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Abstract. The present study aimed to investigate the 

orthotopic growth potential of two generally available 

esophageal adenocarcinoma cell lines, OE33 and OACM5 1.C, 

and a third in vivo selected subpopulation, OACM5 1.C SC1. 

One group of mice was subcutaneously injected in the hind 

legs. Tumor growth was measured with calipers. Another 

group was injected orthotopically in the distal esophageal 

wall through median laparotomy. Tumor development was 

evaluated macroscopically and confirmed microscopically. 
A subset of mice was evaluated with magnetic resonance 

imaging (MRI) to follow tumor progression. Additionally, 

functional cell line characteristics were evaluated in vitro 

(clonogenic, collagen invasion and sphere formation assays, 

and protein analysis of cell-cell adhesion and cytoskeletal 

proteins) to better understand xenograft behavior. OE33 cells 

were shown to be epithelial-like, whereas OACM5 1.C and 

OACM5 1.C SC1 were more mesenchymal-like. The three 

cell lines were non-invasive into native type I collagen gels. 

In vivo, OE33 cells led to 63.6 and 100% tumor nodules 

after orthotopic (n=12) and subcutaneous (n=8) injection, 

respectively. Adversely, OACM5 1.C cells did not lead to 

tumor formation after orthotopic injection (n=6) and only 

50% of subcutaneous injections led to tumor nodules (n=8). 

However, the newly established cell line OACM5 1.C SC1 

resulted in 33% tumor formation when orthotopically injected 

(n=6) and in 100% tumors when injected subcutaneously 

(n=8). The higher xenograft rate of OACM5 1.C SC1 (P<0.05) 

corresponded with a higher clonogenic potential compared 

to its parental cell line (P<0.0001). All models showed local 

tumor growth without metastasis formation. In conclusion, 

OACM5 1.C has a poor tumor take rate at an orthotopic 

and ectopic site. A subpopulation obtained through in vivo 

selection, OACM5 1.C SC1, gives a significant higher take 
rate, ectopically. Furthermore, OE33 establishes orthotopic 

(and subcutaneous) xenografts in mice. These models can be 

of interest for future studies, and their slow growth rates are a 

challenge for therapeutic intervention.

Introduction

Esophageal cancer is the eighth most common cancer world-

wide (1). Despite the latest evolutions in treatment, the overall 

mortality rate of esophageal cancer patients remains high, 

with a 5-year survival of only 9.8% in Europe (2,3). Therefore, 

the need for the development of new therapies is high and 

preclinical research plays herein a crucial role.

The majority of preclinical research in esophageal carci-

noma has been performed in heterotopic models (subcutaneous 

xenograft tumors) (4). However, orthotopic tumor models, 

where tumors are grown at their primary site, are preferred, 

since they more closely resemble tumor development in 

patients (5). Furthermore, it has been proven that interaction 

between the tumor and its microenvironment plays a crucial 

role during carcinogenesis (6). This tumor microenviron-

ment is considerably different when esophageal tumors are 

grown subcutaneous (heterotopic), i.e. different blood supplies 

leading to different metastatic routes.

Various preclinical research in esophageal carcinoma 

has been performed using orthotopic models. Tumor cells 

are injected either directly in the esophageal wall, or subcu-

taneously in donor animals to transplant tumor fragments 

onto the surgically injured esophageal wall. The surgical 

procedures to induce orthotopic esophageal tumors are 

technically challenging due to the location and size of the 

esophagus in laboratory animals (mostly mice). Five surgical 

approaches to the esophagus have been described: (i) median 

laparotomy (7-12), (ii) median laparotomy combined with 

transgastric approach (13), (iii) subcostal laparotomy (14), 

(iv) transoral (15) and (v) cervical approach (16). Tumor 

take varies between 0 and 100% (mean, 80.06%), and seems 

to depend more on the aggressiveness of the tumor cell 

line, than on the surgical technique. A total of 9 different 
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esophageal squamous cell carcinoma (ESSC) cell lines (81-T, 

KYSE30, KYSE150, SLMT-1, TE1, TE8, TE4, TE10 and 

T.Tn) and 3 esophageal adenocarcinoma (EAC) cell lines 

[(OE19) (9,11,17,18), PT1590 (10,19) and OE33 (9)] have been 

described for orthotopic use. Since EAC has become the 

main subtype in patients in the US and Northern and Western 

Europe (20), the present study focused on EAC. Overall, there 

is a lack of preclinical orthotopic EAC models. Of the 3 EAC 

cell lines, previously described, for orthotopic use, OE33 

represents locally advanced EAC. This cell line was used 

by Habibollahi et al for diagnostic properties (9), but only in 

5 mice. They described orthotopic OE33 tumors of 2-3 mm 

in diameter at 4 weeks after injection. OE19 and PT1590, in 

contrast, are representative cell lines for aggressive metastatic 

EAC. Moreover, OE19 overexpresses Her2, which is found in 

only a minority of EAC patients [17-32% of gastroesophageal 

junction (GEJ) tumors (21)].

