

tation (FSS) and with no-black-pixel constraint combined

with planar scene assumption (NBPC+PA) gives best results,

while enhancement with no-black-pixel constraint (NBPC)

is worse than the multiscale retinex (MSR), due to too

strong contrast distortions on the road part of the image.

Nevertheless enhancement with NBPC is better than MSR

at long range distances. The enhancement with NBPC+PA

allows to keep the good properties of the enhancement with

NBPC at long range distances without contrast distortions on

the road part of the image thanks to the combination with

the planar assumption.

For the three types of heterogeneous fog, enhancement

with NBPC+PA leads to better results compared to FSS.

This can be explained by the fact that FSS enhancement

algorithm relies strongly on the assumption that k and Ls are

constant over whole image when NBPC+PA algorithm does

not. Indeed, NBPC+PA algorithm only assumes that k and

Ls are locally constant in the image and thus, most of the

time, it performs better with heterogeneous fog compared to

others.

VI. CONCLUSION

Thanks to the interpretation of the local visibility enhance-

ment algorithm [1] in terms of two constraints on the infer-

ence of the atmospheric veil, we introduce a third constraint

to take into account the fact that road images contain a large

part of planar road, assuming a fog with a visibility distance

higher than 50m. The obtained visibility enhancement algo-

rithm performs better than the original algorithm on road

images as demonstrated on a set of 18 synthetic images

where a uniform fog is added following Koschmieder’s law.

We also generate different types of heterogeneous fog, a

situation never considered previously in our domain. The

proposed algorithm also demonstrates its ability to improve

visibility in such difficult heterogeneous situations. Obtained

results are compared with respect to state-of-the-art algo-

rithms: multiscale retinex [9], enhancement with free-space

segmentation (FSS) [8] and enhancement based on no-black-

pixel constraint (NBPC) [1].

We are planning to extend the set of synthetic images

used for the ground truth and to make it available on

www.lcpc.fr/en/produits/fog/ for research purpose

and in particular to allow other researchers to rate their own

visibility enhancement algorithms.
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