
ar
X

iv
:m

at
h/

03
11

39
1v

2 
 [

m
at

h.
N

T
] 

 4
 M

ar
 2

00
4

Improved Weil and Tate pairings for elliptic and

hyperelliptic curves

Kirsten Eisenträger1 ⋆, Kristin Lauter2, and Peter L. Montgomery2

1 School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton,
NJ 08540 eisentra@ias.edu

2 Microsoft Research, One Microsoft Way, Redmond, WA 98052
klauter@microsoft.com, petmon@microsoft.com

Abstract. We present algorithms for computing the squared Weil and
Tate pairings on elliptic curves and the squared Tate pairing on hyper-
elliptic curves. The squared pairings introduced in this paper have the
advantage that our algorithms for evaluating them are deterministic and
do not depend on a random choice of points. Our algorithm to evaluate
the squared Weil pairing is about 20% more efficient than the stan-
dard Weil pairing. Our algorithm for the squared Tate pairing on elliptic
curves matches the efficiency of the algorithm given by Barreto, Lynn,
and Scott in the case of arbitrary base points where their denominator
cancellation technique does not apply. Our algorithm for the squared
Tate pairing for hyperelliptic curves is the first detailed implementation
of the pairing for general hyperelliptic curves of genus 2, and saves an
estimated 30% over the standard algorithm.

1 Introduction

The Weil and Tate pairings have been proposed for use in cryptography, includ-
ing one-round 3-way key establishment, identity-based encryption, and short
signatures [9]. For a fixed positive integer m, the Weil pairing em is a bilinear
map that sends two m-torsion points on an elliptic curve to an mth root of unity
in the field. For elliptic curves, the Weil pairing is a quotient of two applications
of the Tate pairing, except that the Tate pairing needs an exponentiation which
the Weil pairing omits.

For cryptographic applications, the objective is a bilinear map with a specific
recipe for efficient evaluation, and no clear way to invert. The Weil and Tate
pairings provide such tools. Each pairing has a practical definition which involves
finding functions with prescribed zeros and poles on the curve, and evaluating
those functions at pairs of points.

For elliptic curves, Miller [10] gave an algorithm for the Weil pairing. (See also
the Appendix B to [3], for a probabilistic implementation of Miller’s algorithm
which recursively generates and evaluates the required functions based on a

⋆ The research for this paper was done while the first author was visiting Microsoft
Research. We thank S. Galbraith for constructive suggestions.

http://arxiv.org/abs/math/0311391v2


random choice of points.) For Jacobians of hyperelliptic curves, Frey and Rück
[7] gave a recursive algorithm to generate the required functions, assuming the
knowledge of intermediate functions having prescribed zeros and poles.

For elliptic curves, we present an improved algorithm for computing the
squared Weil pairing, em(P,Q)2. Our deterministic algorithm does not depend
on a random choice of points for evaluation of the pairing. Our algorithm saves
about 20% over the standard implementation of the Weil pairing [3]. We use this
idea to obtain an improved algorithm for computing the squared Tate pairing
for elliptic and hyperelliptic curves. The Tate pairing is already more efficient to
implement than the Weil pairing. Our new squared Tate pairing is more efficient
than Miller’s algorithm for the Tate pairing for elliptic curves, for another 20%
saving. For pairings on special families of elliptic curves in characteristics 2
and 3, some implementation improvements were given in [8] and [1]. Another
deterministic algorithm was given in [1]. In [2], an algorithm for the pairing on
ordinary elliptic curves in arbitrary characteristic is given. Our squared pairing
matches the efficiency of the algorithm in [2] in the case of arbitrary base points
where their denominator cancellation technique does not apply.

For hyperelliptic curves, we use Cantor’s algorithm to produce the interme-
diate functions assumed by Frey and Rück. We define a squared Tate pairing for
hyperelliptic curves, and use the knowledge of these intermediate functions to
implement the pairing and give an example. Our analysis shows that using the
squared Tate pairing saves roughly 30% over the standard Tate pairing for genus
2 curves. Our algorithm for the pairing on hyperelliptic curves can be thought
of as a partial generalization of the Barreto-Lynn-Scott algorithm for elliptic
curves in the sense that we give a deterministic algorithm which is more efficient
to evaluate than the standard one. It remains to be seen whether some denom-
inator cancellation can also be achieved in the hyperelliptic case by choosing
base points of a special form as was done for elliptic curves in [2]. For a special
family of hyperelliptic curves, Duursma and Lee have given a closed formula for
the pairing in [5], but ours is the first algorithm for the Tate pairing on general
hyperelliptic curves, and we have implemented the genus 2 case. The squared
Weil pairing or the squared Tate pairing can be substituted for the Weil or Tate
pairing in many of the above cryptographic applications.

The paper is organized as follows. Section 2 provides background on the Weil
pairing for elliptic curves and gives the algorithm for computing the squaredWeil
pairing. Section 3 does the same for the squared Tate pairing for elliptic curves.
Section 4 presents the squared Tate pairing for hyperelliptic curves and shows
how to implement it. Section 5 gives an example of the hyperelliptic pairing.