The aim of the present study was to establish an orthotopic 

EAC model in the mouse based on two generally available 

human EAC cell lines, OE33 and OACM5 1.C. In vivo tumor 

take and growth were evaluated (orthotopic as well as subcu-

taneous) and in vitro cell line characterization was performed.

Materials and methods

In vitro

Cell lines. The human EAC cell lines OE33 and OACM5 1.C 

were obtained from Dr W. Dinjens (Department of Pathology, 

Erasmus MC, Rotterdam, The Netherlands) and are available 

at the European Collection of Authenticated Cell Cultures 

(ECACC) (nos. 96070808 and 11012006, respectively). 

MDA-MB-231 GFP Luc, human mammary carcinoma cell 

lines (ATCC, HTB-26) and HCT8/E11, human colon adeno-

carcinoma cell line (ATCC no. CCL-244), were controls for  

the in vitro experiments. OE33, HCT-8/E11 and MDA-MB-231 

GFP Luc were cultured at 37̊C in a 10% CO2 humidified 

atmosphere in Dulbecco's modified Eagle's medium (DMEM) 
(Life Technologies, Ghent, Belgium), supplemented with 10% 

fetal bovine serum (FBS), penicillin-streptomycin and fungi-

zone. Doxycycline (50 µg/100 ml medium) was added to the 

medium of the MDA-MB-231 GFP Luc cell line to express 

GFP. OACM5 1.C and the in vivo selected cell line OACM5 1.C 

SC1 (described below) were cultured at 37̊C in 5% CO2 

humidified atmosphere in RPMI-1640 medium supplemented 
with GlutaMAX™-I (both from Life Technologies), 10% FBS, 

penicillin-streptomycin and fungizone. EAC cell lines and the 

in vivo selected cell line OACM5 1.C SC1 were authenticated 

by STR DNA profiling. Microscopic images were captured 
using a phase contrast microscope (Leica DMI3000B; Leica, 

Diegem, Belgium).

Sphere formation assay. One million single cells were diluted 

in 6 ml culture medium in an Erlenmeyer flask (50 ml). They 
were incubated for 72 h on a Gyrotory shaker at 37̊C and 
70 rpm in 5 or 10% CO2. Aggregation was analyzed with a 

phase contrast microscope and was scored on at least 50 aggre-

gates. They were scored as compacted (individual cells not 

visible) or loose (individual cells still visible) (n=2). HCT8/E11 

and MDA-MB-231 GFP Luc cells were used as a control for a 

respectively compacted and loose sphere formation.

Collagen invasion assay. The assay was performed as 

described in a previous study (22). Briefly, 1x105 cells were 

seeded as a single-cell suspension on a 0.1% type I collagen 

gel (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA). 

After 24 h of incubation at 37̊C and 5 or 10% CO2, invasive-

ness was scored (n=2x2) and expressed as a mean. HCT8/E11 

and MDA-MB-231 GFP Luc cells were used as a control for a 

respectively high and low invasive cell line.

Colony formation assay. Single cells (1,000) were seeded in 

T75 falcons (15 ml culture medium) and cultured for 14 days 

at 37̊C. Colonies were stained with 0.5% crystal violet, 
scanned and counted using ImageJ software (NIH, Bethesda, 

MA, USA). Results are expressed as the mean percentage of 

colonies formed from 1,000 cells [colony formation index 

(CFI)] (n=2x5). HCT8/E11 and MDA-MB-231 GFP Luc cells 

were used as a control for a respectively positive and negative 

colony formation cell line.

Western blotting. Cells were lysed and sonicated for 10 sec on 

ice. Lysates were diluted to a protein concentration of 1 µg/µl 

and boiled for 5 min at 95̊C. Equal amounts of proteins were 
separated on 8 and 10% gels and transferred to nitrocellulose 

membranes. Membranes were blocked [phosphate-buffered 

saline (PBS), 5% non-fat milk, 0.5% Tween] and immunos-

tained with primary antibodies: E-cadherin M106 (Takara, 

The Netherlands), P-cadherin 610228 (BD Biosciences, 

Erembodegem, Belgium), vimentin V6389, α-catenin C2081, 

β-catenin C2206 and cytokeratin C2931, recognizing subtype 

(4, 5, 6, 8, 10, 13 and 18) (Sigma-Aldrich, St. Louis, MO, USA). 

