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Abstract: With the recent development of drone technology, object detection technology is emerging,
and these technologies can also be applied to illegal immigrants, industrial and natural disasters,
and missing people and objects. In this paper, we would like to explore ways to increase object
detection performance in these situations. Photography was conducted in an environment where it
was confusing to detect an object. The experimental data were based on photographs that created
various environmental conditions, such as changes in the altitude of the drone, when there was no
light, and taking pictures in various conditions. All the data used in the experiment were taken with
F11 4K PRO drone and VisDrone dataset. In this study, we propose an improved performance of the
original YOLOv5 model. We applied the obtained data to each model: the original YOLOv5 model
and the improved YOLOv5_Ours model, to calculate the key indicators. The main indicators are
precision, recall, F-1 score, and mAP (0.5), and the YOLOv5_Ours values of mAP (0.5) and function
loss were improved by comparing it with the original YOLOv5 model. Finally, the conclusion was
drawn based on the data comparing the original YOLOv5 model and the improved YOLOv5_Ours
model. As a result of the analysis, we were able to arrive at a conclusion on the best model of object
detection under various conditions.

Keywords: object detection; YOLOv5; drone images

1. Introduction

Recently, drones have been a field that is developing a lot, and they are likely to be
combined into various fields in the future to create high value. Especially, low-budget drone
photography technology can boost the local economy or help scientists research cultural
heritage areas on the coast [1,2]. In this paper, we study the performance improvement of
object detection model using drone photography.

There are also many cases of searching for object using drones at accident or disaster
sites. However, it is confusing to detect missing persons or objects in a situation where
visibility is not secured due to heavy rain and snow.

On the 10th of 2021, at least 40 tornadoes occurred in six weeks, including Kentucky,
Arkansas, Illinois, Missouri, Tennessee, and Mississippi, confirming that at least 84 people
were killed [3]. In this case, the number of missing persons will be much higher than the
death. In this situation of lifesaving, a detection technique using a drone [4]; could be a
solution. Drones and UAVs (unmanned aerial vehicles) have done many missions recently.

For example, be studied in fields such as automatic license plate recognition [5];
detection of the diseased plant [6]; traffic light detector for self-driving vehicles [7,8]; for
violent individual identification [9]; and detector for ship detection in SAR Images [10].
Searching for missing objects in a disaster situation or used in operational missions in war
situations, and it is necessary in a situation where medical staff can quickly find injured
people at the accident site [11–13].
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However, detection using such drone is greatly affected by surrounding situations [14].
To solve this problem, object detection using drones has been researched and developed [15],
but related research is lacking a lot.

Additionally, it can be used in numerous situations as well as the above-mentioned
situations. In the future, object detection using drones will be further developed and
necessary in various situations. This paper discusses how to detect well in environment
that is confusing to recognize objects to solve these problems. We were able to efficiently
improve the performance of the model through Conv layer modification, the main layer of
the original YOLOv5. In this work, we demonstrate the association of activation function
with mAP (0.5) and loss function.

In this paper, we can summarize our main contributions as follows:

• Firstly, we improved the performance of model that can detect object under various
environmental and weather conditions, such as Clear, Cloudy, Rainy, Snowy day,
Evening, Night, Low altitude, and High altitude.

• Secondly, the Precision and mAP (0.5) were increased by modifying the Conv layer, the
main layer of the Original YOLOv5 model. We replaced the SiLU activation function
of the Conv layer with the ELU activation function. We applied the replaced ConvELU
layer to the original C3, SPPF, and Conv layer of the Backbone and head part, and we
used CIoU in two models: Original YOLOv5 and YOLOv5_Ours to find association
with ELU activation function. As a result, we were able to reduce the convergence
speed of loss function at the training process.