2 Weil pairings for elliptic curves

2.1 Definition of the Weil pairing

Let E be an elliptic curve over a finite field Fq. In the following O denotes the
point at infinity on E. If P is a point on E, then x(P ) and y(P ) denote the
rational functions mapping P to its affine x- and y-coordinates.



Let m be a positive integer. We will use the Weil pairing em(·, ·) definition
in [11, p. 107]. To compute em(P,Q), given two distinct m-torsion points P
and Q on E over an extension field, pick two divisors AP and AQ which are
equivalent to (P )− (O) and (Q)− (O), respectively, and such that AP and AQ

have disjoint support. Let fAP
be a function on E whose divisor of zeros and

poles is (fAP
) = m · AP . Similarly, let fAQ

be a function on E whose divisor of
zeros and poles is (fAQ

) = m · AQ. Then

em(P,Q) =
fAP

(AQ)

fAQ
(AP )

.

2.2 Rational functions needed in the evaluation of the pairing

Fix an integer m > 0 and an m-torsion point P on an elliptic curve E. Let AP

be a divisor equivalent to (P ) − (O). For a positive integer j, let fj,AP
be a

rational function on E with divisor

(fj,AP
) = jAP − (jP ) + (O)

This means that fj,AP
has j-fold zeros and poles at the points in AP , as well

as a simple pole at jP and a simple zero at O, and no other zeros or poles.
Since mP = O, it follows that fm,AP

has divisor mAP , so in fact fAP
= fm,AP

.
Throughout the paper the notation fj,P will be used to denote the function fj,AP

with AP = (P )− (O).

Silverman [11, Cor. 3.5, p. 67] shows that these functions exist. Each fi,AP
is

unique up to a nonzero multiplicative scalar. Miller’s algorithm gives an iterative
construction of these functions (see for example [1]). The construction of f1,AP

depends on AP . Given fi,AP
and fj,AP

, one constructs fi+j,AP
as the product

fi+j,AP
= fi,AP

· fj,AP
·
giP,jP

g(i+j)P
. (1)

Here the notation gU,V (two subscripts) denotes the line passing through the
points U and V on E. The notation gU (one subscript) denotes the vertical line
through U and −U . For more details on efficiently computing fm,AP

, see [6].

2.3 Squared Weil pairing for elliptic curves

The purpose of this section is to construct a new pairing, which we call the
‘squared Weil pairing’, and which has the advantage of being more efficient to
compute than Miller’s algorithm for the original Weil pairing. Our algorithm also
has the advantage that it is guaranteed to output the correct answer and does
not depend on inputting a randomly chosen point. In contrast Miller’s algorithm
may restart, since the randomly chosen point can cause the algorithm to fail.



2.4 Algorithm for em(P,Q)2

Fix a positive integer m and the curve E. Given two m-torsion points P and Q
on E, we want to compute em(P,Q)2. Start with an addition-subtraction chain
for m. That is, after an initial 1, every element in the chain is a sum or difference
of two earlier elements, until an m appears. Well-known techniques give a chain
of length O(log(m)). For each j in the addition-subtraction chain, form a tuple
tj = [jP, jQ, nj , dj ] such that

nj

dj
=
fj,P (Q) fj,Q(−P )

fj,P (−Q) fj,Q(P )
. (2)

Start with t1 = [P, Q, 1, 1]. Given tj and tk, this procedure gets tj+k:

1. Form the elliptic curve sums jP + kP = (j + k)P and jQ+ kQ = (j + k)Q.
2. Find coefficients of the line gjP,kP (X) = c0 + c1x(X) + c2y(X).
3. Find coefficients of the line gjQ,kQ(X) = c′0 + c′1x(X) + c′2y(X).
4. Set

nj+k = njnk(c0 + c1x(Q) + c2y(Q)) (c′0 + c′1x(P ) − c′2y(P ))

dj+k = djdk(c0 + c1x(Q)− c2y(Q)) (c′0 + c′1x(P ) + c′2y(P )).

A similar construction gives tj−k from tj and tk. The vertical lines through
(j+k)P and (j+k)Q do not appear in the formulae for nj+k and dj+k, because
the contributions fromQ and−Q (or from P and−P ) are equal. When j+k = m,
this simplifies to nj+k = njnk and dj+k = djdk, since c2 and c′2 will be zero.

When nm and dm are nonzero, then the computation

nm

dm
=
fm,P (Q) fm,Q(−P )

fm,P (−Q) fm,Q(P )
.

has been successful, and we have the correct output. If, however, nm or dm is
zero, then some factor such as c0 + c1x(Q) + c2y(Q) must have vanished. That
line was chosen to pass through jP , kP , and (−j − k)P , for some j and k. It
does not vanish at any other point on the elliptic curve. Therefore this factor
can vanish only if Q = jP or Q = kP or Q = (−j − k)P . In all of these cases Q
will be a multiple of P , ensuring em(P,Q) = 1.

2.5 Correctness proof

Theorem 1 (Squared Weil Pairing Formula). Let m be a positive integer.
Suppose P and Q are m-torsion points on E, with neither being the identity and
P not equal to ±Q. Then the squared Weil pairing satisfies

fm,P (Q) · fm,Q(−P )

fm,P (−Q) · fm,Q(P )
= (−1)mem(P,Q)2.