Then, the secondary antibodies were applied, either ECL™ 

anti-mouse IgG or ECL™ anti-rabbit IgG (GE Healthcare UK 

Ltd., Buckinghamshire, UK). Immunodetection was performed 

with Pierce ECL Western Blotting Substrate (Thermo Scientific, 
Rockford, IL, USA) and imaged with ProXima 2850 (Isogen 

Life Science, De Meern, The Netherlands). HCT8/E11 was 

used as positive control for E-cadherin, P-cadherin and cyto-

keratin. MDA-MB-231 GFP Luc cells were used as a positive 

control for vimentin. Both cell lines were positive controls for 

α-catenin and β-catenin.

In vivo

Animals. Animal experiments were approved by the Animal 

Ethics Committee of Ghent University, Belgium (ECD 14/82). 

Athymic mice (Foxn1nu male) were obtained from Envigo 

(The Netherlands), and were kept under environmentally 

controlled conditions (12-h normal light/dark cycle, 20-23̊C 
and 50% relative humidity) with food and water ad libitum. 

At 8 weeks of age, tumor cells were implanted (subcutaneous 

or orthotopic) under general anesthesia (Isoflurane, Abbott, 
Belgium). At the end of the experiments, or when humane 

endpoints were reached, mice were euthanized by cervical 

dislocation.

Subcutaneous tumor model. Subcutaneous tumors were grown 

to evaluate overall growth behavior of the cell lines in mice 

and to provide tumors for in vivo selection of cancer cells. 

Under general anesthesia, tumor cells suspended in 100 µl 

of Matrigel/injection site were injected SC in both hind legs. 

Tumor nodules were measured biweekly with calipers and 
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volumes were calculated according to the following formula: 

V = (length x width)3/2 x π/6.

Orthotopic tumor model. Mice were supine positioned on a 

heating pad. Under general anesthesia and analgesia (keto-

profen, 5 mg/kg, SC) a vertical skin incision of 10 mm was 

medially performed in the upper abdomen. Abdominal muscles 

were split and the peritoneum was opened through sharp dissec-

tion (Fig. 1A). The liver was gently elevated with a moist Q-tip 

to give access to the abdominal esophagus. The stomach was 

lifted extra-corporeally by traction on the greater curvature 

with a forceps. A micro-forceps was positioned underneath the 

distal esophagus to lift it (Fig. 1B). While the esophagus was 

stretched by gentle tension on the stomach by an assistant, a 

30-gauge needle was inserted in the distal part of the esopha-

geal wall and tunneled approximally for ~3 mm (Fig. 1C). 

Tumor cells, suspended in 20 µl Matrigel/animal were injected 

slowly, resulting in local bulging (Fig. 1D). At body tempera-

ture, Matrigel solidifies within seconds, minimalizing the risk 
of intra-abdominal spilling of tumor cells. The stomach was 

cautiously repositioned and the abdominal wall and skin were 

closed with a running PDS 6-0 suture. Hartmann solution 

(500 µl) was administered SC to prevent dehydration. Animals 

were followed up daily, and weighed 2 times/week.

Subcutaneous (TTSC) and orthotopic tumor take (TTorth) 

were defined as the percentage of macroscopic tumor nodules 
(confirmed on histology) over the total number of injections. 
At 7 weeks, mice were euthanized and tumors were excised 

for histopathology.

Magnetic resonance imaging. A subpopulation of mice 

with orthotopic tumors (OE33 tumor nodules, n=5) were 

evaluated by magnetic resonance imaging (MRI) at 1, 2, 3, 5, 

8 and 12 weeks after tumor injection to follow tumor progres-

sion. MR images were acquired on a 7T system (Bruker 

PharmaScan 70/16, Ettlingen, Germany) with a mouse body 

volume coil. Mice were anesthetized with isoflurane (5% 

induction, 1.5% maintenance, 0.3 l/min) and warmed with a 

water-based heating blanket. Respiration was monitored using 

a respiration pad underneath the mouse. Anatomical informa-

tion was obtained with a T2-weighted sequence (TurboRARE) 

with the following parameters: TR, 3,661 and TE, 37.1 msec, 

109 µm in-plane resolution, 30 contiguous transverse slices 

of 600 µm, and acquisition time 9'1''. Mice were euthanized 

15 weeks after tumor induction.

In vivo selection of cancer cells. To obtain subcultures of cell 

lines that grow well in mice, tumors (SC and orthotopic) were 

excised under sterile conditions and divided into small pieces. 

