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Improvement by Iteration for Compact

Operator Equations

By Ian H. Sloan

Abstract.   The equation y = / + Ky is considered in a separable Hubert space H, with

K assumed compact and linear.   It is shown that every approximation to y of the form

yXn = £nanl«. (where {u-} is a given complete set in H, and the an¡, 1 < / < n, are

arbitrary numbers) is less accurate than the best approximation of the form y2n = f +

ZnbnjKUj, if ii is sufficiently large.   Specifically it is shown that if y Xn is chosen optimal-

ly (i.e. if the coefficients an¡ are chosen to minimize \\y - yXn II), and if y2n is chosen

to be the first iterate of yXn, i.e. y2n = f + KyXn, then || v - y2„ II < <*„ \\y - yXn II,

with an -» 0.   A similar result is also obtained, provided the homogeneous equation

x = Kx has no  nontrivial solution, if instead y,    is chosen to be the approximate

solution by the Galerkin or Galerkin-Petrov method.   A generalization of the first

result to the approximate forms y3n, y¿\n, ■ ■ ■   obtained by further iteration is also

shown to be valid, if the range of K is dense in H.

1.   Introduction.  This paper is concerned with the approximate solution of the

equation

(O y=f + Ky,

where y and / belong to a separable Hubert space H, and K is a compact linear operator

in H.  The main results can also be extended to the eigenvalue equation y = XKy, by

setting / = 0 and replacing K by XK.   The whole discussion has immediate application

to linear integral equations with square-integrable kernels, H then being an L2 space.

A common way of approaching Eq. (1) in practice is to seek an approximate

solution of the form
n

(2) y m = Z amui>

where {u¡}  is some suitable complete set of linearly independent elements of H, and

the ani are real or complex coefficients.  Indeed, many numerical methods [2], [4]

for the approximate solution of integral equations (e.g. Galerkin method, collocation,

least squares and variational methods) make use of an approximate solution of the form

(2), differing from each other only in the choice of the coefficients.

The main purpose of the present paper is to show that the alternative form

(3) y2n=f+ZbniKUi
1=1
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is always capable of better accuracy than (2), if n is sufficiently large.  Specifically, let

y*n and y*n denote the best possible approximations of the forms (2) and (3), i.e.

y*n and y*n are the approximations that minimize the respective Hubert space error

norms \\y ~ yXn II and \\y -y2n ||.   Then it is shown in the following section (Theorem

1) that H.V ~^|„ll < a„\\y ~ y\n "' wnere an —* Q-  Indeed, it is shown that even the

choice y2n = f + Ky*n (which is of the form (3), but not in general optimal) satisfies

Wy ~y2n II ̂  anWy ~y*n "' w'tn an —* Q'  ln omer words, the best approximation

of the form (2) is always improved by iteration (unless, of course, it is already exact),

if zz is sufficiently large.   z\n explicit expression for an is given in the theorem; hence

information is avaüable, in principle, on how large zz needs to be in any particular case

for the improvement to be significant.

An extension of the result to the still more highly iterated approximate forms

y un- y An' ■ ■ ■ > given by

yin=f+Kf+ZcniK\, etc.,
i=i

is given in Theorem 2.  The essential result is that the optimal approximation of the

zzzth kind yimn is always improved by a single iteration, if zz is sufficiently large,

provided (for zzz > 1) that the range of K is dense in H, or what is equivalent, that the

nuU space of K* is trivial.

For the various practical methods of the first kind, the solutions yXn that arise

are of course generally not optimal.   For each such method, an interesting practical

question is suggested by Theorem 1, namely: is it true that yXn is necessarily improved

by an iteration, if zz is sufficiently large?   In the present work (Theorem 3) this

question is answered in the affirmative for the Galerkin-Petrov method, thereby extend-

ing a result previously obtained [6], in the course of a study of degenerate-kernel

methods for integral equations, for the ordinary Galerkin (or Bubnov-Galerkin) method.

The result for the Galerkin methods, that iteration necessarily improves the

accuracy if zz is sufficiently large, is of practical importance, because the required

iteration can be carried out without extra work, since the Galerkin methods already

require the calculation of the quantities Ku¡, i = 1, . . . , zz.  The fact that iteration

of the Galerkin solution is sometimes beneficial has been observed previously [2], on

the basis of practical experience.  It is apparent from some recent calculations [7]

that the benefit obtainable by the iteration can be very striking indeed, even in cases

where \\K\\» 1.

2. Principal Result.   Let Un be the subspace of H spanned by ux, . . . , un, and

let Pn be the orthogonal projection operator onto Un.  Then Pn has the properties

P2 = P„ = P*, \\Pn II = 1.  The sequence {u¡} is assumed to be complete in H, hence

Pnx —► x for all x G H.

The best approximation \oy of the form (2), i.e. the element yXn £ Un that mini-

mizes lb-^ln II, is [1]

(4) V*    =P v
■'In n-r-
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Similarly, since y - y2n can be written, with the aid of Eqs. (1) and (3), as

y-y2n=Ky-ZbniKui,
i=i

it is seen that ||>> -y2n || is minimized by choosing Y,bniKui to be the orthogonal

projection of Ky onto KUn (the span of Kux, . . . , Kun).  Thus, the best approximation

toy of the form (3) is

(5) y*2n=f+P2nKyf

where P2n is the orthogonal projection operator onto KUn.