Proof. Let R1, R2 be points on E such that the divisors AP := (P +R1)− (R1)
and AQ := (Q+R2)−(R2) have disjoint support. Let A−Q := (−Q+R2)−(R2).
Let fAP

and fAQ
be as above. Then

em(P,Q) =
fAP

((Q +R2)− (R2))

fAQ
((P +R1)− (R1))

=
fAP

(Q+R2)

fAP
(R2)

·
fAQ

(R1)

fAQ
(P +R1)

.

Let g(X) = fm,P (X − R1). Then (g) = m(P + R1) −m(R1) = mAP = (fAP
),

This implies g(X)/fAP
(X) is constant and

fAP
(Q +R2)

fAP
(R2)

=
g(Q+R2)

g(R2)
=
fm,P (Q+R2 −R1)

fm,P (R2 −R1)
.

Similarly
fAQ

(R1)

fAQ
(P +R1)

=
fm,Q(R1 −R2)

fm,Q(P +R1 −R2)
.

Plugging these into Miller’s formula gives

em(P,Q) =
fm,P (Q +R2 − R1)

fm,P (R2 −R1)

fm,Q(R1 −R2)

fm,Q(P +R1 −R2)
.

Using the same argument for em(P,−Q) we obtain

em(P,−Q) =
fm,P (−Q+R2 −R1)

fm,P (R2 −R1)

fm,−Q(R1 −R2)

fm,−Q(P +R1 −R2)

=
fm,P (−Q+R2 −R1)

fm,P (R2 −R1)

fm,Q(−R1 +R2)

fm,Q(−P −R1 +R2)

Hence we can simplify em(P,Q)2 to

em(P,Q)

em(P,−Q)
=

fm,P (Q +R2 −R1) fm,Q(R1 −R2) fm,Q(−P −R1 +R2)

fm,P (−Q+R2 −R1) fm,Q(−(R1 −R2)) fm,Q(P +R1 −R2)
.

Let R := R2 −R1. This equation becomes

em(P,Q)2 =
fm,P (Q+R) fm,Q(−R) fm,Q(−P +R)

fm,P (−Q+R) fm,Q(R) fm,Q(P −R)
. (3)

Fix two linearly independent m-torsion points P and Q. The right side of (3)
is a rational function of R; call it ψ = ψ(R). Since fm,P can have zeros and
poles only at P and O, and fm,Q can have zeros and poles only at Q and O, this
function ψ(R) can have zeros or poles only at R = −Q, Q, P −Q, P +Q, P , and
O. By looking at the factors of ψ we can check that at each of these points, the
value of ψ(R) is well-defined, because the zeros and poles cancel each other out.
Since ψ is a rational function on an elliptic curve which does not have any zeros
or poles, ψ must be constant. Since for certain values of R, ψ(R) = em(P,Q)2,



this must be the case for all values of R. Hence we may in particular choose
R = O, or equivalently R1 = R2. So let R1 = R2. By Lemma 1 below,

fm,Q(R1 −R2)

fm,Q(−(R1 −R2))
= (−1)m,

and by assumption fm,P does not have a zero or pole at Q and fm,Q does not
have a zero or pole at P . Hence expression (3) simplifies to

em(P,Q)2 = (−1)m
fm,P (Q) fm,Q(−P )

fm,P (−Q) fm,Q(P )
. (4)

Lemma 1. Let f : E → Fq be a rational function on E with a zero of order
m (or a pole of order −m) at O. Define g : E → Fq by g(X) = f(X)/f(−X).
Then g(O) is finite and g(O) = (−1)m.

Proof. The rational function h(X) = x(X)/y(X) has a zero of order 1 atX = O.
The function f1 = f/hm has neither a pole nor a zero at X = O, so f1(O) is
finite and nonzero. We check that the rational function φ(X) = h(X)/h(−X)
has no zeros and poles on E. Hence φ is constant. By computing φ(X) for a
finite point X = (x, y) on E with x, y 6= 0, we see that φ is equal to −1. Hence

g(X) =
f(X)

f(−X)
=

h(X)mf1(X)

h(−X)mf1(−X)
= φ(X)m

f1(X)

f1(−X)
= (−1)m

f1(X)

f1(−X)
,

and g(O) = (−1)m.

2.6 Estimated savings

In this section we compare our algorithm for the squared Weil pairing to Miller’s
algorithm for the Weil pairing. We count operations in the underlying finite
field, counting field squarings as field multiplications throughout. This analysis
assumes that we use the short Weierstrass form for the elliptic curve E.

In practice, some of these arithmetic operations may be over a base field
and others over an extension field. That issue is discussed in more detail in [8].
Without knowing the precise context of the application, we don’t distinguish
these, although individual costs may differ considerably.