Tumor fragments were dissociated (gentleMACS Dissociator; 

Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) along 

with a collagenase 1 mg/ml (Sigma-Aldrich) in PBSD+ mixture 

to disrupt tissue structures. The suspension was filtered 

through a cell strainer (70 µm), and centrifuged. Cells were 

seeded in T75 falcons and incubated. After 24 h, non-adherent 

cells were cleared and replaced by fresh culture medium.

Tumor samples and histology. Tumors were excised, 

fixed with 4% formaldehyde, processed and embedded in 

paraffin. Tumor sections of 5 µm were cut with a microtome 
(Microm HM355S; Thermo Scientific). Hematoxylin and eosin 
(H&E) and Ki67 stainings [ready-to-use DAKO EnVision™+ 

System-HRP kit (K4011)] were performed according to the 

standard protocols. Slides were scanned on magnifications of 
x100 and x200, and proliferation indices were determined by 

an overall visual scoring system. Tumors were categorized as 

lowly, moderately or highly proliferative. Microscopic images 

were captured with a light microscope (ColorView I, BX43F; 

Olympus, Tokyo, Japan).

Statistical methods. Statistical analysis was performed using 

GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, CA, 

USA). Mann-Whitney test was used to compare the in vitro 

results of the parental and in vivo selected cell line. Fisher's 

exact test was used to compare tumor take rates. Results are 

summarized as mean with standard deviation (SD), and were 

considered statistically significant when the probability of a 
type I error was ≤0.05.

Results

Cell characterization of OE33. OE33 cells had an epithelial 

morphology, characterized by adherent cells, cell-cell contacts 

and a typical formation of islands (Fig. 2A, upper panel). 

These cell-cell contacts resulted in the ability to form compact 

spheres under Gyrotory shaking (Fig. 2A, middle panel). On 

Figure 1. Surgical technique of the orthotopic injection of tumor cells. (A) Upper abdominal median laparotomy in a mouse under general inhalation anesthesia, 

positioned using tape. (B) The stomach is lifted extra-corporal with a forceps. Another forceps (micro-instrument) is positioned underneath the esophagus to 

improve the access. (C) Insertion of a 30-G needle in the distal esophageal wall. (D) Injection of tumor cells in Matrigel resulting in a bleb in situ.
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type I collagen gels, 21.6% [95% confidence interval (CI), 8.12 
and 35.04%)] of the OE33 cells showed cellular extensions 

invading the matrix (Fig. 2A, lower panel; and B, left). When 

seeded at a low density on tissue culture substrate, only a limited 

number of these cells were able to form a colony [mean CFI, 

7.23%; 95% CI, 6.24 and 8.23%)] (Fig. 2B, right). Additionally, 

western blotting was performed (Fig. 2C). OE33 cells 

expressed cytokeratin, an intermediate filament supporting 
the epithelial origin of the cancer cell line. Furthermore, the 

cells showed expression of α-catenin, β-catenin, E-cadherin 

and P-cadherin, proteins important for cell-cell adhesion and 

tissue organization. They did not express vimentin, a major 

cytoskeletal component in mesenchymal cells.

Tumor development with OE33. Four mice were subcutane-

ously injected bilaterally with OE33 cells (Table I). These all 

resulted in similar small tumor nodules, but volumes seemed 

to decrease, progressively (Fig. 3A). Histologically, nodules 

consisted of well-differentiated tumor cells organized in 

islands and surrounded by infiltrating stromal cell connective 

tissue (Fig. 3B and C). They were not invasive into surrounding 

tissues and Ki67 indices were low to moderate (Fig. 3D). Two 

nodules were used for in vivo selection and were confirmed to 
contain tumor cells through that means.

Twelve mice were orthotopically injected with OE33 

cells (Table I). Seven animals developed tumor nodules at the 

distal site of the esophagus without evidence of metastasis 

(liver, diaphragm, peritoneum and omentum were free of 

lesions) (Fig. 4A). Tumors were located at the submucosal space 

and were not invasive into surrounding tissue (Fig. 4B and D). 

They were well differentiated and had a low proliferation 

index (Fig. 4C). Three nodules were used for in vivo selection 

and were confirmed to contain tumor cells through that means.
MRI scans were performed in a subset of mice (n=5) to 

follow tumor development (Fig. 5A). At the initial MRI scan 

1 week post-tumor induction, all of them showed a clear 

tumor-like nodule at the distal site of the esophagus. During 

follow-up, volumes remained the same and at the end 4 out of 

5 animals showed a tumor-like nodule on MRI. These were 

confirmed to contain tumor cells microscopically (Fig. 5B-D).