Theorem 1. Ify2n = f + Ky*Xn, then

\\y-y*2n\\<\\y-y2„\\<0Ln\\y-yXn\\,

where

OLn = \\K-KPn\\-*0.

Proof.   The first inequality follows from the optimal nature of y2n.  To prove

the second inequality, note that

(6) y-y2n=(f+Ky)-(f + Ky*Xn) = K(y- Pny) = (K - KPn)(y - Pny),

giving

llj-^JKH^-^JII^-J'lnll.

The proof is completed by the standard result [5, p. 204] \\K - KPn II ~> 0.  (This

foUows, for example, by noting that

\\K - KPn\\ = \\K* - PnK* W =        sup        \\K*x-PnK*x\\;
xGH, 11x11=1

hence if the contrary \\K - KPn || -f* 0 is supposed, then there exists e > 0 and a

sequence {xn} C H such that \\K*xn - PnK*xn || > e, ||x„ II = 1.  Since K* is compact,

{K xn} may be assumed to converge to an element v G H, which implies

\\K*x„ -PnK*xn II < \\(I-P„)(K*xn-v)\\ + \\v-Pnv\\~*0,

a contradiction.)    Q.E.D.

The key to the proof of Theorem 1 is the factorization carried out in Eq. (6),

by exploiting the projection property P2 = P .

3.  Generalization of Theorem 1.   Let ymn be an expression of the form

fii-2 n

(7) ymn = Z K'f+Z amniKm-lut,      m>\,
7=0 i=l

where the amni are numbers; and let Pmn denote the orthogonal projection operator

onto/T"1-1^ (thespanof/:'"-1«!, . . . , Km^un), so that P2mn = Pmn = P*mn

and \\Pmn\\= 1.
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By repeated iteration of Eq. (l),the exact solution y can be written in a form

similar to (7), namely

m-2

(8) y=  Z K'f+Km-ly,      m>\.
j=o

Hence, y - ymn can be written

y-ymn=K">-1y-Z"mniKm-1Ui,
í=l

from which it follows that the approximation to y of the form (7) that minimizes

H^-^mJIi5
m-2

(9) y*mn=  llK'f + PmnKm-ly.
¡=0

Theorem 2. If K x = 0 has no nontrivial solution in H, then

Wy -y*m + i,n H < 11^ -(f+Ky*mn)\\<amn \\y - y*mn II,      m>\,

where

^mn = ^-KPmn\\ — 0   asn-+°°.

(10) f+Ky*mn=  ZK'f + KPmnKm-^

Proof.   It follows from Eq. (9) that

m-l
rs ij.   i      ws- r. *r fft —„

y-

7 = 0

Since this is of the form (7) with zzz replaced by zzz + 1, and since y*m + x n is the best

possible approximation to y of that form, the first inequality of the theorem is obvious.

Furthermore, it follows from (10), and from (8) with m replaced by zzz + 1, that

y-(f+Kymn) = Kmy-KPmnKm-1y=(K-KPmn)(K»'-*y-PmnK>"-1y)

(H)

= (K-KPmn)(y-y*mn),
hence

\\y-(f + Ky*mn)\\<\\K-KPmn\\\\y-y*mn\\.

It only remains to prove that \\K - KPmn II —*■ 0 as n —► °°.  Since the null

space of K* is trivial, it follows that the null space of (K m)* = (K*)m is trivial; and

hence that the set {Kmux, Kmu2, . . . } is complete in H (since otherwise there

exists a nonzero element x G H satisfying 0 = (x, Kmu¡) = (Km x, u¡) for each i > 1,

which because {u¡} is complete yields the contradiction Km*x = 0).  Thus Pmnx —►

x as zz —► °° for each x G H.  The required result \\K - KPmn \\ —► 0 then foUows

exactly as for \\K - KPn || in the previous section.    Q.E.D.

Again the key step in the proof is a factorization, this time carried out in (11)

and based on the property P2mn = Pmn-

4.  Galerkin and Galerkin-Petrov methods.   The simple Galerkin (or Bubnov-

Galerkin) method [3, p. 223] makes use of an approximate solution of the form (2),

with the coefficients being fixed by requiring the residual yXn - f — KyXn to be

orthogonal to U  (the span of «j, . . .   , un), or equivalently, by requiring that
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(12) Pn^in-f-KyXn) = o,

where Pn is the orthogonal projection operator onto Un.  Since P„yXn =J'i„» h

follows that yXn satisfies an equation of the second kind,

(i3) yin=PJ+Pnzyin'

The more general Galerkin-Petrov method [3, p. 223] again makes use of an

approximate solution of the form (2), but it uses a second set of linearly independent

functions {v¡} to determine the coefficients:   Eq. (12) is replaced by

O4) Qn(ym-f-Kyln)-o,

where Qn is the orthogonal projection operator onto Vn, the span of vx, . . . ,vn.