Miller’s algorithm. Miller’s algorithm chooses two points R1, R2 on E, and
lets AP = (P+R1)−(R1) and AQ = (P+R2)−(R2). Recall that in the notation
of Section 2.1, fAP

is a function whose divisor is mAP . As in Section 2.2, let
fj,AP

be a function with divisor (fj,AP
) = j(P +R1)− j(R1)− (jP )+ (O). This

is the function fj in the notation of [3, p. 611f.]. Then fm,AP
= fAP

. As pointed
out in Equation (B.1) of [3, p. 612], (1) leads to the recurrence

fi+j,AP
(AQ) = fi,AP

(AQ) · fj,AP
(AQ) ·

giP,jP (AQ)

g(i+j)P (AQ)
. (5)



During the computations, each fj,AP
(AQ) is a known field element, unlike

the unevaluated functions fj,AP
. Since AQ has degree 0, the value of fj,AP

(AQ)
is unambiguous, whereas fj,AP

is defined only up to a multiplicative scalar.
To compute the Weil pairing we need

em(P,Q) =
fAP

(Q+R2)

fAP
(R2)

fAQ
(R1)

fAQ
(P +R1)

=
fm,AP

(Q+R2)

fm,AP
(R2)

fm,AQ
(R1)

fm,AQ
(P +R1)

.

For integers j in an addition-subtraction chain for m, we will construct a tuple
tj = [jP, jQ, nj , dj ] where nj and dj satisfy

nj

dj
=
fj,AP

(Q+ R2)

fj,AP
(R2)

fj,AQ
(R1)

fj,AQ
(P +R1)

.

To compute ti+j from ti and tj , one uses the above recurrence (5) to derive the
following expression for ni+j/di+j :

ni+j

di+j
=
ni

di
·
nj

dj
·
giP,jP (Q+R2)

giP,jP (R2)
·

g(i+j)P (R2)

g(i+j)P (Q +R2)

·
giQ,jQ(R1)

giQ,jQ(P +R1)
·
g(i+j)Q(P +R1)

g(i+j)Q(R1)
. (6)

To evaluate, for example, giP,jP (Q+R2)/giP,jP (R2), start with the elliptic curve
addition iP+jP = (i+j)P . This costs 1 field division and 2 field multiplications
in the generic case where iP and jP have distinct x-coordinates and neither is
O. Save the slope λ of the line giP,jP (X) = y(X) − y(iP ) − λ(x(X) − x(iP ))
through iP and jP . Two field multiplications suffice to evaluate giP,jP (Q+R2)
and giP,jP (R2) given Q+R2 and R2. No more field multiplications or divisions
are needed to compute the numerator and denominator of

g(i+j)P (R2)

g(i+j)P (Q+R2)
=

x(R2)− x((i + j)P )

x(Q +R2)− x((i + j)P )
.

Repeat this once more to evaluate the last two fractions in (6). Overall these
evaluations cost 8 field multiplications and 2 field divisions. We need 10 multi-
plications to multiply the six fractions, for an overall cost of 18 multiplications
and 2 divisions.

Squared pairing. The squared pairing needs nm/dm where nj/dj is given
by (2). The recurrence formula is

ni+j

di+j
=
ni

di

nj

dj

giP,jP (Q)

giP,jP (−Q)

g(i+j)P (−Q)

g(i+j)P (Q)

giQ,jQ(−P )

giQ,jQ(P )

g(i+j)Q(P )

g(i+j)Q(−P )
. (7)

This time the update from ti = [iP, iQ, ni, di] and tj to ti+j needs 2 ellip-
tic curve additions. Each elliptic curve addition needs 2 multiplications and 1
division in the generic case. We can evaluate the numerator and denominator of

giP,jP (Q)

giP,jP (−Q)
=

y(Q)− y(iP )− λ(x(Q)− x(iP ))

y(−Q)− y(iP )− λ(x(−Q)− x(iP ))



with only 1 multiplication, since x(Q) = x(−Q).
The fraction g(i+j)P (−Q)/g(i+j)P (Q) simplifies to 1 since g(i+j)P (X) depends

only on x(X), not y(X). Overall 6 multiplications and 2 divisions suffice to eval-
uate the numerators and denominators of the six fractions in (7). We multiply
the four non-unit fractions with 6 field multiplications.

Overall, the squared Weil pairing advances from ti and tj to ti+j with 12
field multiplications and 2 field divisions in the generic case, compared to 18
field multiplications and 2 field divisions for Miller’s method. When i = j, each
algorithm needs 2 additional field multiplications due to the elliptic curve dou-
blings. Estimating a division as 5 multiplications, this is roughly a 20% savings.

3 Squared Tate pairing for elliptic curves

3.1 Squared Tate pairing formula

Let m be a positive integer. Let E be defined over Fq, where m divides q − 1.
Let E(Fq)[m] denote the m-torsion points on E over Fq. Assume P ∈ E(Fq)[m],
and Q ∈ E(Fq), with neither being the identity and P not equal to a multiple of
Q. The Tate pairing φm(P,Q) on E(Fq)[m]×E(Fq)/mE(Fq) is defined in [8] as

φm(P,Q) := (fAP
(AQ))

(q−1)/m
,

with the notation and evaluation as for the Weil pairing above. Now we define

vm(P,Q) :=

(

fm,P (Q)

fm,P (−Q)

)(q−1)/m

,

where fm,P is as above, and call vm the squared Tate pairing. To justify this
terminology, we will show below that vm(P,Q) = φm(P,Q)2.