2. Materials and Methods
2.1. YOLOv5_Ours Network

Currently, there are two types of detection methods based on deep learning: 1-stage
detector and 2-stage detector. Firstly, 2-stage detector in which regional proposal and
classification are performed sequentially. The faster R-CNN [16] and mask R-CNN [17] cor-
respond to the kind of 2-stage detector. In contrast to 2-stage detector, in the 1-stage detector,
a regional proposal and classification are performed simultaneously. In other words, it is a
method of solving classification and localization problems at the same time. YOLO [18],
TPH-YOLOv5 [19], SSD [20], SSD MobileNet [21], Focal Loss [22], and RefineDet [23]; are
representative algorithm of 1-stage detector. While it was popular in the past, Fast R-CNN
has an inefficient problem in learning and execution speed because the candidate area
generation module is performed in a separate module independently of CNN [24].

The YOLO is a famous object detection algorithm with several versions. It is easy
to implement and can train the entire image immediately. For this reason, YOLO has
developed gradually [25]. In 2020, the fifth version of YOLO was released. Compared to
fast R-CNN, speed and accuracy have increased. Since YOLO does not apply a separate
network for extracting candidate regions, it shows better performance in terms of processing
time than Fast R-CNN [26]. Because Fast R-CNN was the combining hand-crafted and
deep convolutional features method is used, there are limitations in detecting objects or
humans [27]. The basic structure of the previous YOLOv5 [28] is largely divided into the
backbone network part, the neck part, and the head part, as shown in Figure 1 [29].

Backbone is a convolutional neural network formed by aggregating image features
in various particle sizes. Neck is a series of layers that mix and combine image features
to deliver prior to prediction, and Head consumes features from Neck (PAnet) and takes
box and class prediction steps. The biggest feature of YOLOv5 is that it has Focus and CSP
(cross-stage partial connections) [30] layer. The focus layer was created to reduce layers,
parameters, FLOPS, and CUDA memory and improve forward and backward speed while
minimizing the impact of mAP. Three layers were used in YOLOv3 [31], but in the previous
YOLOv5, it was changed to one layer [32]. The CSP layer extends to shallow information
in the focus layer to maximize functionality, while the feature extraction module is iterated
to extract detailed information and functions more thoroughly [33].
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Figure 1. Structure comparison of previous and current YOLOv5 (Left figure is previous, Right figure
is current YOLOv5).

The basic principle of YOLOv5 is similar to YOLOv4 [34]. YOLOv5 is an improvement
base to YOLOv4, and YOLOv5 has the best performance in precision, recall, and average
precision compared to Faster R-CNN, YOLOv3, and YOLOv4 [35,36]. In addition, YOLOv5
consists of four versions on its own, which are YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x. This is classified according to the memory storage size, but the principle is the
same. YOLOv5x has the largest storage size, and YOLOv5s has the smallest storage size.
We improved the model based on the most basic YOLOv5s in this experiment.

There are two major differences between previous and current YOLOv5. Firstly,
replaced the Focus layer with 6 × 6 Conv2d layer [37]. It is equivalent to a simple 2d-
convolutional layer without the need for the space-to-depth operation. For example, a Focus
layer with kernel size 3 can be expressed as a Conv layer with kernel size 6 and stride 2.

Secondly, the SPP layer was replaced by the SPPF layer. These operations increase
the computational speed by more than double. This replacement is consequently efficient
and faster in terms of speed. We noted the main layer of the current original YOLOv5
structure, the Conv layer, and we modified the Conv layer. In the original Conv layer, SiLU
(Sigmoid-Weighted Linear Units) was used as an activation function.

Usually, the Conv layer uses ReLU (Rectified Linear Unit) as an activation function.
This is because learning is fast and implementation is very simple due to the low amount
of computation. However, the disadvantage of the ReLU activation function is that if it
outputs a value less than zero, the gradient is likely to remain at zero, and the weight is
likely to remain at zero forever until learning is completed. As a result, there is also a
disadvantage in that learning is not conducted properly.

ReLU(x) = max(0, x) (1)

ReLU′(x) =
{

1, if x > 0
0, otherwise

(2)

The ELU activation function is a variant of the ReLU activation function. This reduces
training time and improves the test set performance of neural networks. When x < zero,
the differential function is connected without breaking using the exponential function. If
a broken function such as the step function is used, the loss function can be defined as
uneven, resulting in local optima, as shown in Figure 2. The value of α is usually specified
as 1. (If α is not 1, it is called SeLU.) In other words, the exclusive linear unit includes all
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the advantages of ReLU and solves the Dying ReLU problem. The output value is almost
zero-centered, and the exp function is calculated differently from the general ReLU.