Obviously, the Galerkin-Petrov method includes the ordinary Galerkin method as a

special case.

Some restriction is necessary on the choice of {u(} in the Galerkin-Petrov method,

to avoid the possibUity of QnyXn vanishing, or becoming very small.  A suitable

restriction [3, p. 224], assumed in the present work, is that the aperture 6(Un, V~n)

between Un and Vn, which is defined by [3, p. 205]

e^n,vn) = \\pn-Qn\\,

should be strictly less than 1 in the limit,

(15) ÜnT 6(Un,Vn)<\.
n-*<*>

It follows easily from this condition and from the completeness of the set {u¡}

that the set {v¡} is necessarily complete.

The following theorem asserts that the approximate solution by the Galerkin-

Petrov method is necessarily improved by an iteration for zz sufficiently large, provided

that 1 is not an eigenvalue of K.

Theorem 3. // the homogeneous equation x = Kx has only the trivial solution,

and if yXn is the approximate solution of (\) by the Galerkin-Petrov method and if

y2n is defined by y2n = f+ KyXn, then

\\y-y2n-'<ßn\\y-y*ln\\<ßn\\y-yin-\>

where ßn —► 0 as zz —► °°.

,477 explicit expression for ßn is given by Eq. (26).

Proof.  Since K is compact and does not have 1 as an eigenvalue, the solution

of Eq. (1) is unique and exists for any /£ H, and can be written

(16) y = (I-KTlf,

where / is the identity operator, and (/ - Kf1 is a bounded linear operator in H.

The first step in the proof is to obtain from (14) an equation of the second kind

for_yln, simüar to the Galerkin equation (13).   From the condition (15), it follows

[3, p. 206] that for zz sufficiently large, say zz > n0, Q„ maps Un one-one onto Vn.
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Thus, if Qn denotes the operator Qn with its domain restricted to Un, the inverse Q~l

exists for zz > zzn.   Furthermore, the inverses are uniformly bounded,

(17) IIS;1 IK At       n>n0.

By applying Q~x to Eq. (14), and using QnyXn = QnyXn, we obtain the desired

equation

(18) yln = n„/+ nnKyln,      n>n0,

where

(19) Un=Qñ1Qn-

In particular, if Vn = Un, then Iln = Q„ = P„, and (18) reduces to the Galerkin

equation (13).

In the general case, it follows from (19) that the range of IIn is U , and that

IT2 = nn, so that rin is a projection operator (in general not orthogonal) onto Un.

From (17), ||iln || is uniformly bounded,

(20) linjKAf,      zz>zz0.

It also foUows from (19) that WnPn = Pn and that ß„II„ = ß„; hence I ~ Un can be

written in either of the forms

(2i) / - n„ = (/ - n„)(/ - p„) = (i- Qn)(i - n„).

Since y2n = / + KyXn, where yXn satisfies (18), it foUows immediately that yXn

= ffny2„f hence y2n satisfies

(22) yin=f+Ku„y2n,

an equation of the second kind with compact kernel KI\n.

The operator KUn converges in norm to K, because by virtue of (21) and (20),

\\K-KUn\\ = \\{K-KQn){I-Un)\\<\\K-KQn\\(l+M),

in which \\K - KQn \\ —* 0 by the same argument as used for \\K - KPn \\ in Section 2.

It follows that (/ - /Vrin)_1 exists as a bounded linear operator for zz sufficiently large,

and that it converges in norm to the bounded operator (/ - K)~l.  The solution of

(22) can therefore be written, for n sufficiently large, as

(23) y2H=(f-KHHrl£.

It foUows from (16) and (23) that

y-y2n=[iI-K)-1-{I-KUnrl]f={I-KUnr1{K-KUn)(I-Krif

= {I-KUnr1{K-KUn)y.

On using UnPn = Pn, the last factor can be written as
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(24) {K - KUn)y = {K - KUn)(y - Pny);

hence we obtain

(25) \\y -y2n ll < ||(/ -Arn,,)-1 h H* - Arn,, 11 \\y-Pny II = ßn \\y -y\n II,

where

(26) ft,-IKz-^rMl HA:-A:n.ii.

The limit ßn —*■ 0 follows from ||(7 - Arnn)_1 II —► 11(7 - AT)-11| and the result

11 AT - ATn„|| —► O proved above.

The remaining inequality 11 _v _jt„ll < \\y _ Ji„ll follows from the optimal

property of y*n.    Q.E.D.

The key to the rapid convergence established for the Galerkin-Petrov method is

the factorization carried out in (24).

The bound on ||_y - y2n || given by (25) may be very large if AT has an eigenvalue

close to 1, so that it may occasionally be useful to note that even in the worst case

\\y ~ y2n\\ 1S alS0 Dourided by

\\y -y2n W = W(f + Ky)-(f + KyXn)\\ <\\K\\ \\y -yXn II.

However, it has been found in practical calculations [7] that the iterated Galerkin

approximation retains a marked superiority over the Galerkin approximation itself,

even in cases where there is an eigenvalue of K very near to 1.
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