3.2 Algorithm for vm(P,Q)

Fix a positive integer m and the curve E. Given an m-torsion point P on E and
a point Q on E, we want to compute vm(P,Q). As before, start with an addition-
subtraction chain for m. For each j in the chain, form a tuple tj = [jP, nj , dj ]
such that

nj

dj
=

fj,P (Q)

fj,P (−Q)
. (8)

Start with t1 = [P, 1, 1]. Given tj and tk, this procedure gets tj+k:

1. Form the elliptic curve sum jP + kP = (j + k)P .
2. Find the line gjP,kP (X) = c0 + c1x(X) + c2y(X).
3. Set

nj+k = nj · nk · (c0 + c1x(Q) + c2y(Q))

dj+k = dj · dk · (c0 + c1x(Q)− c2y(Q)).



A similar construction gives tj−k from tj and tk. The vertical lines through
(j+k)P and (j+k)Q do not appear in the formulae for nj+k and dj+k, because
the contributions from Q and −Q are equal. When j + k = m, one can further
simplify this to nj+k = nj ·nk and dj+k = dj ·dk, since c2 will be zero. When nm

and dm are nonzero, then the computation of (8) with j = m is successful, and
after raising to the (q − 1)/m power, we have the correct output. If some nm or
dm were zero, then some factor such as c0+c1x(Q)+c2y(Q) must have vanished.
That line was chosen to pass through jP , kP , and (−j− k)P , for some j and k.
It does not vanish at any other point on the elliptic curve. Therefore this factor
can vanish only if Q = jP or Q = kP or Q = (−j − k)P for some j and k. In
all of these cases Q would be a multiple of P , contrary to our assumption.

3.3 Correctness proof

Theorem 2. Let m be a positive integer. Suppose P ∈ E(Fq)[m] and Q ∈ E(Fq)
with neither being the identity and P 6= ±Q. Then the squared Tate pairing is

φm(P,Q)2 =

(

fm,P (Q)

fm,P (−Q)

)(q−1)/m

.

Proof. Let R1 and R2 be as in the proof of Theorem 1. The proof proceeds
exactly as the correctness proof for the Weil pairing. The only difference is that
the factor of (−1)m is missing in the Tate pairing and so we have

φm(P,Q)2 =
φm(P,Q)

φm(P,−Q)
=

(

fm,P (Q +R2 −R1)

fm,P (−Q+R2 −R1)

)(q−1)/m

.

By the same argument as in the proof for the Weil pairing we may choose
R2 = R1, which gives us the desired formula.

3.4 Estimated savings

This analysis is almost identical to that for the Weil pairing in Section 2.6.
When analyzing Miller’s algorithm for the Tate pairing, the main difference
from Section 2.6 is that the analog of (6) has 2 fewer fractions to evaluate and
combine. An elliptic curve addition costs 1 division and 2 multiplications, while
2 multiplications are needed to evaluate the numerators and denominators of
the two fractions. Then 6 multiplications are needed to combine the numerators
and denominators of the 4 fractions. Therefore each step of Miller’s algorithm
performing an addition costs 1 division and 10 multiplications.

For the squared Tate pairing, the analog of (7) also has 2 fewer fractions in
it. An elliptic curve addition costs 1 division and 2 multiplications, while only
1 multiplication is needed to evaluate the numerators and denominators of the
2 fractions. Then 4 multiplications are needed to combine the numerators and
denominators of the 3 non-unit fractions. Therefore each step of the squared Tate
pairing algorithm performing an addition costs 1 division and 7 multiplications.



Overall, the squared Tate pairing advances from ti and tj to ti+j with 7
field multiplications and 1 field division in the generic case, compared to 10 field
multiplications and 1 field division for Miller’s method applied to the usual Tate
pairing. When i = j, each algorithm needs one additional field multiplication
due to the elliptic curve doubling. Estimating a division as 5 multiplications,
this is roughly a 20% savings.

Comparing our squared pairing to the algorithm from [2], the algorithms are
equally efficient in the case of general base points, where there is no cancellation
of denominators in their algorithm. In [2], the authors show that if the security
multiplier is even (k = 2d) and the x-coordinate of the base point Q lies in a
subfield Fqd , then the denominators in the Tate pairing evaluation disappear.
This makes their method more efficient, but it is possible that adding this extra
structure may weaken the system for cryptographic use. Also, in some situations,
restricting to k even may not be desirable.

4 Squared Tate pairing for hyperelliptic curves

Let C be a hyperelliptic curve of genus g given by an affine model y2 = f(x)
with deg f = 2g+1 over a finite field Fq not of characteristic 2. The curve C has
one point at infinity, which we will denote by P∞. Let J = J(C) be the Jacobian
of C. If P = (x, y) is a point on C, then P ′ will denote the point P ′ := (x,−y).
We denote the identity element of J by id.

The Riemann-Roch theorem assures that each element D of J contains a
representative of the form A− gP∞, where A is an effective divisor of degree g.
In addition, we will always work with semi-reduced representatives, which means
that if a point P = (x, y) occurs in A then P ′ := (x,−y) does not occur elsewhere
in A. The effective divisor representing the identity element id will be gP∞. For
an element D of J and integer i, a representative for iD will be Ai−gP∞, where
Ai is effective of degree g and semi-reduced.

To a representative Ai − gP∞ we associate two polynomials (ai, bi) which
represent the divisor. The first polynomial, ai(x), is monic and has zeros at
the x-coordinates of the points in the support of the divisor Ai. The second
polynomial, bi(x), has degree less than deg(ai(x)), and the graph of y = bi(x)
passes through the finite points in the support of the divisor Ai.