ELU(x) =
{

x, if x > 0
α exp(x)− 1, if x ≤ 0

(3)

ELU′(x) =
{

1, if x > 0
f(x) + α, if x ≤ 0

(4)
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The SiLU (Swish) activation function can solve these problems, but it is only available
in the hidden layers of deep neural networks and has the disadvantage that it can only be
used in reinforcement learning-based systems. To solve this comprehensive problem, we
used ELU (Exponential Linear Unit) as an activation function. SiLU activation function,
which was previously used in the Conv layer, was replaced by the ELU activation function,
as shown in Figure 3.

SiLU(x) = x∗ 1
1 + exp(−x)

(5)

SiLU′(x) =
1

1 + exp(−x)
+

{(
x∗ 1

1 + exp(−x)

)
∗
(

1− 1
1 + exp(−x)

)}
(6)
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Both the SiLU activation function and ELU activation function can solve dying RELU,
but the SiLU activation function has a problem of limited use, so we replaced it with the
ELU activation function. We created the Conv layer with the activation function ELU
applied, and we applied this to all of the ConvELU layers in the YOLOv5_Ours structure,
as shown in Figures 3–5.
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The formula for calculating the output size at the Conv2d layer is Equation (7). In the
equation, W is the size of the input data, F is the kernel size, P is the padding size, and S is
the stride.

• Output size of Conv2d:
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Oupput size of Conv2d =
W− F + 2P

S + 1
(7)

The flowchart of the ConvELU layer is shown in Figure 6 as follows. BatchNorm2d
layer means normalizing using average and variance, even if the data have various distri-
butions for each batch unit in the training process. Figure 6 shows that the distribution
of input values varies by batch unit or layer, but normalization makes the distribution
Gaussian. This adjusts the distribution of the data to average zero and standard deviation
to 1. Finally, the result of applying the Normalization and derivative activation function.
And the final structure of applying all the measures is shown in Figure 7.
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2.2. Data Preparation and Processing

Class selection and data collection are important to increase the accuracy of object
search by training the model. The F11 4K PRO was used as the drone for filming. It has
an adjustment distance of 10 m and a Wi-Fi image distance of 100 m. It is also suitable for
object detection because it supports 4k camera image quality. According to the purpose of
the study, the classes were designated as objects that are confusing to distinguish. Therefore,
person, car, and notice were set as Classes, and the distance from the object was divided by
less than 10 m: Low altitude and more than 10 m: High altitude. In addition, we took photos
in various environments by changing the altitude of the drone, surrounding background,
and weather. The shooting was conducted in the mountain and a downtown area, at low
light: Evening and Night. In addition, it was filmed while changing the altitude of the
drone. This is caused to create an environment where it is confused to identify objects.

Additionally, drone photographs were added from VisDrone (http://aiskyeye.com,
accessed on 5 June 2021) [38] to collect more diverse data. VisDrone is a dataset used
annually for object detection using drones and is very reliable [39]. This is to increase the
accuracy of the experiment through reliable data combinations. In the VisDrone dataset,
only data photographed above 10m: High altitude were added to meet the existing data
and standard. Figure 8 shows the samples used in the experiment. In the final dataset used
in the experiment were 2080 images: Clear, Cloudy, Rainy, Snowy day, Evening, Night, Low
altitude, High altitude in training, 960 images: Clear, Cloudy, Rainy, Snowy day, Evening,
Night, Low altitude, High altitude in validation, and 320 images: Clear, Cloudy, Rainy,
Snowy day, Evening, Night, Low altitude, and High altitude in testing, prepared a total of
3360 images: Clear, Cloudy, Rainy, Snowy day, Evening, Night, Low altitude, and High
altitude. Details are summarized in Table 1.