Figure 2. In vitro characteristics of OE33 cells. (A) Upper panel: cells in culture; phase contrast image (scale bar, 200 µm). Middle panel: sphere formation 

assay 72 h after initiation; phase contrast image (scale bar, 100 µm). Lower panel: collagen type I invasion assay 24 h after seeding; phase contrast image (scale 

bar, 100 µm). Yellow arrows show invasive cells in collagen type I gel. (B) Left graph: collagen invasion index (%). Right graph: colony formation index (%). 

Single values, mean, standard deviation. (C) Western blotting of OE33 cells compared to HCT8/E11 and MDA-MB-231 GFP Luc cells.
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Cell characterization of OACM5 1.C. OACM5 1.C cells 

had two morphological subtypes: a majority of multicellular 

floating cell clusters, and some adherent cells with a fibroblast-
like appearance, growing as single cells (Fig. 6A, upper panel). 

These did not form cell-cell contacts, and only very few cells 

were adherent to plastic. OACM5 1.C cells were not able to form 

compact spheres under Gyrotory shaking, but formed loose cell 

clusters with recognition of individual cells (Fig. 6A, middle 

panel). Furthermore, they were non-invasive into collagen 

gels [mean 1.38%, 95% CI, -0.30 and 2.47%)] (Fig. 6A 

Figure 3. Subcutaneous (SC) xenograft OE33 tumors. (A) Tumor volumes (mm3) of 7 SC tumors determined at different times after injection of tumor cells.

(B and C) Hematoxylin and eosin (H&E) staining of SC tumor at different magnifications. (D) Ki67 staining of the adjacent tumor slide.

Figure 4. Orthotopic xenograft OE33 tumor. (A) Macroscopic tumor nodule at the distal site of the esophagus (yellow arrow). The stomach is pulled downwards 

with a forceps. (B and D) Hematoxylin and eosin (H&E) staining of a tumor nodule. E, esophageal lumen; T, tumor nodule; M, muscle layers of the esophageal 

wall; m, esophageal mucosa. The nodule is situated in the submucosal space and does not invade the mucosa. In the right upper corner, the transition to the 

stomach is situated. (C) Ki67 staining of the adjacent tumor slide.
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lower panel, and B, upper graph), and were not clonogenic 

[CFI=0.10%, 95% CI, -0.001 and 0.201%)] (Fig. 6B, lower 

graph). OACM5 1.C cells expressed cytokeratin as deter-

mined by western blotting supporting the epithelial origin 

of the cancer cell line. They expressed β-catenin and poorly 

expressed α-catenin, but lacked expression of E-cadherin to 

consolidate cell-cell contacts. OACM5 1.C expressed vimentin 

representing the mesenchymal characteristics of the cell 

line (Fig. 6C).

Tumor development with OACM5 1.C. Four mice were subcu-

taneously injected bilaterally with OACM5 1.C cells (Table I). 

Four out of 8 injections resulted in macroscopic tumor nodules. 

One nodule had an exponential growth curve, while the others 

remained stable (Fig. 7A). Histology showed nodules packed 

with tumor cells with little infiltrating stromal cells. They were 
not invasive into surrounding tissues and Ki67 staining was 

overall low to moderate (Fig. 7B-D). Injection sites that did not 

develop macroscopic nodules (4/8) resulted in palpable fibrous 

remnants in which some loose tumor cell islands could be 

identified on histology. One nodule was used for in vivo selec-

tion, and was confirmed to contain tumor cells through that 
means. An additional 6 mice were orthotopically injected with 

OACM5 1.C cells (Table I). Of 4 mice evaluable, no tumor 

nodules, metastasis or involved lymph nodes were macro-

scopically visible and histology was negative for tumor cells.

Establishment of new in vivo selected cell line OACM5 1.C SC1. 

OACM5 1.C cells harvested from a SC tumor nodule, were 

stable through different in vitro passages and were re-injected 

into mice according to the above protocols. Five mice were 

subcutaneously injected bilaterally with OACM5 1.C SC1 

cells, resulting in 10 macroscopically visible tumors (Table I). 

Five out of 10 were fast growing (Fig. 8A). Histology showed 

the presence of tumor cells in all nodules (Fig. 8B and C) and 

Ki67 staining was low to moderate (Fig. 8D). An additional 

6 mice were orthotopically injected with OACM5 1.C SC1 

cells, leading to 2 small macroscopic tumor nodules (Table I). 

Table I. Summary of in vivo experiments.