4.1 Definition of the Tate pairing

Fix a positive integer m and assume that Fq contains a primitive mth root of
unity ζm. The Tate pairing, φm : J(Fq)[m]× J(Fq)/mJ(Fq) → F

∗
q/F

∗
q
m ∼= 〈ζm〉,

is defined in [7, p. 871] explicitly as follows. Let D ∈ J(Fq)[m] and E ∈ J(Fq).
Let hm,D be a function on C whose divisor is (hm,D) = mD. Then

φm(D,E) := hm,D(E)
q−1

m ∈ 〈ζm〉.

This pairing is known to be well-defined, bilinear, and non-degenerate. The value
hm,D(E) is defined only up to mth powers, so we raise the result to the power



q−1
m to eliminate all mth powers. Note that E is a divisor on the curve C, not
an elliptic curve. We also assume that the support of E does not contain P∞

and that E is prime to the Ai’s. Actually E needs to be prime to only those
representatives which will be used in the addition-subtraction chain for m, so to
about logm divisors.

Frey and Rück [7, pp. 872-873] show how to evaluate the Tate pairing on
the Jacobian of a curve assuming an explicit reduction algorithm for divisors
on a curve. Cantor [4] gives such an algorithm for hyperelliptic curves when the
degree of f is odd. In Section 4.4 below, we use Cantor’s algorithm to explicitly
compute the necessary intermediate functions. These functions will be used to
evaluate the squared Tate pairing, but they could just as well be used to evaluate
the usual Tate pairing.

4.2 Squared Tate pairing vm for hyperelliptic curves

Theorem 3. Given an m-torsion element D of J and an element E of J , with
representatives D = P1+P2+ · · ·+Pg−gP∞ and E = Q1+Q2+ · · ·+Qg−gP∞

respectively, with Pi not equal to Qj or Q′
j for any i, j define

vm(D,E) :=
(

hm,D(Q1 −Q′
1 +Q2 −Q′

2 + · · ·+Qg −Q′
g)
)(q−1)/m

.

Then vm(D,E) = ±φm(D,E)2 where φm(D,E) is the Tate pairing defined
above.

Proof. Recall that if P1 = (x, y) is a point on C, then P ′
1 is the point (x, −y).

Similarly, if D = P1 + P2 + · · ·+ Pg − gP∞, let D′ = P ′
1 + P ′

2 + · · ·+ Pg − gP∞.
For the proof, we will compute φm(2D, 2E).

Observe that E − E′ = Q1 − Q′
1 + Q2 − Q′

2 + · · · + Qg − Q′
g ∼ 2E in the

Jacobian of C, since E +E′ = (Q1 +Q′
1 − 2P∞) + · · ·+ (Qg +Q′

g − 2P∞) ∼ id.
Let hm,D denote the rational function on C with divisor (hm,D) = mP1 + · · ·+
mPg − 2gmP∞ as above. Then the divisor of hm,D/hm,D′ has the form

(

hm,D

hm,D′

)

= mP1 −mP ′
1 + · · ·+mPg −mP ′

g,

so (hm,D/hm,D′) ∼ 2mD in the Jacobian. That means we can use hm,D/hm,D′

to compute the pairing φm(2D, 2E). If Q is any point on C, then we can see by
comparing the divisors of the two functions that hm,D(Q) = c ·hm,D′(Q′), where
c is a constant which does not depend on Q.

Hence

φm(2D, 2E) =

(

hm,D(E − E′)

hm,D′(E − E′)

)(q−1)/m

=

(

hm,D(E − E′)

hm,D(E′ − E)

)(q−1)/m

=
(

hm,D(E − E′)
2
)(q−1)/m

.

Since φm(2D, 2E) = φm(D, E)4, it follows that

φm(D, E)2 = ±(hm,D(Q1 −Q′
1 + · · ·+Qg −Q′

g))
(q−1)/m.



4.3 Functions needed in the evaluation of the pairings

Let D be an m-torsion element of J . For a positive integer j, let hj,D denote a
rational function on C with divisor

(hj,D) = jA1 −Aj − (j − 1)gP∞.

Since D is an m-torsion element, we have that Am = gP∞, so the divisor of hm,D

is (hm,D) = mA1 − m · gP∞. Each hj,D is well-defined up to a multiplicative
constant.

Given positive divisors Ai and Aj , we can use Cantor’s algorithm to find a
positive divisor Ai+j and a function ui,j with divisor equal to

(ui,j) = Ai +Aj −Ai+j − gP∞.

We construct hj,D(E) iteratively. For j = 1, let h1,D be 1. Suppose we have Ai,
Aj , hi,D(E) and hj,D(E). Let ui,j be the above function on C. Then

hi+j,D(E) = hi,D(E) · hj,D(E) · ui,j(E).

4.4 Algorithm to compute vm(D,E)

Let D and E be as above. Form an addition-subtraction chain for m. For each
j in the chain we need to form a tuple tj = [Aj , nj , dj ] such that jD has
representative Aj − 2P∞ and

nj

dj
=
hj,D(Q1) hj,D(Q2)

hj,D(Q′
1) hj,D(Q′

2)
.