The collected data were then labeled from the online platform makesense (http://
www.makesense.ai/, accessed on 14 July 2019) [40]. As shown in Figure 9, the label was
created as three objects: person, car, and notice and annotated, and the annotated image
was converted to a txt format according to the YOLO format.
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Table 1. Dataset classification by various experimental conditions.

Dataset Experimental Conditions Number of Images

Training

Clear day 260
Cloudy day 260
Rainy day 260
Snowy day 260

Evening 260
Night 260

Low altitude 260
High altitude 260

Validation

Clear day 120
Cloudy day 120
Rainy day 120
Snowy day 120

Evening 120
Night 120

Low altitude 120
High altitude 120

Testing

Clear day 40
Cloudy day 40
Rainy day 40
Snowy day 40

Evening 40
Night 40

Low altitude 40
High altitude 40
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Figure 9. The process of changing data samples collected by drone to YOLO format (Left figure is
the snowy day, Right figure is the evening).

3. Experiment and Results
3.1. Experimental Setup and Flowchart

For the experiment, the basic environment of the experiment was conducted in Google
Colab. Colab is well organized with a GPU environment, so we used it. We also trained
and compared with same data acquired by drone shooting. The difference between the
original YOLOv5 model and the YOLOv5_Our model is as follows. The weight trained
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by the original YOLOv5 model is put on the image data set as the pre-training weight
of the configured data set [41]. That is, the original YOLOv5 model uses its own weight
obtained by pre-learning on COCO (Common Object in Context) dataset. However, in this
study, both the original YOLOv5 model and YOLOv5_Our model conducted experiments
based on the same data. This is to compare the performance of the models under the
same condition.

We were three classes: person, car, and notice labeled to be annotated according to
the purpose of the study. This is because we thought it was the easiest thing to confuse
with objects based on the photos taken. All data taken by drone were labeled with three
objects: person, car, notice in this way. Through training, the loss function is calculated,
and the best weight is updated in models: the original YOLOv5 model and YOLOv5_Our
model. After that, we proceed with the validation and testing process with the best weight
obtained through training. Then, predict the test data with the obtained weight.

To make an accurate comparison, the original YOLOv5 model and YOLOv5_Our
model conduct the experiment completely separately. After the experiment, the following
indicators were used to evaluate the performance of the model. In short, the research is
conducted in the process shown in Figure 10.
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3.2. Experimental Key Indicators

In this paper, the performance of the original YOLOv5 model and YOLOv5_Ours
model is evaluated based on Precision, Recall, F1-score, AP (average precision), and mAP
(mean average precision).

• Precision:

Precision =
TP(True Positive)

TP(True Positive) + FP(Fales Positive)
=

TP(True Positive)
All Detections

(8)

• Recall:

Recall =
TP(True Positive)

TP(True Positive) + FN(Fales Nagative)
=

TP(True Positive)
All Ground Truths

(9)
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Precision refers to the percentage of all detection results that are correctly detected.
Recall is used to indicate how well a positive prediction is made when a positive input is
given. Simply put, it means how well model detect it.

TP (True Positive) is a number detected to fit an object. FP (False Positive) means that
it is detected as an object of another class. In other words, it is a false detection. FN (False
Negative) means an object that should have been detected but not detected, and the TN
(True Negative) means nothing that should not be detected.

• F1-score:

F1− score =
2∗Precision ∗ Recall

Precision + Recall
(10)

It is calculated as the harmonic mean of precision and recall and not the arithmetic
mean. F1-score has a value between zero and 1; the higher the value, the higher the
accuracy of detecting an object. mAP (mean average precision) is the average value of the
AP (average precision), indicating how accurate the predicted result is.

• AP:

AP =

1∫
0

P(R)dR (11)

• mAP:

mAP =
1
|QR| ∑

q=QR

AP(q) (12)

3.3. Experimental Loss Function

IoU (Intersection over Union) [42] is produced by the interaction between the predicted
box and the ground truth box. That is, it is a value representing the size of the predicted
Bounding Box and Ground Truth in the field of object detection as a value between zero
and 1. The formula is as follows. A is the predicted box, and B is the ground truth box.
C box is the smallest box, including A and B box, and C\A ∩ B is the area in which the sum
of A and B box is subtracted from the C box area. The GIoU (Generalized IoU) is the value
obtained by subtracting the ratio of areas that do not overlap with both A and B in the
C box. The larger the GIoU, the better the performance.