 OE33 OACM5 1.C OACM5 1.C SC1
 ---------------------------------------------------------------- ------------------------------------------ -----------------------------------------

 SC Orthotopic SC Orthotopic SC Orthotopic
 ------------------------- --------------------------- --------- ------------------------ ----------- ---------------------

Injected tumor cells (x106) 1 5 0.5 1 1.5 1 1.5 1

Number of tumor cell implantations n=2 n=5 n=5 n=7 n=8 n=6 n=10 n=6

Macroscopic tumor nodule 2/2 5/5 3/4a 4/7 4/8 0/4b 10/10 2/6

Microscopic tumor cells 2/2 5/5 3/4 4/7 7/8 0/4 10/10 3/6

Tumor take (TT) (%) 100 63.6 50 0 100 33.3

aOne mouse directly died post-operative; b2 mice were euthanized 5 days postoperative due to disease.

Figure 5. MRI images of orthotopic OE33 esophageal tumor. (A) Transverse MRI images at different time points (in weeks) after tumor induction. Yellow 

arrow, tumor nodule. (B) Macroscopic tumor (yellow arrow) at distal esophagus; E, esophagus; S, stomach. (C and D) Hematoxylin and eosin (H&E) staining 

of tumor. T, tumor nodule; E, esophagus; M, muscle layer of esophageal wall.
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Figure 6. In vitro characteristics of OACM5 1.C and OACM5 1.C SC1 cells. (A) Upper panel: Cell lines in culture; phase contrast image (scale bar, 200 µm). 

Middle panel: sphere formation assay 72 h after initiation; phase contrast image (scale bar, 100 µm). Lower panel: collagen type I invasion assay 24 h after 

seeding; phase contrast image (scale bar, 100 µm). (B) Upper graph,:collagen invasion index (%); single values, mean, standard deviation; P=0.368. Lower 

graph: colony formation index (%); single values, mean, standard deviation; P<0.0001. (C) Western blotting of OACM5 1.C and OACM5 1.C SC1 cells 

compared to MDA-MB-231 GFP Luc and HCT8/E11 cells .

Figure 7. Subcutaneous (SC) xenograft OACM5 1.C tumors. (A) Tumor volumes (mm3) of 8 SC tumors determined at diffferent times after injection of tumor 

cells. Injections (4 out of 8) did not develop tumor nodules. (B and C) Hematoxylin and eosin (H&E) staining of SC tumor at different magnifications. (D) Ki67 
staining of the adjacent tumor slide.
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No metastasis was observed. Histology confirmed the pres-

ence of tumor cells, and nodules did not invade surrounding 

tissues (Fig. 9A-C). In vivo selection of OE33 cells was not 

successful (n=5). Tumor cells were microscopically present, 

but did not survive different in vitro passages.

Comparison of OACM5 1.C and OACM5 1.C SC1. 

Both cell lines had the same morphological appearance 

in vitro (Fig. 6A, upper panel) and in vivo (Figs. 7 and 8). 

Fur thermore, they had the same cell l ine charac-

teristics concerning sphere formation and collagen 

invasion (Fig. 6A and B). Moreover, cell-cell adhesion and 

cytoskeletal protein expression were similar (Fig. 6C). 

However, the in vivo selected cell line had higher subcutaneous 

tumor take rates when compared with the parental cell line 

[TTsc=100 vs. 50% (P<0.023) (Fig. 10)]. This may be related to 

the significant higher clonogenicity (P<0.0001) of the in vivo 

selected cell line compared to the parental cell line in vitro.

Figure 8. Subcutaneous (SC) xenograft OACM5 1.C SC1 tumor. (A) Tumor volumes (mm3) of 10 SC tumors determined at different times after injection of 

tumor cells. (B) Hematoxylin and eosin (H&E) staining of SC tumor and at (C) higher magnification; packed with tumor cells. (D) Ki67 staining of the adjacent 
tumor slide.

Figure 9. Orthotopic xenograft OACM5 1.C SC1 tumor. (A and B) Hematoxylin and eosin (H&E) staining of orthotopic OACM5 1.C SC1 tumor nodule, 

situated at the submucosal space. E, esophageal lumen; T, tumor nodule; M, muscle layers of the esophageal wall. (C) Ki67 staining of the adjacent tumor slide.
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Discussion

The present study investigated the orthotopic growth poten-

tial of two generally available EAC cell lines, OE33 and 

OACM5 1.C, and a third cell line obtained through in vivo 

selection, OACM5 1.C SC1. Additionally, in vitro experiments 

were performed to better understand the functional character-

istics in relationship with in vivo growth behavior.