Let t1 = [A1, 1, 1]. Given ti and tj , let (ai, bi) and (aj , bj) be the polynomials
corresponding to the divisors Ai and Aj . Do a composition step as in Cantor’s
algorithm to obtain (a, b) corresponding to Ai + Aj , without performing the
reduction step. Let d(x) = gcd(ai(x), aj(x), bi(x) + bj(x)). The output polyno-
mials a, b, and d depend on i and j, but we will omit the subscripts here for ease
of notation. If d(x) = 1, then a(x) = ai(x)aj(x), and b(x) is the polynomial with
deg(b) < deg(a) such that y = b(x) passes through the distinct finite points in
the support of Ai and Aj .

The reduction step described in [4, p. 99] then replaces (a, b) by (ã, b̃) where
ã = (f − b2)/a, b̃ ≡ −b (mod ã) and deg(b̃) < deg(ã). This reduction step is
applied repeatedly until deg(ã) ≤ g. In the genus 2 situation, it follows from [4,
p. 99] that at most one reduction step is performed.

Case i. If g = 2 and deg(a(x)) > 2, a reduction step is performed. If we let

vi,j(P ) =
a(x(P ))

b(x(P )) + y(P )
, (9)

and
ui,j(P ) := vi,j(P ) · d(x(P )),



then (ui,j) = Ai + Aj −Ai+j − 2P∞, and

ui,j(P )

ui,j(P ′)
=

a(x(P ))

a(x(P ′))
·
b(x(P ′)) + y(P ′)

b(x(P )) + y(P )
·
d(x(P ))

d(x(P ′))
=
b(x(P ′)) + y(P ′)

b(x(P )) + y(P )
.

Let

ni+j := ni · nj · (b + y)(Q′
1) · (b + y)(Q′

2)

di+j := di · dj · (b + y)(Q1) · (b+ y)(Q2).
(10)

There is no contribution from a in ni+j and di+j because the contributions from
Qi and Q

′
i are equal. This improves the algorithm for the Tate pairing in [7].

Case ii. If g = 2 and deg(a(x)) ≤ 2, then ui,j(P ) = d(x(P )). In this case we let
ni+j := ni · nj and di+j := di · dj .

Case iii. Suppose g > 2. If r reduction steps are needed, then to compute ui,j ,

we obtain intermediate factors v
(1)
i,j , . . . , v

(r)
i,j , one factor as in (9) per reduction

step. Then ui,j will be the product ui,j := v
(1)
i,j · . . . · v

(r)
i,j · d(x(P )).

Note: If we evaluate ni and di at intermediate steps then it is not enough to
assume that the divisors D and E are coprime. Instead, E must also be coprime
to Ai for all i which occur in the addition chain for m. One way to ensure
this condition is to require that E and D be linearly independent and that the
polynomial p(x) in the pair (p(x), q(x)) representing E be irreducible. There are
other ways possible to achieve this, like changing the addition chain for m.

4.5 Estimated savings for genus 2

Using a straightforward implementation of Cantor’s algorithm, the total costs for
doubling and addition on the Jacobian of a hyperelliptic curve of genus 2 in odd
characteristic, C : y2 = f(x), where f has degree 5, are as follows. Doubling an
element costs 34 multiplications and 2 inversions. Adding two distinct elements
of J costs 26 multiplications and 2 inversions. More efficient implementations of
the group law may alter the total impact of our algorithm. Different field multi-
plication/inversion ratios and field sizes, as well as differing costs in an extension
field will also affect the analysis, but these costs are chosen as representative for
the purpose of estimating the savings.

Analysis of standard algorithm Let D := P1 + P2 − 2P∞. Let R1, R2, R3,
R4 be four points on C such that Q1 +Q2 − 2P∞ ∼ R1 + R2 − R3 − R4 in J .
The algorithm in [7] computes ti+j from ti and tj , where ti = [Ai, nj, dj ] and

nj

dj
=
hj,D(R1) hj,D(R2)

hj,D(R3) hj,D(R4)
.

The expression for ni+j/di+j becomes

ni+j

di+j
=
ni

di

nj

dj

ui,j(R1) ui,j(R2)

ui,j(R3) ui,j(R4)
.



To form ui,j, we have to perform an addition or doubling step to obtain Ai+j

from Ai and Aj . This costs 34 multiplications and 2 inversions for a doubling,
26 multiplications and 2 inversions for an addition. Then

ui,j(P ) =
a(x(P ))

b(x(P )) + y(P )
,

and to compute (ni+j , di+j), we need to evaluate ui,j at four different points.
Each evaluation of a(x(P )) costs 2 multiplications in a doubling step, 3 multi-
plications in an addition step (square or product of monic quadratics). Evalua-
tion of b(x(P )) (cubic) costs 3 multiplications. Finally we multiply the partial
numerators and denominators out, using 5 multiplications each, including the
multiplications with ni, nj, di, and dj . So the total cost for an addition step
is 60 multiplications and 2 inversions, and the total cost for a doubling is 64
multiplications and 2 inversions.

Squared Tate pairing The squared Tate pairing works with the divisor Q1 −
Q′

1 +Q2 −Q′
2 ∼ 2Q1 + 2Q2 − 4P∞. After adding Ai and Aj to obtain Ai+j as

above, we need to form

ni+j

di+j
=
ni

di

nj

dj

ui,j(Q1) ui,j(Q
′
1)

ui,j(Q2) ui,j(Q′
2)
.