When 1−GIoU is used as loss in object detection (the range of the loss value is zero ~2),
the bounding box prediction process of GIoU loss according to Iteration is performed by
expanding the B box area to overlap with GT and then reducing the B box area to increase
IoU. This can improve the gradient vanishing problem for non-overlapping boxes, but
there is a problem that the convergence rate is slow and the box is predicted incorrectly. To
solve this problem, we use CIoU (Complete-IoU) in this paper to compare the loss function
of the Original YOLOv5 model with the YOLOv5_Ours. In other words, the experiment is
conducted under the condition that CIoU is applied equally to two models.

• IoU:

IoU =
|A ∩ B|
|A ∪ B| (13)

• GIoU:

GIoU = IoU− |C\A ∩ B|
|C| (14)

• LGIoU:

LGIoU = 1−GIoU (15)



Appl. Sci. 2022, 12, 7255 11 of 16

As can be seen from Equation (18), w is the width, and h is the height of the prediction
box. Additionally, wgt and hgt are the width and height of the ground truth box. v measures
the consistency of the aspect ratio of the two boxes, α is a positive trade-off parameter
to adjust the balance between the non-overlapping case and the overlapping case. In
particular, in the case of non-overlapping, the overlap area factor gives a higher priority to
regression loss.

• LCIoU:

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αv (16)

• α:

α =
v

1− IoU + v
(17)

• v:

v =
4

π2 (arc tan
wgt

hgt − arc tan
wp

hp )
2

(18)

3.4. Results

The original YOLOv5 model and YOLOv5_Ours model were trained at 100 epochs
and with the 3360 images: training images, validation images, and testing images. As a
result of training all models, the average time spent training was about 2 h per model.
The model that took the most time was the original YOLOv5 model, which took 2 h and
10 min. The object detection comparison results of the two models (the original YOLOv5
model and the YOLOv5_Ours model) are shown in Table 2 and Figure 11. Additionally,
this table shows the Precision, Recall, F-1 score, and mAP of the original YOLOv5 model
and YOLOv5_Ours. We compared based on the best of the 100 epochs result values. In
order to objectively evaluate the performance of the models, the values of mAP (Mean
average precision) were compared. The mAP value of the original YOLOv5 model is 94.6%,
and YOLOv5_Ours is 95.5%. Overall, it may be seen that the YOLOv5_Ours model has
higher than the original YOLOv5 model.

Table 2. Comparison table of best performance by models.

Model Backbone Precision Recall F-1 Score mAP (0.5)

YOLOv5 CSPdarknet 90.1 89.8 89.9 94.6
YOLOv5_Ours CSPdarknet 90.7 87.4 89.0 95.5
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As a result of the training and validation process, we found that the YOLOv5_Ours
model was the best. Thus, the final prediction was made based on the weight obtained from
the trained YOLOv5_Ours model, which was considered to have the best performance.
The left part of Figure 12 shows the graphs of the metrics curves as training progresses. It
is proved the detection accuracy of the YOLOv5_Ours model [43]. After evaluation, the
YOLOv5_Ours model had a validation precision score of 90.7%, recall score of 87.4%, as
well as F1-score of 88.8%, and mAP score is 95.5%. This result confirms the effectiveness of
our approach in predicting experiment performed in several environments correctly.
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The first three columns are the YOLOv5_Ours model loss components, box loss,
objectness loss, and classification loss, train the leftmost row and validation second row [44].
The box loss, objectness loss, and classification loss are indicators of how well an algorithm
predicts an object [45]. These results mean that the three classes: person, car, and notice,
which we use for detection, are accurately recognized during the training process.