OE33 showed successful orthotopic xenografts in 63.6% 

(n=12) of the cases. Nevertheless, the volumes remained 

stable during follow-up, as noted on the serial MRI scans. 

Subcutaneous tumor take was higher (TTsc=100%, n=7), 

but resulted in similar small tumor nodules with stable to 

decreasing volumes. To the best of our knowledge, only one 

previous study used OE33 cells for orthotopic use. The study 

was diagnostic and had similar results to ours. Small tumors 

of 2-3 mm in diameter at 4 weeks after injection (n=5) were 

observed (9). OE33 seems to be a low aggressive cell line with 

a high subcutaneous and orthotopic tumor take in nude mice, 

but extremely slow growth pattern. The decreasing subcuta-

neous volumes may be explained by clearance of Matrigel 

with slow replacement of tumor cells.

In contrast to the OE33 cell line, OACM5 1.C cells were not 

able to develop orthotopic tumor nodules (TTorth=0%, n=6). In 

addition, subcutaneous tumor take was low (TTsc=50%, n=8). 

To improve these poor tumor take rates, a technique of in vivo 

selection of tumor cells was applied. As such, the new cell line 

OACM5 1.C SC1 was established, and successfully led to a 

significant higher subcutaneous tumor take than the parental 
cell line [100% (n=10) vs. 50% (n=8); P<0.023]. Orthotopic 

tumor take did not significantly differ [33.3% (n=6) vs. 0% 
(n=6); P=0.467]. Cell lines had similar in vitro characteris-

tics, except for the significant increased ability of the in vivo 

selected cell line to form colonies (P<0.0001). The latter may 

partially explain the increased tumor take rate.

Another correlation between the in vitro and in vivo results 

was seen in the invasiveness of the cell lines. The investigated 

EAC cell lines were almost non-invasive in collagen type I gels 

in vitro and none of the xenografts in the mouse experiments 

invaded the surrounding tissues.

Figure 11. SK-OV-3 Luc IP1 heterotopic esophageal tumor growth. (A) Weight of mice with heterotopic SK-OV-3 Luc IP1 cells at the esophagus. (B) Macroscopic 

xenograft tumor (yellow arrow) on the distal esophageal wall, with no sign of compression or dilatation of the proximal esophagus. (C) T2-weighed MRI; 

yellow arrow indicates the voluminous tumor. (D and E) Hematoxylin and eosin (H&E) staining at different magnifications of a xenograft ovarian tumor at 
the esophageal wall.

Figure 10. Tumor take of OACM5 1.C and OACM5 1.C SC1 cells. 

Subcutaneous (SC) and orthotopic tumor take were compared between the 

two cell lines. Development of tumors was expressed as a percentage of the 

total amount of implanted tumors: OACM5 1.C (SC) (n=4/8) vs. OACM5 1.C 

SC1 (SC) (n=10/10); OACM5 1.C (orth) (n=0/6) vs. OACM5 1.C SC1 (orth) 

(n=2/6). Subcutaneous tumor take was significantly increase with the in vivo 

selected cell line (OACM5 1.C SC1) compared to the parental cell line 

(OACM5 1.C) (P<0.023). The observed increase in orthotopic tumor take 

was not statistically significant (P=0.4667).
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In addition to in vivo selection, improved tumor take 

rates may be achieved by simply increasing the amount of 

injected tumor cells. Unfortunately, the injection volume in 

the esophageal wall is limited. As such, the amount of inject-

able tumor cells is also limited to ~1.5x106 cells/injection. 

This can be bypassed by transplanting a subcutaneous tumor 

fragment on the esophageal wall according to the technique 

of Gros et al (10). An additional experiment was performed 

with transplantation of 1 mm3 tumor fragments of a subcu-

taneous OE33 tumor on the esophageal wall of 7 mice. Due 

to postoperative complications, 3 animals died within the 

first week postoperative. The remaining 4 did not show any 
vital tumor on the esophageal wall up to 70 days of follow 

up. We believe this is a technically more difficult procedure, 
with a low success rate when fragments of slow growing tumor 

nodules are used and we conclude that this is not beneficial for 
the investigated cell lines.