As can be seen from (10) above, no evaluations of a(x(P )) are needed. For i =
1, 2, we need to evaluate b(x(Qi)) and b(x(Q

′
i)). This costs only 3 multiplications

for each i, since the x-coordinates of Qi and Q
′
i are the same. Finally, we have

to multiply the partial numerators and denominators, for a total cost of 12
multiplications for either a doubling or an addition.

So the total cost for an addition step is 38 multiplications and 2 inversions,
and the total cost for a doubling is 46 multiplications and 2 inversions. Estimat-
ing an inversion as 4 multiplications, this is a 25% improvement in the doubling
case and a 33% improvement in the addition case.

5 Example: g = 2, p = 31, m = 5

In this section, we evaluate the squared Tate pairing on 5-torsion on the Jacobian
of a hyperelliptic genus 2 curve over a field of 31 elements. Let C be defined by
the affine model y2 = f(x) where f(x) = x5 + 13x4 + 2x3 + 4x2 + 11x + 1.
The group of points on the Jacobian of C over F31 has order N = 1040. Let D
be the 5-torsion element of the Jacobian of C given by the pair of polynomials
D = [x2 + 23x + 15, 13x + 28]. Let E be the element of the Jacobian of C of
order 260 given by the pair E = [x2 + 4x+ 2, 29x+ 20]. Then the squared Tate
pairing evaluated at D and E is v5(D,E) = 4, where

h5,D =
(x + 26)2(x4 + 19x3 + 23x2 + 16x+ 19)(x2 + 23x+ 15)

x3 + 6x2 + 9x+ 21 + y
.



To illustrate the bilinearity of the pairing, look for example at 2D = [x2 +
25x+ 9, 10x+6], 3D = [x2 +25x+9, 21x+ 25], and 2E = [x2 + x+ 3, 26x+3].
Then we compute that indeed v5(2D,E) = 16 = v5(D,E)2, with

h5,2D =
(x+ 26)(x4 + 19x3 + 23x2 + 16x+ 19)2(x2 + 25x+ 9)

(x3 + 6x2 + 9x+ 21 + y)2
,

and v5(D, 2E) = 16 = v5(D,E)2, with h5,D as above. Also

v5(3D,E) ≡ 2 ≡ v5(D,E)3 (mod 31),

with

h5,3D =
(x+ 26)(x4 + 19x3 + 23x2 + 16x+ 19)2(x2 + 25x+ 9)

(30x3 + 25x2 + 22x+ 10 + y)2
.

References

1. Paulo S.L.M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott. Efficient algo-
rithms for pairing-based cryptosystems. In M. Yung, editor, Advances in Cryptology

– Crypto 2002, pages 354–368. LNCS 2442, Springer-Verlag, 2002.
2. Paulo S.L.M. Barreto, Ben Lynn, and Michael Scott. On the Selection of Pairing-

Friendly Groups. In: M. Matsui and R. Zuccherato, editors, Selected Areas in Cryp-

tography – SAC 2003, LNCS 3006, Springer-Verlag, 2004.
3. Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pairing.

SIAM J. Comput., 32(3):586–615 (electronic), 2003.
4. David G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp.,

48(177):95–101, 1987.
5. Iwan M. Duursma and Hyang-Sook Lee. Tate Pairing Implementation for Hyper-

elliptic Curves y2 = xp
− x + d. Advances in Cryptology - Asiacrypt 2003, pages

111–123, LNCS 2894, Springer-Verlag, 2003.
6. Kirsten Eisenträger, Kristin Lauter, and Peter L. Montgomery. Fast elliptic curve

arithmetic and improved Weil pairing evaluation. In Marc Joye, editor, Topics

in Cryptology - CT-RSA 2003, The Cryptographers’ Track at the RSA Conference

2003, San Francisco, CA, USA, April 13-17, 2003, Proceedings, pages 343–354,
LNCS 2612, Springer-Verlag, 2003.

7. Gerhard Frey and Hans-Georg Rück. A remark concerning m-divisibility and the
discrete logarithm in the divisor class group of curves. Math. Comp., 62(206):865–
874, 1994.

8. Steven Galbraith, Keith Harrison, and David Soldera. Implementing the Tate Pair-
ing. In Claus Fieker and David R. Kohel, editors, Algorithmic Number Theory,

5th International Symposium, ANTS-V, Sydney, Australia, July 7-12, 2002, pages
324–337. LNCS 2369, Springer-Verlag, 2002.

9. Antoine Joux. The Weil and Tate pairings as building blocks for public key cryp-
tosystems (survey). In Claus Fieker and David R. Kohel, editors, Algorithmic Num-

ber Theory, 5th International Symposium, ANTS-V, Sydney, Australia, July 7-12,

2002, pages 20–32. LNCS 2369, Springer-Verlag, 2002.
10. Victor S. Miller. Short programs for functions on curves. Unpublished manuscript,

1986.
11. Joseph Silverman. The Arithmetic of Elliptic Curves. GTM 106, Springer-Verlag,

1986.


	Improved Weil and Tate pairings for elliptic and hyperelliptic curves