Precision–Recall curve is a method of evaluating the performance of an object detector
due to a change in the threshold value for the confidence level. The confidence level is a
value that tells user how confident the algorithm is about the detection. In other words, the
closer the number is to 1, the more confident the model is in detecting the target object. The
right part of Figure 12 is the Precision–Recall curve graph of the YOLOv5_Ours model. It
can be seen that the value of person is 97.3%, which is quite high.

The results are shown in Figure 13 by experimental conditions: Clear, Cloudy, Rainy,
Snowy day, Evening, Night, Low altitude, and High altitude. For clear day and evening,
object detection showed high accuracy above the value of about 87.0%. Rainy day is
relatively low, about 57.0%, but overall, object detection is excellent.

It can be seen from Table 3 that the object detection results of the YOLOv5_Ours model.
Among the detected objects, the value for a person was the highest. The person detection
was calculated as 97.1% for Precision, 84.3% for Recall, 90.2% for F1-Score, and finally 97.3%
for mAP. This means that the person detection rate is quite high.

The function loss difference between the two models results in a large gap at the
beginning of the training. Therefore, the experiment was conducted by setting the epoch
to 100.

It can be seen that YOLOv5 function loss occurs rapidly at the beginning of training.
On the other hand, YOLOv5_Ours decreased function loss slowly. The gap appears to be
narrowing until the epoch reaches 60. After that, the function loss of the two models: Origi-
nal YOLOv5 and YOLOv5_Ours, is a little different. Figure 14 shows a graph comparing
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the function loss value of the two models. That is, YOLOv5_Ours means an efficient model
with low convergence speed.
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Table 3. Key indicators of YOLOv5_Ours model.

Parameter Person Car Notice Total

Precision/% 97.1 87.4 87.7 90.7
Recall/% 84.3 94.6 83.1 87.4

F1-Score/% 90.2 90.9 85.3 88.8
mAP (0.5)/% 97.3 96.2 93.0 95.5
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3.5. Comparison with Previous YOLO Models

For accurate verification of the study, it is necessary to compare performance with
previous YOLO models. Therefore, we decided to experiment by applying the dataset to
YOLOv3 and YOLOv4 model. The value of mAP was compared with the previous models:
YOLOv3 and YOLOv4 model, and all the experiments were conducted independently. It is
summarized as shown in Table 4 and Figure 15 for comparison of the data result value. As
a result of comparing the final value, it was found that the performance of YOLOv5_Ours
was the best.

Table 4. Comparison of performance by previous YOLO models and YOLOv5_Ours.

Model Backbone mAP (0.5)

YOLOv3 Darknet53 93.9
YOLOv4 CSPdarknet 91.0
YOLOv5 CSPdarknet 94.6

YOLOv5_Ours CSPdarknet 95.5
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4. Conclusions

In this paper, we studied a model for detecting objects in conditions that are confusing
to detect objects. To create this environment, images were acquired using a drone in
situations where it was confusing to detect objects such as various altitudes, weather, and
background. In addition, it aimed to detect objects in these environments and increases
detection performance.

The experimental method is based on the YOLOv5 structure. We compared the results
with the original YOLOv5 model and improved the YOLOv5_Our model, and through
training, it was selected for the YOLOv5_Ours model with the best performance. Then,
the best weight obtained through validation is applied to the YOLOv5_Ours model and
tested. As a result, we found that the mAP has increased to 0.9% compared with the
original YOLOv5 model and improved the YOLOv5_Ours model. Finally, for a more
accurate comparison, the key indicators were calculated with the previous version of
YOLO: YOLOv3 and YOLOv4. The difference between the value of YOLOv3, YOLOv4, and
mAP was 1.6% and 4.5%, respectively, which was greater than the original YOLOv5 model.
In addition, it was confirmed that the convergence speed of loss function of YOLOv5_Ours
model was reduce the compared to original YOLOv5 model at the beginning of training.

Object detection using drones is greatly influenced by the surrounding environment.
We conducted research to improve the performance of the model under bad conditions, and
we were able to obtain improved results. It may be applied to object recognition studies
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using drones that have been previously conducted [46,47]. In the future, the results of this
study will help use drones to detect objects in various conditions.
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