It needs to be mentioned that the development of EAC in 

this tumor model differs from the situation in patients. While 

the pathogenesis is not yet fully understood, it is believed 

that chronic inflammation of the esophageal mucosa can 

develop dysplasia, and eventually evolves to EAC. As such, 

gastroesophageal reflux disease (GERD) is one of the major risk 
factors for developing EAC, besides obesity (1). In literature, 

several other models have been described, that reflect the 

clinical situation more closely (4). On one hand, different reflux 
models have been used: surgical esphagojejunostomy (23) or 

drinking of caustic substances (24). These reflux models lead 
to <50% cancer development in a time period of 6 months 

making it unreliable for therapeutic studies (4). On the 

other hand, the use of genetically engineered mouse models 

(GEMMs) has been investigated. Transgenic mice with IL-1β 

overexpression were shown to develop moderate inflammation 
by 6 months, with a small percentage of mice developing high 

grade dysplasia or EAC after 20-22 months (24). Best results 

with GEMMs were obtained in combination with the caustic 

substance deoxycholate (DCA), where 45% of mice developed 

EAC after a long follow-up period of 15 months (24). The 

technique of injecting tumor cells in the esophageal wall is 

considered to be the best option available for the development 

of a relative rapid and reliable orthotopic mouse model.

Surprisingly, the three investigated EAC cell lines grew 

more efficient subcutaneously than orthotopically. To rule out 
technical issues with the orthotopic injection method, the tech-

nique was checked with a highly aggressive ovarian carcinoma 

cell line, SK-OV-3 Luc IP1 cells, that is known to be 100% 

tumorigenic in Foxn1nu mice, according to previous experi-

ments in our research group (25). Injection of 5x105 SK-OV-3 

Luc IP1 cells in the esophageal wall resulted in 100% tumor 

take and 100% exponential tumor growth (n=5), confirmed on 
IVIS, MRI and histology (Fig. 11). After 4 weeks, exophytic 

tumors of ~8 mm diameter were observed. We believe the low 

orthotopic tumor take rates with the investigated EAC cells is 

due to a combination of low aggressive cells and the limited 

amount of injectable cells.

The fact that the OACM5 1.C SC1 experiments are based 

on cells originating from one tumor nodule, could be a point 

of discussion. Nevertheless, the in vivo selection technique is 

a validated technique to improve cell line characteristics [such 

as metastatic potential or take rates (25,26)]. Our aim was 

not to validate the technique, but to use it to improve tumor 

take rates and to show it can be of use for esophageal cancer 

models. The OACM5 1.C SC1 cell line was authenticated by 

STR assay, was stable through different passages and led to 

increased tumor take rates. The unsuccessful in vivo selection 

of OE33 was probably due to the small amount of tumor cells 

in the excised tumors and the low clonogenic potential of the 

cells. Repetitions may most probably lead to the same results.

Finally, the follow-up of esophageal tumor growth in 

mice is challenging (i.e. due to its location). Performing a 

laparotomy at different time points is easy, fast and does not 

require specialized tools or knowledge. However, this causes 

intra-abdominal adhesions, making esophageal exposure 

more difficult after every laparotomy, and may cause an 

inflammatory reaction influencing tumor development. MRI 
imaging was already confirmed to be feasible and accurate 
for the follow-up of esophageal cancer in mice (10,17,18). In 

the present study, a dedicated small animal MRI scanner was 

used, leading to detailed images. Tumor nodules could be 

defined precisely as hyper-intense nodular structures, at a fixed 
location, slightly proximal of the gastroesophageal junction. 

In addition, the volumes of nodules could be measured accu-

rately. However, MRI is not able to differentiate tumor tissue 

from inflammatory scar tissue or residual Matrigel. If volumes 
increase, viable tumor cells are plausible. If not, the presence 

of tumor cells cannot be assured. It would be interesting to 

transfect the investigated EAC cell lines with luciferase, such 

as shown by Gros et al (10), to perform in vivo fluorescence 
imaging in case of stable nodules, and be able to differentiate 

viable tumor cells from scar tissue and Matrigel.

The present study is of interest for future experiments. 

Particularly the OE33 cell line is appropriate for orthotopic 

injection for diagnostic studies on EAC. Yet, various limita-

tions, such as low aggressive cells, slow growth pattern and 

different etiology in patients should be kept in mind. It must 

be mentioned that this is the first study to describe the growth 
behavior of OACM5 1.C in mice. OACM5 1.C had a poor tumor 

take rate at an orthotopic and ectopic site. The in vivo selected 

cell line OACM5 1.C SC1 showed higher subcutaneous take 

rates. The use of a more immunodeficient mouse strain (NOD 
SCID mice) could improve tumor take and should be consid-

ered for future research with these low aggressive cell lines.

In conclusion, little research is available concerning 

esophageal cancer, particularly the EAC subtype, which is the 

more prevalent type in the Western world. The present study 

provides orthotopic and subcutaneous xenograft EAC models 

in mice, which may hopefully contribute to further preclinical 

research on EAC.
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